JPS6234751B2 - - Google Patents

Info

Publication number
JPS6234751B2
JPS6234751B2 JP54100550A JP10055079A JPS6234751B2 JP S6234751 B2 JPS6234751 B2 JP S6234751B2 JP 54100550 A JP54100550 A JP 54100550A JP 10055079 A JP10055079 A JP 10055079A JP S6234751 B2 JPS6234751 B2 JP S6234751B2
Authority
JP
Japan
Prior art keywords
dicarboxylic acid
reaction
acid ester
propynyl
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54100550A
Other languages
Japanese (ja)
Other versions
JPS5625135A (en
Inventor
Nobushige Itaya
Koichi Akeda
Osamu Magara
Takashi Matsuo
Toshio Nishioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP10055079A priority Critical patent/JPS5625135A/en
Priority to US06/159,497 priority patent/US4343953A/en
Priority to DE8080103458T priority patent/DE3064814D1/en
Priority to EP80103458A priority patent/EP0022482B1/en
Publication of JPS5625135A publication Critical patent/JPS5625135A/en
Publication of JPS6234751B2 publication Critical patent/JPS6234751B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は一般式() 〔式中、Rは低級アルキル基を表わす。〕 で示されるモノ2−プロピニル置換アセトンジカ
ルボン酸エステルの製造法に関し、さらに詳しく
は2−プロピニルクロリドと一般式() 〔式中、Rは前記と同じ意味を有する。〕 で示されるアセトンジカルボン酸エステルとをマ
グネシウムアルコキシドの存在下に反応させて一
般式()で示されるモノ2−プロピニル置換ア
セトンジカルボン酸エステルを製造するに際し、
触媒として沃化アルカリを存在させることを特徴
とする上記一般式()で示されるモノ置換アセ
トンジカルボン酸エステルの製造法に関する。 一般式()で示される化合物は例えば次のよ
うな経路により農薬の重要な中間体であるシクロ
プンテノロン()に導くことができ、該シクロ
ペンテノロン()の中間原料として極めて有用
である。 従来、モノ置換アセトンジカルボン酸エステル
を得る方法としては例えば農芸化学会誌第47巻
201頁および特公昭50−3298号公報にモノアルキ
ル、モノアリルおよびモノアラルキル置換の化合
物の合成法が記載されている。しかしながら本発
明に係わるモノ2−プロピニル置換の化合物につ
いては全く記載がなく、また上記文献に準じて、
マグネシウムアルコキシドを縮合塩基とし、2−
プロピニルブロミドを用いて反応を試みたところ
目的のモノ2−プロピニル置換体エステルの収率
は低く、さらに工業的により安価でかつ取り扱い
易い2−プロピニルクロリドを用いた場合には該
置換反応の進行は極めて遅くまた反応の選択性や
目的のモノ2−プロピニル置換体エステルの収率
も極めて低い。 このような状況の下に本発明者らは工業的に有
利な2−プロピニルクロリドを用いて前記一般式
()で示されるモノ2−プロピニル置換アセト
ンジカルボン酸エステルを選択性よく、且つ収率
よく製造することを目的として鋭意検討した結
果、2−プロピニルクロリドと一般式()で示
されるアセトンジカルボン酸エステルを縮合塩基
としてマグネシウムアルコキシドを用いて反応さ
せる際に触媒として沃化アルカリを使用すること
により、沃化アルカリを使用しない場合に比し反
応が円滑に進行し、収率が向上し、且つモノ置換
体の選択性が向上し、さらに2−プロピニルブロ
ミドを用いた場合に比しても、大巾に反応が改善
されることを見出し、これに種々の検討を加え本
発明を完成するに至つた。 一般にアセトンジカルボン酸エステルの置換反
応に際してはモノ、ジ、トリ、テトラ置換の種々
の置換体が生成することが知られ、モノ置換体の
選択性を向上させることは極めて重要な課題であ
る。すなわち、生成物中の原料および副生成物が
後段の反応に無関係である場合には粗生成物中の
不純物は大きな問題点とはならないが、本発明反
応のように生成する可能性がある何れの成分も同
様の性質を有する場合には、後段の反応において
も各成分が同様の挙動を示すため導びかれる目的
生成物の純度および収率の低下をもたらすことに
なる。この幣害を避けるためには次工程の反応原
料として純度の高いものを用いることが必要とさ
れるが、反応自身の選択性が低く原料および副生
成物が目的生成物と化学的にも物理的にも近似し
ている系においては、その分離が極めて困難であ
り、例え何らかの分離手段があつたとしても、そ
れ自体非常に繁雑でありまた目的物の取得量も大
巾に減少する。従つて、特別な精製操作を要しな
い程度に目的物の生成選択性を高めることができ
れば、単に分離操作が簡略化されるというだけで
なく経済性においても大きく改善されることにな
り、このような観点から本発明方法の意義は極め
て大きいものがある。 また従来反応性有機塩化物を用い置換反応を行
なう際に、沃化ナトリウムを触媒として用いるこ
とにより該塩化物の反応性を高めることが知られ
ている。しかしながら、この場合の触媒は例えば
「Reagents for Organic Synthesis」の1088頁に
見られるように反応速度を高めることを主目的に
使用されるものであり、本発明のようにモノ置換
体の選択的な生成を促進し、かつ収率を向上させ
るという知見は何ら知られていない。 本発明を実施するに際し、反応温度としては一
般的には0℃から用いる溶媒の沸点の範囲で行な
うことができるが、好ましくは室温から溶媒の沸
点の範囲である。用いる沃化アルカリとしては沃
化カリウム、沃化ナトリウム、沃化リチウムが挙
げられ、沃化リチウムが特に好ましい。またその
量は原料のアセトンジカルボン酸エステルに対し
5モル%〜20モル%の範囲が好ましい。尚、沃化
アルカリとしては実際の反応時に系内で生成して
作用するものもこの概念に含まれることは勿論で
ある。 溶媒としては用いるマグネシウムアルコキシド
を構成するアルカノールと同一のアルカノールを
用いるのが一般的であるが、さらに不活性有機溶
媒を加えてもよい。マグネシウムアルコキシド量
は原料のアセトンジカルボン酸エステルに対し1
モル〜3モルの範囲が好ましい。 本発明を以下の実施例で更に詳細に説明する
が、勿論本発明がこれらの実施例に何ら限定され
るものではない。 実施例 1 マグネシウム5.2g(1.5倍モル(対アセトンジ
カルボン酸メチル))をメタノール150mlと触媒量
の沃素の存在下で反応させ、これにアセトンジカ
ルボン酸メチル25gを加え1.5時間撹拌した後、
沃化リチウム1.9g(0.1倍モル(対アセトンジカ
ルボン酸メチル))と2−プロピニルクロリド
11.24g(1.05倍モル(対アセトンジカルボン酸
メチル))を加え60℃で4時間反応させた。次い
で大部分のメタノールを留去後氷、希塩酸、酢酸
エチル、食塩を加え生成物を抽出し、抽出液を硫
酸マグネシウムで乾燥後、蒸留し沸点90〜101
℃/0.2mmHgの留分26.1gを得た。これをガスク
ロマトグラフイーにより分析した結果、〔原料:
モノ置換体:ジ置換体:その他=6.0:83.0:
8.0:3.0〕であり、モノ置換体に関しての収率は
