JPS6234691B2 - - Google Patents

Info

Publication number
JPS6234691B2
JPS6234691B2 JP13353479A JP13353479A JPS6234691B2 JP S6234691 B2 JPS6234691 B2 JP S6234691B2 JP 13353479 A JP13353479 A JP 13353479A JP 13353479 A JP13353479 A JP 13353479A JP S6234691 B2 JPS6234691 B2 JP S6234691B2
Authority
JP
Japan
Prior art keywords
ultrasonic
glass
cooling
diaphragms
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13353479A
Other languages
Japanese (ja)
Other versions
JPS5659632A (en
Inventor
Koji Imamura
Yoshimi Niihori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP13353479A priority Critical patent/JPS5659632A/en
Publication of JPS5659632A publication Critical patent/JPS5659632A/en
Publication of JPS6234691B2 publication Critical patent/JPS6234691B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/02Tempering or quenching glass products using liquid

Description

【発明の詳細な説明】 本発明は、ガラス物品に超音波振動を付与させ
ながら液冷強化する液冷強化装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquid cooling strengthening apparatus that strengthens a glass article by liquid cooling while applying ultrasonic vibrations to the glass article.

ガラス物品を強化するには、歪点以上軟化点以
下に加熱されたガラス表面に冷却用ガス(通常空
気)を吹きつけ急冷し、ガラス物品が歪点を通過
する際にガラス表面と中央部との温度差を大きく
し、室温に冷却後はガラス表面層に強い圧縮応力
を生ぜしめる方法が採用されている。
To strengthen a glass article, cooling gas (usually air) is blown onto the glass surface that has been heated above the strain point and below the softening point to rapidly cool it, and when the glass article passes through the strain point, the glass surface and center part A method has been adopted in which the temperature difference is increased and strong compressive stress is generated in the glass surface layer after cooling to room temperature.

しかしながら、上記方法はガラス物品の厚味が
4m/m程度以上の場合有効な方法であり、既に
工業化されているが、ガラス物品の厚味が3m/
m以下の場合、ガラス表面と中央部に充分な温度
差を与えるだけの冷却能が得られず、従つて、ガ
ラス表面層に強い圧縮応力を与える事ができなか
つた。
However, the above method is effective when the thickness of the glass article is about 4 m/m or more, and has already been industrialized, but the method is effective when the thickness of the glass article is about 3 m/m or more.
m or less, it was not possible to obtain a cooling capacity sufficient to provide a sufficient temperature difference between the glass surface and the center, and therefore it was not possible to apply strong compressive stress to the glass surface layer.

この様な厚味3m/m以下のガラス物品を強化
する方法の一つとして歪点以上軟化点以下に加熱
されているガラス物品を油あるいは水などの冷却
液に浸漬し、ガラス表面と中央部の温度差が大き
くなるように冷却し、室温に冷却後ガラス表面層
に強い圧縮応力を与える方法、いわゆる液冷強化
法が提案されている。
One way to strengthen such glass articles with a thickness of 3 m/m or less is to immerse the glass article, which has been heated above the strain point and below the softening point, in a cooling liquid such as oil or water. A so-called liquid-cooling strengthening method has been proposed, in which the glass surface layer is cooled to a large temperature difference, and strong compressive stress is applied to the glass surface layer after cooling to room temperature.

しかしながら、この液冷強化法に於いては、急
冷時に発生する応力でガラス物品が破損するのを
防止する為にガラス面と冷却液の界面にガス層を
形成させ冷却能を緩和する方法或いは冷却能のあ
まり大きくない冷却液を使用する方法等が提案さ
れている。しかし、これらの方法では満足な強度
を有するガラス物品を得ることが難しい。
However, in this liquid cooling strengthening method, in order to prevent the glass article from breaking due to the stress generated during rapid cooling, there is a method that reduces the cooling ability by forming a gas layer at the interface between the glass surface and the cooling liquid, or a cooling method that reduces the cooling ability. Methods have been proposed, such as using a coolant that does not have a very high capacity. However, it is difficult to obtain glass articles with satisfactory strength using these methods.

