JPS6234942B2 - - Google Patents

Info

Publication number
JPS6234942B2
JPS6234942B2 JP12596879A JP12596879A JPS6234942B2 JP S6234942 B2 JPS6234942 B2 JP S6234942B2 JP 12596879 A JP12596879 A JP 12596879A JP 12596879 A JP12596879 A JP 12596879A JP S6234942 B2 JPS6234942 B2 JP S6234942B2
Authority
JP
Japan
Prior art keywords
fuel
fuel injection
injection nozzle
engine
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12596879A
Other languages
Japanese (ja)
Other versions
JPS5650255A (en
Inventor
Yoshinori Motoiden
Shinji Nakao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsuda KK
Original Assignee
Matsuda KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuda KK filed Critical Matsuda KK
Priority to JP12596879A priority Critical patent/JPS5650255A/en
Publication of JPS5650255A publication Critical patent/JPS5650255A/en
Publication of JPS6234942B2 publication Critical patent/JPS6234942B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、燃料噴射式エンジンにおける燃料供
給装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel supply device for a fuel injection engine.

従来より、多気筒エンジンにおいて、エンジン
の吸気マニホールドの各ブランチ部にそれぞれ燃
料噴射ノズル(4気筒の場合4個)を設けて、エ
アフローメータ等で計測された吸入空気量に応じ
た燃料噴射量をコンピユータで制御して各燃料噴
射ノズルから燃料噴射するようにした燃料噴射式
エンジンの燃料供給装置はよく知られている(例
えば、実開昭53―90718号公報参照)。
Conventionally, in multi-cylinder engines, fuel injection nozzles (four in the case of a four-cylinder engine) are installed in each branch of the engine's intake manifold, and the fuel injection amount is determined according to the amount of intake air measured by an air flow meter, etc. A fuel supply system for a fuel injection engine that is controlled by a computer and injects fuel from each fuel injection nozzle is well known (see, for example, Japanese Utility Model Application No. 53-90718).

しかしながら、上記従来の装置では、吸気マニ
ホールドの各ブランチ部にそれぞれ燃料噴射ノズ
ルを設けているため、各気筒への燃料の分配性が
良い反面、燃料の霧化が充分に行われ得ないとと
もに、各気筒毎に燃料噴射ノズルを要し、コスト
アツプの要因をなすという不具合があつた。
However, in the above-mentioned conventional device, each branch of the intake manifold is provided with a fuel injection nozzle, so while the distribution of fuel to each cylinder is good, the fuel cannot be atomized sufficiently. The problem was that a fuel injection nozzle was required for each cylinder, which increased costs.

そこで、かかる不具合に対処するために、スロ
ツトルバルブ上流の吸気通路に燃料噴射ノズルを
設けて、気筒数と比較して数少ない燃料噴射ノズ
ルでもつて各気筒への燃料を良好に分配するよう
にするとともに、上記燃料噴射ノズルの先端より
所定の空間を保持して対向する超音波振動板を設
けて、燃料の霧化を促進するようにしたものが考
えられる。
Therefore, in order to deal with this problem, a fuel injection nozzle is provided in the intake passage upstream of the throttle valve, so that fuel can be distributed well to each cylinder even with a small number of fuel injection nozzles compared to the number of cylinders. In addition, it is conceivable to provide an ultrasonic diaphragm facing the tip of the fuel injection nozzle with a predetermined space therebetween to promote atomization of the fuel.

しかし、このものでは、特にエンジンの低負荷
運転域において吸気充填率の低下に伴つて吸入空
気の流速が著しく低下することにより、燃料噴射
ノズルから超音波振動板に噴射された燃料が該超
音波振動板で反射されて一部が超音波振動板より
上流に飛散し、一旦上流に飛散した燃料は吸気流
速が遅いことによつて下流に押し流されずに吸気
通路の内壁に凝縮して付着するため、燃料の霧化
促進を充分に図れないという問題がある。また、
上記燃料の吸気通路内壁への凝縮付着により加速
時等の過渡運転時における燃料の追従性が悪いと
いう問題もある。
However, in this case, the flow velocity of the intake air decreases significantly as the intake air filling rate decreases, especially in the low-load operating range of the engine, so that the fuel injected from the fuel injection nozzle to the ultrasonic diaphragm is affected by the ultrasonic waves. Some of the fuel is reflected by the diaphragm and is scattered upstream from the ultrasonic diaphragm, and once the fuel is scattered upstream, it is not swept downstream due to the slow intake flow rate, but instead condenses and adheres to the inner wall of the intake passage. However, there is a problem in that the atomization of the fuel cannot be sufficiently promoted. Also,
There is also a problem in that fuel followability during transient operation such as acceleration is poor due to the condensation of the fuel on the inner wall of the intake passage.