71.0%であつた。 実施例 2〜3 触媒の種類と反応時間以外は実施例1と全く同
様にしてアルキル化反応を行ない下記の結結果を
得た。
The present invention is based on the general formula () [In the formula, R represents a lower alkyl group. ] Regarding the production method of mono-2-propynyl-substituted acetone dicarboxylic acid ester represented by 2-propynyl chloride and the general formula () [In the formula, R has the same meaning as above. ] When producing a mono-2-propynyl-substituted acetone dicarboxylic acid ester represented by the general formula () by reacting the acetone dicarboxylic acid ester represented by the following in the presence of magnesium alkoxide,
The present invention relates to a method for producing a monosubstituted acetone dicarboxylic acid ester represented by the above general formula (), characterized in that an alkali iodide is present as a catalyst. The compound represented by the general formula () can be led to cyclopentenolone (), which is an important intermediate for agricultural chemicals, for example, by the following route, and is extremely useful as an intermediate raw material for cyclopentenolone (). . Conventionally, methods for obtaining monosubstituted acetone dicarboxylic acid esters have been described, for example, in Vol. 47 of the Journal of the Japanese Society of Agricultural Chemistry.
Page 201 and Japanese Patent Publication No. 50-3298 describe methods for synthesizing monoalkyl, monoallyl, and monoaralkyl-substituted compounds. However, there is no description of the mono-2-propynyl-substituted compound according to the present invention, and according to the above literature,
Using magnesium alkoxide as a condensation base, 2-
When the reaction was attempted using propynyl bromide, the yield of the desired mono-2-propynyl substituted ester was low, and furthermore, when 2-propynyl chloride, which is industrially cheaper and easier to handle, was used, the substitution reaction did not progress. It is extremely slow, and the selectivity of the reaction and the yield of the desired mono-2-propynyl substituted ester are also extremely low. Under these circumstances, the present inventors used industrially advantageous 2-propynyl chloride to produce mono-2-propynyl-substituted acetone dicarboxylic acid ester represented by the general formula () with good selectivity and high yield. As a result of intensive studies aimed at producing the product, we found that by using an alkali iodide as a catalyst when reacting 2-propynyl chloride and acetone dicarboxylic acid ester represented by the general formula () using magnesium alkoxide as a condensation base. , the reaction proceeds more smoothly, the yield is improved, and the selectivity of the monosubstituted product is improved compared to when no alkali iodide is used, and even when 2-propynyl bromide is used, It was discovered that the reaction was greatly improved, and various studies were carried out to complete the present invention. It is generally known that various mono-, di-, tri-, and tetra-substituted products are produced during the substitution reaction of acetone dicarboxylic acid esters, and improving the selectivity of mono-substituted products is an extremely important issue. In other words, if the raw materials and byproducts in the product are unrelated to the subsequent reaction, impurities in the crude product will not be a major problem, but impurities that may be generated as in the reaction of the present invention If the components also have similar properties, each component exhibits similar behavior in the subsequent reaction, resulting in a decrease in the purity and yield of the desired