本出願人は上記液冷強化法によるガラス物品の
強度を向上させる方法として、先に冷却液中に超
音波の音場を形成し、この中に加熱されたガラス
物品を投入することによりガラス中に著しく高い
強化歪を導入できることを見出し、特願昭51−
51329号として出願した。
As a method for improving the strength of glass articles by the above-mentioned liquid cooling strengthening method, the present applicant first forms an ultrasonic sound field in a cooling liquid and inserts a heated glass article into this field. It was discovered that a significantly high reinforcement strain could be introduced into the
The application was filed as No. 51329.

本発明者は、かかる超音波液冷強化方法を実施
するための装置について検討した結果、超音波液
冷強化するガラス物品の寸法が大きくなると冷却
液槽が大きくなるため、超音波振動機構の組み込
みに工夫が必要となり、特に分割振動の防止、超
音波振動音圧の均一化、補修の容易さなどについ
ての配慮が必要であることを見出した。例えば、
ガラス板全体をカバーする振動板を1枚で作る
と、中央と周辺近傍では振幅に大きな差ができる
とともに、ガラス板が分割振動を起こし、超音波
の音圧が不均一となりやすい。
As a result of studying an apparatus for carrying out such an ultrasonic liquid cooling strengthening method, the present inventor found that as the size of the glass article to be ultrasonic liquid cooling strengthened increases, the cooling liquid tank becomes larger. We found that it is necessary to take measures to prevent split vibrations, to equalize the sound pressure of ultrasonic vibrations, and to make repairs easier. for example,
If a single diaphragm is used to cover the entire glass plate, there will be a large difference in amplitude between the center and the vicinity of the periphery, and the glass plate will undergo split vibrations, making the sound pressure of the ultrasonic waves likely to be uneven.

本発明は、超音波を発振する超音波振動素子を
ユニツト化するとともに、ユニツト化された超音
波振動板の大きさを所定の大きさに限定し、かか
る振動板をある所定間隔をおいて冷却液槽中の一
面に配列するとともに、該面に対向する他面にも
上記ユニツト化した超音波振動板を対向して、か
つこの超音波振動板間の振動の照射されない領域
を補間するように配列し、上記欠点を改善したも
のである。
The present invention unitizes an ultrasonic vibrating element that oscillates ultrasonic waves, limits the size of the unitized ultrasonic diaphragm to a predetermined size, and cools the diaphragm at a predetermined interval. The unitized ultrasonic diaphragms are arranged on one surface of the liquid tank, and the unitized ultrasonic diaphragms are arranged on the other surface opposite to this surface, and the areas between the ultrasonic diaphragms that are not irradiated with vibration are interpolated. This arrangement improves the above-mentioned drawbacks.

即ち、本発明の要旨は歪点以上軟化点以下に加
熱されたガラス物品を冷却液槽中に浸漬して液冷
強化するガラス物品の液冷強化装置において、冷
却液槽内の少くとも1つの相対面する側に複数個
の超音波振動素子をユニツト化した超音波振動板
を互いに相補間する様に対向して配列したことを
特徴とするガラス物品の液冷強化装置に関するも
のである。
That is, the gist of the present invention is to provide a liquid cooling strengthening apparatus for glass articles in which a glass article heated to a temperature above the strain point and below the softening point is immersed in a cooling liquid bath for liquid cooling strengthening. The present invention relates to a liquid cooling strengthening device for glass articles, characterized in that ultrasonic diaphragms each having a plurality of ultrasonic diaphragms formed into units on opposing sides are arranged facing each other so as to complement each other.

以下、本発明を図面に従つて更に詳細に説明す
る。
Hereinafter, the present invention will be explained in more detail with reference to the drawings.