上記問題点を解消するためには、吸気通路に吸
気流速を速めるベンチユリ部を設け、該ベンチユ
リ部内に上記燃料噴射ノズルと超音波振動板とを
配置するようにすればよいが、ベンチユリ部内に
超音波振動板を配置した場合、ベンチユリ部の内
径に制約を受けて超音波振動板の燃料噴射ノズル
の噴射角に対する振動面面積を充分に確保できな
いといつた新たな問題が生じる。
In order to solve the above problem, it is possible to provide a bench lily section in the intake passage that increases the intake flow rate, and arrange the fuel injection nozzle and the ultrasonic diaphragm inside the bench lily section. When a sonic diaphragm is arranged, a new problem arises in that it is not possible to secure a sufficient vibrating surface area of the ultrasonic diaphragm for the injection angle of the fuel injection nozzle due to constraints on the inner diameter of the bench lily.

本発明はかかる問題点に鑑みてなされたもので
あり、スロツトルバルブ上流の吸気通路に設けた
ベンチユリ部に燃料噴射ノズルと該燃料噴射ノズ
ルの先端より所定の空間を保持して対向する超音
波振動板とを備えてなる燃料噴射式エンジンの燃
料供給装置において、上記ベンチユリ部を上記燃
料噴射ノズルからの燃料噴射中心に対して略直交
する方向を長軸とする長穴形状に形成することに
より、上記超音波振動板の振動面面積を充分に確
保しつつ且つ各気筒への燃料の良好な分配性を確
保しつつ、特にエンジンの低負荷運転時における
吸気流速を高め、よつて燃料の上流飛散を防止し
たうえ燃料霧化を充分に促進できるようにしたも
のである。
The present invention has been made in view of such problems, and includes a fuel injection nozzle and an ultrasonic wave that face each other while maintaining a predetermined space from the tip of the fuel injection nozzle in a vent lily section provided in the intake passage upstream of the throttle valve. In the fuel supply device for a fuel injection engine comprising a diaphragm, the bench lily portion is formed into an elongated hole shape whose long axis is substantially perpendicular to the center of fuel injection from the fuel injection nozzle. , while ensuring a sufficient vibration surface area of the ultrasonic diaphragm and ensuring good distribution of fuel to each cylinder, increasing the intake flow velocity especially during low load operation of the engine, and thus increasing the upstream flow of fuel. This prevents scattering and also sufficiently promotes fuel atomization.

以下、本発明を図面に示す実施例に基づいて詳
細に説明する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

第1図および第2図において、1は例えば4気
筒等の多気筒エンジン、2はエンジン1に接続さ
れた吸気マニホールドであつて、該吸気マニホー
ルド2の上流には吸気通路3が連設されている。
該吸気通路3にはアクセルペダル(図示せず)と
連動するスロツトルバルブ4が配設され、該吸気
通路3によりエンジンの運転範囲全域にわたつて
スロツトルバルブ4で計量した吸入空気を供給す
るように構成されている。
1 and 2, 1 is a multi-cylinder engine such as a four-cylinder engine, 2 is an intake manifold connected to the engine 1, and an intake passage 3 is connected upstream of the intake manifold 2. There is.
A throttle valve 4 that operates in conjunction with an accelerator pedal (not shown) is disposed in the intake passage 3, and the intake passage 3 supplies intake air metered by the throttle valve 4 over the entire operating range of the engine. It is configured as follows.