product. In order to avoid this damage, it is necessary to use highly pure raw materials for the reaction in the next step, but the selectivity of the reaction itself is low and the raw materials and by-products are chemically and physically different from the target product. It is extremely difficult to separate systems that are very similar, and even if some sort of separation method were available, it would be extremely complicated and the amount of the target product obtained would be greatly reduced. Therefore, if the selectivity for producing the target product could be increased to the extent that no special purification operation is required, it would not only simplify the separation operation but also greatly improve economic efficiency. From this point of view, the method of the present invention has extremely great significance. Furthermore, it has been known that when performing a substitution reaction using a reactive organic chloride, the reactivity of the chloride can be increased by using sodium iodide as a catalyst. However, the catalyst in this case is used primarily to increase the reaction rate, as can be seen on page 1088 of "Reagents for Organic Synthesis", and is used for selectively monosubstituted products as in the present invention. There is no knowledge that it promotes production and improves yield. In carrying out the present invention, the reaction temperature can generally be in the range from 0°C to the boiling point of the solvent used, but preferably in the range from room temperature to the boiling point of the solvent. Examples of the alkali iodide used include potassium iodide, sodium iodide, and lithium iodide, with lithium iodide being particularly preferred. The amount thereof is preferably in the range of 5 mol % to 20 mol % based on the raw material acetone dicarboxylic acid ester. It goes without saying that this concept also includes alkali iodides that are produced and act within the system during the actual reaction. As a solvent, the same alkanol as that constituting the magnesium alkoxide used is generally used, but an inert organic solvent may also be added. The amount of magnesium alkoxide is 1 per acetone dicarboxylic acid ester as the raw material.
A range of mol to 3 mol is preferred. The present invention will be explained in more detail with reference to the following examples, but of course the present invention is not limited to these examples in any way. Example 1 5.2 g of magnesium (1.5 times the mole (based on methyl acetone dicarboxylate)) was reacted with 150 ml of methanol in the presence of a catalytic amount of iodine, and 25 g of methyl acetone dicarboxylate was added thereto and stirred for 1.5 hours.
1.9 g of lithium iodide (0.1 times mole (to methyl acetone dicarboxylate)) and 2-propynyl chloride
11.24 g (1.05 times the mole (based on methyl acetone dicarboxylate)) was added and reacted at 60°C for 4 hours. Next, after distilling off most of the methanol, ice, dilute hydrochloric acid, ethyl acetate, and salt were added to extract the product. The extract was dried over magnesium sulfate and then distilled to a boiling point of 90 to 101.
26.1 g of a fraction of °C/0.2 mmHg was obtained. As a result of analyzing this by gas chromatography, [raw material:
Mono-substituted product: Di-substituted product: Other = 6.0: 83.0:
8.0:3.0], and the yield for the monosubstituted product is
It was 71.0%. Examples 2-3 An alkylation reaction was carried out in exactly the same manner as in Example 1 except for the type of catalyst and reaction time, and the following results were obtained.