本発明の液冷強化装置は、例えば第1〜7図の
ように冷却液槽1の対向する壁2での外側に超音
波振動素子3の複数個をユニツト化した超音波振
動板4が複数個所定間隔をおいて設けられてい
る。超音波振動素子の振動板4は、浸漬し液冷強
化するガラス板をカバーするように配置される。
この振動板4は第1,3,4図の様に隣り合う振
動板4の間の領域Aを対向する振動板4により補
間するように対向して設けられる。この様にして
振動板間の高圧の弱い部分は対向する超音波振動
素子の振動板により音圧ををほぼ一定化すること
ができる。
The liquid cooling reinforcement device of the present invention has a plurality of ultrasonic diaphragms 4 each having a plurality of ultrasonic vibration elements 3 formed into a unit on the outside of the opposing wall 2 of a cooling liquid tank 1, as shown in FIGS. 1 to 7, for example. They are provided at predetermined intervals. The diaphragm 4 of the ultrasonic vibration element is arranged to cover the glass plate that is immersed and strengthened by liquid cooling.
As shown in FIGS. 1, 3, and 4, the diaphragms 4 are provided facing each other so that the area A between adjacent diaphragms 4 is interpolated by the opposing diaphragms 4. In this way, the sound pressure can be made almost constant in the portion where the high pressure between the diaphragms is weak by the diaphragms of the opposing ultrasonic transducer elements.

超音波振動素子の振動板は強化処理するガラス
板の寸法、板厚あるいは冷却液槽の寸法、形状に
応じ所望の出力例えばユニツト化された一つの振
動板当り数百W〜数十KWの出力が得られる様に
ユニツト化する超音波振動素子の個数を選択す
る。例えば数個から百数十個の超音波振動素子を
ユニツト化し、一つの超音波振動板とされる。又
各振動素子の列間隔は音圧が均一となるように選
択される。第1図に例示した例は超音波振動素子
の列間隔Bを10〜30mm程度としたものである。同
様に隣り合う超音波振動素子の振動板の間の距離
も、補間する超音波振動素子の振動板の寸法、出
力、音圧分布、冷却液槽の幅、振動板の取付け状
態、ガラス板の厚みなどによつて最適の値を選択
する。又、かかる超音波振動板は冷却液槽の寸法
形状及び強化処理するガラス板の寸法、形状に応
じて所定数、例えば数個から数十個を配置する。
The diaphragm of an ultrasonic vibration element has a desired output depending on the dimensions and thickness of the glass plate to be strengthened or the dimensions and shape of the cooling liquid tank, for example, an output of several hundred watts to several tens of kW per unitized diaphragm. The number of ultrasonic transducer elements to be made into a unit is selected so as to obtain the following. For example, several to over 100 ultrasonic vibrating elements are made into a unit to form one ultrasonic diaphragm. Further, the row spacing of each vibrating element is selected so that the sound pressure is uniform. In the example illustrated in FIG. 1, the row interval B of the ultrasonic transducer elements is approximately 10 to 30 mm. Similarly, the distance between the diaphragms of adjacent ultrasonic transducers can be determined by the dimensions, output, sound pressure distribution, width of the cooling liquid tank, mounting condition of the diaphragms, thickness of the glass plate, etc. of the diaphragms of the ultrasonic transducers to be interpolated. Select the optimal value by Further, a predetermined number of such ultrasonic diaphragms, for example, several to several tens, are arranged depending on the size and shape of the cooling liquid tank and the size and shape of the glass plate to be strengthened.

なお、振動板を単純に平行に対向させると、お
互いに対向した超音波振動素子からの振動を受信
し、振動素子に起電力が発生し、逆に回路に流れ
て発振が停止すというトラブルが発生する場合に
は、発振周波数をずらしたり、あるいは又対向す
る超音波振動素子の振動板を互いに対向した振動
板からの振動を受信しない距離をおいて配置する
こともできる。この様にすることにより対向する
振動板の受ける合計の音圧が著しく減少され、上
記トラブルを防止することができる。例えば、ガ
ラス板1の上辺は下辺に比べて強化が入り難い傾
向があるので、第7図の様に上の間隔を狭くし、
超音波振動板に近づけてこの振動板の間隔を上下
で約1波長分差をつけ、ガラス板上辺に下辺より
も強い音圧を受ける様にされる。又、この様にす
ることにより冷却液槽の安定性も良好にすること
ができる。
Note that if the diaphragms are simply placed parallel to each other, they will receive vibrations from the ultrasonic transducer elements facing each other, generating electromotive force in the transducer elements, which in turn will flow through the circuit and stop oscillation. If this occurs, the oscillation frequency may be shifted, or the diaphragms of opposing ultrasonic transducer elements may be placed at a distance so that they do not receive vibrations from the opposing diaphragms. By doing so, the total sound pressure received by the opposing diaphragms is significantly reduced, and the above-mentioned trouble can be prevented. For example, the upper side of the glass plate 1 tends to be harder to strengthen than the lower side, so the upper interval is narrowed as shown in Figure 7.
The glass plate is brought close to the ultrasonic diaphragm, and the distance between the diaphragms is set so that there is a difference of about one wavelength between the top and bottom, so that the upper side of the glass plate receives stronger sound pressure than the lower side. Moreover, by doing so, the stability of the cooling liquid tank can also be improved.