上記スロツトルバルブ4上流の吸気通路3には
ベンチユリ部5が設けられ、該ベンチユリ部5は
第2図に示す如く長穴形状に形成されている。上
記ベンチユリ部5の長穴の短軸上には燃料噴射ノ
ズル6および該燃料噴射ノズル6の先端より所定
の空間を保持して対向する平板状の超音波振動板
7が配設され、該超音波振動板7はその振動面が
燃料噴射ノズル6の中心軸に略直角に対向すると
ともに、該振動面面積を最大限とすべくベンチユ
リ部5の長穴の長軸と略平行になるように配置さ
れている。
A bench lily portion 5 is provided in the intake passage 3 upstream of the throttle valve 4, and the bench lily portion 5 is formed into an elongated hole shape as shown in FIG. A fuel injection nozzle 6 and a flat ultrasonic diaphragm 7 facing the tip of the fuel injection nozzle 6 with a predetermined space are disposed on the short axis of the elongated hole of the bench lily portion 5. The sonic diaphragm 7 is arranged such that its vibration surface faces the central axis of the fuel injection nozzle 6 at a substantially right angle, and is also substantially parallel to the long axis of the elongated hole in the bench lily portion 5 in order to maximize the area of the vibration surface. It is located.

また、上記燃料噴射ノズル6はコンピユータ8
に連繋され、該コンピユータ8には吸気通路3の
ベンチユリ部5より上流に設けたエアフローメー
タ9の検出信号が入力され、該エアフローメータ
9で計測した吸入空気量に応じた適正な燃料噴射
量をコンピユータ8で設定制御し、それを燃料噴
射ノズル6に供給して該燃料噴射ノズル6から超
音波振動板7に向つて燃料を噴射するように構成
されている。
Further, the fuel injection nozzle 6 is connected to a computer 8.
A detection signal from an air flow meter 9 provided upstream of the bench lily portion 5 of the intake passage 3 is inputted to the computer 8, and an appropriate fuel injection amount is determined according to the amount of intake air measured by the air flow meter 9. The settings are controlled by a computer 8, and the settings are supplied to a fuel injection nozzle 6, which injects the fuel toward an ultrasonic diaphragm 7.

さらに、上記超音波振動板7は例えばPZT(ジ
ルコン・チタン酸鉛系磁器)等の種々のセラミツ
ク材料よりなるセラミツク振動子10に連結さ
れ、該セラミツク振動子10にはセラミツク振動
子10に高周波電圧をかける高周波発振器11が
接続されて、該超音波振動板7を高周波で振動せ
しめ、この高周波振動により燃料噴射ノズル6か
ら超音波振動板7に衝突した燃料を微細な霧状と
するように構成されている。
Further, the ultrasonic diaphragm 7 is connected to a ceramic vibrator 10 made of various ceramic materials such as PZT (zircon lead titanate porcelain). A high-frequency oscillator 11 is connected to vibrate the ultrasonic diaphragm 7 at a high frequency, and the high-frequency vibration turns the fuel collided with the ultrasonic diaphragm 7 from the fuel injection nozzle 6 into a fine mist. has been done.

したがつて、上記実施例においては、エンジン
の低負荷運転時には、吸入空気はスロツトルバル
ブ4の開動により吸気通路3を流れて該吸気通路
3のベンチユリ部5で絞られることにより、その
流速は速いものとなる。そして、吸入空気量に応
じた量の液状の燃料が燃料噴射ノズル6から超音
波振動板7に向つて噴射され、該超音波振動板7
の高周波振動により超音波振動板7に衝突した燃
料は微細な霧状となつて反射される。特に、上記
ベンチユリ部5を長穴形状に形成し、該ベンチユ
リ部5の長穴の短軸上に燃料噴射ノズル6と超音
波振動板7とを対向させ、且つ該超音波振動板7
の振動面をベンチユリ部5の長穴の長軸と平行に
してその振動面面積を最大限に設けることができ
るため、上記超音波振動板7による燃料霧化作用
を最大限に活用することができ、燃料の霧化を充
分に図ることができる。また、その際、反射され
た霧状の燃料の一部が上流に飛散しようとして
も、上記高速の吸入空気流によつて下流に押し流
されて吸入空気流と共に運び去られることによ
り、従来の如き上流飛散による燃料の吸気通路3
内壁への凝縮付着を防止して燃料の霧化を充分に
促進することができる。
Therefore, in the embodiment described above, when the engine is operated at low load, the intake air flows through the intake passage 3 by opening the throttle valve 4 and is throttled by the vent lily part 5 of the intake passage 3, so that the flow velocity is reduced. It will be fast. Then, an amount of liquid fuel corresponding to the amount of intake air is injected from the fuel injection nozzle 6 toward the ultrasonic diaphragm 7.
The fuel that collides with the ultrasonic diaphragm 7 due to the high frequency vibration is reflected as a fine mist. In particular, the bench lily portion 5 is formed into an elongated hole shape, the fuel injection nozzle 6 and the ultrasonic diaphragm 7 are opposed to each other on the short axis of the elongated hole of the bench lily portion 5, and the ultrasonic diaphragm 7 is
Since the vibration surface of the bench lily section 5 can be set parallel to the long axis of the elongated hole of the bench lily section 5 to maximize its vibration surface area, the fuel atomization effect of the ultrasonic diaphragm 7 can be utilized to the maximum. This makes it possible to sufficiently atomize the fuel. In addition, even if a part of the reflected fuel mist tries to scatter upstream, it is swept downstream by the high-speed intake airflow and carried away with the intake airflow, which prevents it from flying away as in the conventional case. Fuel intake passage 3 due to upstream scattering
It is possible to prevent condensation from adhering to the inner wall and sufficiently promote atomization of the fuel.