【表】 参考例 1 触媒を用いないことおよび反応時間以外は実施
例1と全く同様にして次の結果を得た。
[Table] Reference Example 1 The following results were obtained in exactly the same manner as in Example 1 except that no catalyst was used and the reaction time was changed.

【表】 参考例 2 実施例1に準じて1.5倍モル(対アセトンジカ
ルボン酸エチル)のマグネシウムから調整したマ
グネシウムエトキシドを用いエタノール中でアセ
トンジカルボン酸エチルと1.05倍モル(対アセト
ンジカルボン酸エチル)の2−プロピニルクロリ
ドを78℃8.5時間反応させた後、実施例1と同様
に処理し次の結果を得た。
[Table] Reference Example 2 Magnesium ethoxide prepared from 1.5 times the mole (to ethyl acetone dicarboxylate) of magnesium according to Example 1 was mixed with ethyl acetone dicarboxylate to 1.05 times the mole (to ethyl acetone dicarboxylate) in ethanol. 2-propynyl chloride was reacted at 78°C for 8.5 hours, and then treated in the same manner as in Example 1 to obtain the following results.

【表】【table】

Claims (1)

【特許請求の範囲】 1 2−プロピニルクロリドと一般式 〔式中、Rは低級アルキル基を表わす。〕 で示されるアセトンジカルボン酸エステルとをマ
グネシウムアルコキシドの存在下に反応させて、
一般式 〔式中、Rは前述と同じ意味を有する。〕 で示されるモノ置換アセトンジカルボン酸エステ
ルを製造するに際し、触媒として沃化アルカリを
存在させることを特徴とする上記一般式で示され
るモノ置換アセトンジカルボン酸エステルの製造
法。 2 沃化アルカリとして沃化リチウムを用いるこ
とを特徴とする特許請求の範囲第1項に記載の製
造法。
[Claims] 1 2-propynyl chloride and general formula [In the formula, R represents a lower alkyl group. ] by reacting with acetone dicarboxylic acid ester shown in the presence of magnesium alkoxide,
general formula [In the formula, R has the same meaning as above. ] A method for producing a monosubstituted acetone dicarboxylic acid ester represented by the above general formula, characterized in that an alkali iodide is present as a catalyst when producing the monosubstituted acetone dicarboxylic acid ester represented by the formula. 2. The manufacturing method according to claim 1, characterized in that lithium iodide is used as the alkali iodide.
JP10055079A 1979-06-22 1979-08-06 Preparation of mono-substituted acetonedicarboxylic acid ester Granted JPS5625135A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10055079A JPS5625135A (en) 1979-08-06 1979-08-06 Preparation of mono-substituted acetonedicarboxylic acid ester
US06/159,497 US4343953A (en) 1979-06-22 1980-06-16 Method for preparing 4-hydroxy-3-methyl-2-(2-propynyl)-2-cyclopentenolone
DE8080103458T DE3064814D1 (en) 1979-06-22 1980-06-20 Process for preparing 4-hydroxy-3-methyl-2-(2-propynyl)-2-cyclopentenolone; a gamma-diketone compound and substituted acetonedicarboxylic esters
EP80103458A EP0022482B1 (en) 1979-06-22 1980-06-20 Process for preparing 4-hydroxy-3-methyl-2-(2-propynyl)-2-cyclopentenolone; a gamma-diketone compound and substituted acetonedicarboxylic esters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10055079A JPS5625135A (en) 1979-08-06 1979-08-06 Preparation of mono-substituted acetonedicarboxylic acid ester