超音波振動板は上記した様な配置をもつて冷却
槽の対向する側壁の外側に壁面と接触する様に貼
り付けたり、取り付けたり、嵌め込んだり、ボル
ト締めされたりして固定される。なお、冷却液槽
の側壁に穴あるいは凹部を設けて超音波振動板を
埋め込んで周辺をシールして取付けてもよいし、
あるいは又、冷却槽の側壁の内側に取付けてもよ
い。
The ultrasonic diaphragm is arranged as described above and is fixed by pasting, attaching, fitting, or bolting to the outside of the opposing side walls of the cooling tank so as to make contact with the wall surface. Alternatively, a hole or recess may be provided in the side wall of the cooling liquid tank, the ultrasonic diaphragm may be embedded in it, and the surrounding area may be sealed.
Alternatively, it may be attached inside the side wall of the cooling tank.

又、超音波振動板は冷却液槽の壁面に超音波の
照射方向がガラス面に対しほぼ直角に照射される
ような向きをもつて配置するのが好ましい。
Further, it is preferable that the ultrasonic diaphragm is arranged on the wall surface of the cooling liquid tank in such a direction that the direction of irradiation of the ultrasonic waves is approximately perpendicular to the glass surface.

超音波振動板は、横断面が四辺形の冷却槽の場
合には1組の対向面だけでなく、2組の対向面に
設けることもでき、又冷却液槽の横断面の形状が
四辺形でない場合には、その形状に応じ互に補間
して対向するように超音波振動板を配置する。
In the case of a cooling tank with a quadrilateral cross section, the ultrasonic diaphragm can be provided not only on one set of opposing surfaces but also on two sets of opposing surfaces. If not, the ultrasonic diaphragms are arranged so as to interpolate and face each other depending on the shape.

又、超音波振動板は、第5,6図の様にその複
数個を所定間隔をおいてほぼ平行に、かつ斜め
に、更に互いに対向する振動板が補間し合う様に
配置することもできる。この様にユニツト板を斜
めに配置すると、垂直方向に浸漬されるガラス板
に対し、より均一に超音波が照射されるという利
点がある。
Further, as shown in FIGS. 5 and 6, a plurality of ultrasonic diaphragms can be arranged substantially parallel and diagonally at predetermined intervals, and furthermore, the diaphragms facing each other can be arranged so as to interpolate each other. . When the unit plates are arranged diagonally in this manner, there is an advantage that the glass plate immersed in the vertical direction is more uniformly irradiated with ultrasonic waves.

又、超音波振動板から浸漬されたガラス板まで
の距離、すらなわち冷却槽の幅は、超音波振動素
子の音圧レベルとその広がりなどからその最適値
が決定される。尚、第1図に示したものは、振動
板とガラス板との距離を50〜60mmとした例であ
る。
Further, the optimum value of the distance from the ultrasonic diaphragm to the immersed glass plate, ie, the width of the cooling tank, is determined based on the sound pressure level of the ultrasonic vibration element and its spread. In addition, what is shown in FIG. 1 is an example in which the distance between the diaphragm and the glass plate is 50 to 60 mm.