このように充分に霧化された燃料は下流のスロ
ツトルバルブ4で絞られて吸入空気と十分にミキ
シングされ、吸気マニホールド2を経てエンジン
1の各気筒に供給されることにより、各気筒にほ
ぼ均等に分配されることになる。
The fuel that has been sufficiently atomized in this way is throttled by the downstream throttle valve 4, thoroughly mixed with intake air, and then supplied to each cylinder of the engine 1 via the intake manifold 2. It will be evenly distributed.

一方、エンジンの高負荷運転時には、スロツト
ルバルブ4が全開状態に開かれ、吸気通路3から
十分の吸入空気を供給して吸気充填効率を高めて
出力性能を確保する一方、燃料噴射ノズル6から
吸気通路3に噴射された燃料は上記エンジンの低
負荷時と同様に、超音波振動板7により充分に霧
化が促進され、スロツトルバルブ4で吸入空気と
十分にミキシングされてエンジン1の各気筒に均
等に分配供給される。
On the other hand, during high-load operation of the engine, the throttle valve 4 is fully opened to supply sufficient intake air from the intake passage 3 to increase intake air filling efficiency and ensure output performance, while the fuel injection nozzle 6 The fuel injected into the intake passage 3 is sufficiently atomized by the ultrasonic diaphragm 7 and mixed with the intake air by the throttle valve 4, just as when the engine is under low load. Evenly distributed and supplied to the cylinders.

また、上記のように燃料の上流飛散を防止して
燃料の霧化を促進したことにより、加速時等のエ
ンジンの過渡運転時における燃料の追従性が良好
となり、加速性能等の向上をも図ることができ
る。
In addition, by preventing fuel from scattering upstream and promoting fuel atomization as described above, fuel followability during transient engine operations such as during acceleration is improved, improving acceleration performance, etc. be able to.

以上説明したように、本発明によれば、燃料噴
射式エンジンにおいて、気筒数と比較して少ない
燃料噴射ノズルでもつて燃料の各気筒への良好な
分配性を確保しつつ、特にエンジンの低負荷運転
時にベンチユリ部の速い吸気流速によつて超音波
振動板による燃料の上流飛散を防止したうえ燃料
の霧化を促進することができ、しかもベンチユリ
部を燃料噴射ノズルからの燃料噴射中心に対して
略直交する方向を長軸とする長穴形状に形成した
ことにより、超音波振動板の振動面面積を充分に
確保することができ、超音波振動板による燃料の
霧化を最大限に活用することができるものであ
る。
As explained above, according to the present invention, in a fuel injection type engine, it is possible to ensure good distribution of fuel to each cylinder even with a small number of fuel injection nozzles compared to the number of cylinders, and to reduce the load of the engine. During operation, the high intake flow rate of the bench lily prevents the upstream scattering of fuel due to the ultrasonic diaphragm and promotes fuel atomization. By forming the hole in the shape of a long hole with its long axis in a substantially orthogonal direction, it is possible to secure a sufficient vibration surface area of the ultrasonic diaphragm, thereby maximizing the atomization of fuel by the ultrasonic diaphragm. It is something that can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施態様を例示するもので、第
1図は全体概略縦断面図、第2図は第1図の―
線断面図である。 1…エンジン、2…吸気マニホールド、3…吸
気通路、4…スロツトルバルブ、5…ベンチユリ
部、6…燃料噴射ノズル、7…超音波振動板、8
…コンピユータ、9…エアフローメータ、10…
セラミツク振動子、11…高周波発振器。
The drawings illustrate embodiments of the present invention, and FIG. 1 is a schematic longitudinal cross-sectional view of the whole, and FIG. 2 is a cross-sectional view of the embodiment of the present invention.
FIG. DESCRIPTION OF SYMBOLS 1... Engine, 2... Intake manifold, 3... Intake passage, 4... Throttle valve, 5... Bench lily part, 6... Fuel injection nozzle, 7... Ultrasonic diaphragm, 8
...Computer, 9...Air flow meter, 10...
Ceramic resonator, 11...high frequency oscillator.