Publications (2)

Publication Number Publication Date
JPS5625135A JPS5625135A (en) 1981-03-10
JPS6234751B2 true JPS6234751B2 (en) 1987-07-28

Family

ID=14277044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10055079A Granted JPS5625135A (en) 1979-06-22 1979-08-06 Preparation of mono-substituted acetonedicarboxylic acid ester

Country Status (1)

Country Link
JP (1) JPS5625135A (en)

Also Published As

Publication number Publication date
JPS5625135A (en) 1981-03-10

Similar Documents

Publication Publication Date Title
CN102548959B (en) Production method for an alkyl isocyanate
JPS6241662B2 (en)
JPS6234751B2 (en)
JPS582210B2 (en) Method for producing 2,3-dimethyl-2,3-butanediol
JP4649733B2 (en) Method for producing acetophenone compound containing trifluoromethyl group
JP4948030B2 (en) Method for producing fluorine-containing alcohol derivative
WO2019069321A1 (en) An improved process for the preparation of a key intermediate of gemfibrozil
JP2000026350A (en) Production of 2,2-bis(4-hydroxy-3,5-dibromophenyl)propane derivative
JP2001302658A (en) Method for manufacturing of 3-isochromanones
JPH03188044A (en) Production of acyloxyaliphatic hydrocarbon
JPH10114705A (en) Production of cyclopentyl formate and production of cyclopentanol
JPH0639450B2 (en) Method for producing acyloxyhalogenated hydrocarbon
JP6782632B2 (en) Method for producing acetoacetic ester alkali salt and method for producing aliphatic diketone
JPS649306B2 (en)
JPH0749388B2 (en) Method for producing benzyloxyphenones
JP4150540B2 (en) Method for producing fluorine-containing alcohol
JP4435447B2 (en) Method for producing methoxymethyltriarylphosphonium chloride
JP2002212149A (en) METHOD FOR PRODUCING TETRAALKYLAMMONIUM FLUORIDE AND METHOD FOR PRODUCING beta-HYDROXYKETONE BY USING THE SAME
JP5003072B2 (en) Method for producing 3,3,3-trifluoropropionaldehyde
JP3340761B2 (en) Process for producing para-tertiary butoxy-α-methylstyrene
JPH05286904A (en) Production of allyl esters
JP4243397B2 (en) Novel unsaturated secondary alcohol and process for producing the same
JPH05320085A (en) P-tertiary butoxyphenyldimethylcarbinol and its production
JP2002069038A (en) Trifluoromethyl group-bearing benzoylformic alkyls, method of producing the same and method of trifluoromethyl group-bearing phenylacetic acid
JP2002187870A (en) Method for producing citric acid esters