超音波の発振方式としては、磁歪型、電歪型の
いずれでもよく、又発振周波数としては、ガラス
物品を冷却液に浸漬した時、超音波によるキヤビ
ラーシヨン泡が高温のガラス板と冷却液との界面
に生じた境膜層を効果的に破壊して冷却能を向上
させる様に10KHz〜百数十KHz、望ましくは、
20KHz〜80KHz程度の周波数範囲が好ましい。
The oscillation method of ultrasonic waves may be either magnetostrictive or electrostrictive, and the oscillation frequency is such that when a glass article is immersed in a cooling liquid, the cavitation bubbles generated by the ultrasonic waves interact with the hot glass plate and the cooling liquid. 10 KHz to 100 KHz, preferably in order to effectively destroy the boundary film layer formed at the interface and improve cooling performance.
A frequency range of about 20KHz to 80KHz is preferred.

本発明の装置によりガラス板を液冷強化する場
合について説明すると、強化処理するガラス板は
吊手により吊り下げ、あるいは水平にロール搬送
し、あるいは垂直又は斜めにして搬送しながらガ
ラス板の歪点以上、軟化点以下の温度、例えばソ
ーダライムガラス板の場合には560℃〜700℃程度
まで加熱し、次いでシリコン油、合成油、植物
油、鉱物油、流動パラフインなどの冷却液の入つ
ている第1〜4図の様な冷却液槽内の対向された
超音波振動素子間に加熱されたガラス板を浸漬急
冷する。又、ガラス板が浸漬された時又は浸漬さ
れた後、あるいは又浸漬される前に冷却液槽内の
超音波振動素子を発振させ、ガラス板が浸漬され
た時、ガラス板に所定時間超音波が照射され、超
音波液冷が施こされるようにする。次いで冷却液
槽から取出し洗滌する。
To explain the case where a glass plate is strengthened by liquid cooling using the apparatus of the present invention, the glass plate to be strengthened is suspended by a hanger, or conveyed horizontally by rolls, or conveyed vertically or diagonally, until the strain point of the glass plate is As mentioned above, heat the glass plate to a temperature below its softening point, for example 560℃ to 700℃ in the case of soda lime glass plates, and then heat the glass plate to a temperature below the softening point, and then heat it to a temperature below the softening point, for example, about 560℃ to 700℃ in the case of a soda lime glass plate. A heated glass plate is immersed between opposed ultrasonic vibration elements in a cooling liquid tank as shown in Figures 1 to 4 to be rapidly cooled. Also, when the glass plate is immersed, after being immersed, or before being immersed again, an ultrasonic vibration element in the cooling liquid tank is oscillated, and when the glass plate is immersed, ultrasonic waves are applied to the glass plate for a predetermined period of time. is irradiated and ultrasonic liquid cooling is applied. Then, it is taken out from the cooling liquid bath and washed.

なお、本発明を適用できるガラス物品として
は、ガラス板の他、ガラス管、ガラス容器、ガラ
ス食器、ガラス器具、光学ガラス製品その他各種
のガラス物品が挙げられる。
In addition, examples of glass articles to which the present invention can be applied include glass tubes, glass containers, glass tableware, glass appliances, optical glass products, and various other glass articles in addition to glass plates.