Claims (1)

【特許請求の範囲】[Claims] 1 スロツトルバルブ上流の吸気通路に設けたベ
ンチユリ部に燃料噴射ノズルと該燃料噴射ノズル
の先端より所定の空間を保持して対向する超音波
振動板とを備えてなる燃料噴射式エンジンの燃料
供給装置において、上記ベンチユリ部を上記燃料
噴射ノズルからの燃料噴射中心に対して略直交す
る方向を長軸とする長穴形状に形成したことを特
徴とする燃料噴射式エンジンの燃料供給装置。
1. Fuel supply for a fuel injection engine, which is equipped with a fuel injection nozzle in a bench lily provided in an intake passage upstream of a throttle valve, and an ultrasonic diaphragm facing the tip of the fuel injection nozzle with a predetermined space therebetween. A fuel supply device for a fuel injection type engine, wherein the bench lily portion is formed in the shape of an elongated hole whose long axis is substantially perpendicular to the center of fuel injection from the fuel injection nozzle.
JP12596879A 1979-09-28 1979-09-28 Fuel supply system for fuel injection type engine Granted JPS5650255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12596879A JPS5650255A (en) 1979-09-28 1979-09-28 Fuel supply system for fuel injection type engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12596879A JPS5650255A (en) 1979-09-28 1979-09-28 Fuel supply system for fuel injection type engine

Publications (2)

Publication Number Publication Date
JPS5650255A JPS5650255A (en) 1981-05-07
JPS6234942B2 true JPS6234942B2 (en) 1987-07-29

Family

ID=14923427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12596879A Granted JPS5650255A (en) 1979-09-28 1979-09-28 Fuel supply system for fuel injection type engine

Country Status (1)

Country Link
JP (1) JPS5650255A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198996A1 (en) * 2018-04-09 2019-10-17 (주)클래시스 Ultrasonic treatment apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171871A (en) * 1985-01-25 1986-08-02 Hitachi Ltd Fuel feeding device with fuel spraying device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198996A1 (en) * 2018-04-09 2019-10-17 (주)클래시스 Ultrasonic treatment apparatus

Also Published As

Publication number Publication date
JPS5650255A (en) 1981-05-07

Similar Documents

Publication Publication Date Title
KR900000152B1 (en) Automobile fuel feed apparatus
US4121549A (en) Apparatus for metering fuel and air for an engine
KR0144366B1 (en) Fuel injection control apparatus
US4167158A (en) Fuel injection apparatus
US9175656B2 (en) Fuel injection valve
US6065691A (en) Fuel injection piston engines
JPS6234942B2 (en)
US4968458A (en) Fuel atomization device
JPS597027B2 (en) Fuel supply system for multi-cylinder internal combustion engine
JPH0650093B2 (en) Internal combustion engine intake system
JPS6263166A (en) Supersonic wave type fuel pulverizer for internal combustion engine
JPS603341Y2 (en) Internal combustion engine mixture supply system
KR820000614B1 (en) Fuel injection apparatus
JPH02157441A (en) Fuel injection device
JPH03145569A (en) Intake air feeding device for engine
JPS58210354A (en) Fuel supply device for car
JPH044851Y2 (en)
JPS5936107B2 (en) Mixture generator
JPS63259153A (en) Ultrasonic atomizing device
JPS6255450A (en) Fuel atomizing device for car
JPH05133292A (en) Fuel supply device for internal combustion engine
JPS61201875A (en) Twin type fuel atomizer
JPS6134341A (en) Fuel feeder with twin atomizers
JPS6157455B2 (en)
GB1567321A (en) Fuel injection apparatus in which an injector is vibrated