以上の様に本発明によれば超音波振動素子のユ
ニツト板を冷却液槽の側面に複数個対向して設
け、かつ上記ユニツト板の間の領域を対向するユ
ニツト板で補間しうる様になつているので、冷却
液槽内に浸漬されるガラス板に均一な超音波振動
を与えることができ、ガラス板に均一な強化を与
えることができる。しかも強化処理するガラス板
全体をカバーする超音波振動板を一枚で作るので
はなくユニツト化し、しかも複数個使用している
ので、振動板一枚で作つた場合に生じる中央と周
辺近傍とで生じる振幅の大きな差、及び分割振動
の発生による音圧分布の不均一を改善することが
できる。又、超音波振動素子をユニツト化した振
動板を用いるので振動板のメインテナンスの面で
も便利である。
As described above, according to the present invention, a plurality of unit plates of ultrasonic vibration elements are provided facing each other on the side surface of the cooling liquid tank, and the area between the unit plates can be interpolated by the opposing unit plates. Therefore, uniform ultrasonic vibration can be applied to the glass plate immersed in the cooling liquid bath, and uniform reinforcement can be applied to the glass plate. In addition, the ultrasonic diaphragm that covers the entire glass plate to be strengthened is not made as a single piece, but is made into a unit, and moreover, multiple pieces are used. It is possible to improve the large difference in amplitude that occurs and the non-uniformity of the sound pressure distribution due to the occurrence of split vibration. Furthermore, since a diaphragm in which the ultrasonic vibration elements are integrated into a unit is used, maintenance of the diaphragm is convenient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一具体例に係るガラス物品の
液冷強化装置の平面図、第2図は第1図の装置の
X−Y線断面図、第3図はこの装置の正面図、第
4図はこの装置の背面図、第5図は他の具体例に
係るガラス物品の液冷強化装置の正面図、第6図
は第5図の装置の側面図、第7図はもう一つの具
体例に係るガラス物品の液冷強化装置の説明図で
ある。 1:ガラス物品の液冷強化装置、2:冷却液
槽、3:超音波振動素子、4:超音波振動板、
5:ガラス板、6:吊手。
FIG. 1 is a plan view of a liquid cooling strengthening device for glass articles according to a specific example of the present invention, FIG. 2 is a sectional view taken along the line X-Y of the device shown in FIG. 1, and FIG. 3 is a front view of this device. FIG. 4 is a rear view of this device, FIG. 5 is a front view of a liquid cooling strengthening device for glass articles according to another specific example, FIG. 6 is a side view of the device shown in FIG. 5, and FIG. 7 is another example. FIG. 2 is an explanatory diagram of a liquid cooling strengthening device for glass articles according to two specific examples. 1: Liquid cooling strengthening device for glass articles, 2: Cooling liquid tank, 3: Ultrasonic vibration element, 4: Ultrasonic diaphragm,
5: Glass plate, 6: Hanging hand.

Claims (1)

【特許請求の範囲】 1 歪点以上軟化点以下に加熱されたガラス物品
を冷却液槽中に浸漬して液冷強化するガラス物品
の液冷強化装置において、冷却液槽内の少くとも
1つの相対面する側に複数個の超音波振動素子を
ユニツト化した超音波振動板を互い相補間する様
に対向して配列したことを特徴とするガラス物品
の液冷強化装置。 2 複数個の超音波振動素子をユニツト化した超
音波振動板を冷却液槽内の壁面に斜め方向に配列
したことを特徴とする特許請求の範囲第1項記載
のガラス物品の液冷強化装置。 3 超音波振動板を約1波長ずらせて対向させた
ことを特徴とする特許請求の範囲第1項記載のガ
ラス物品の液冷強化装置。
[Scope of Claims] 1. In a liquid cooling strengthening apparatus for glass articles, which strengthens a glass article by immersing the glass article heated to a temperature above the strain point and below the softening point in a cooling liquid bath, at least one of the glass articles in the cooling liquid bath is 1. A liquid cooling strengthening device for glass articles, characterized in that ultrasonic diaphragms each having a plurality of ultrasonic diaphragms formed into units on opposing sides are arranged facing each other so as to interpolate with each other. 2. A liquid cooling strengthening device for glass articles according to claim 1, characterized in that an ultrasonic diaphragm having a plurality of ultrasonic vibrating elements as a unit is arranged obliquely on a wall surface in a cooling liquid tank. . 3. A liquid cooling strengthening device for glass articles according to claim 1, characterized in that the ultrasonic diaphragms are opposed to each other with a difference of about one wavelength.
JP13353479A 1979-10-18 1979-10-18 Glass article tempering apparatus against liquid cooling Granted JPS5659632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13353479A JPS5659632A (en) 1979-10-18 1979-10-18 Glass article tempering apparatus against liquid cooling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13353479A JPS5659632A (en) 1979-10-18 1979-10-18 Glass article tempering apparatus against liquid cooling

Publications (2)

Publication Number Publication Date
JPS5659632A JPS5659632A (en) 1981-05-23
JPS6234691B2 true JPS6234691B2 (en) 1987-07-28

Family

ID=15107048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13353479A Granted JPS5659632A (en) 1979-10-18 1979-10-18 Glass article tempering apparatus against liquid cooling

Country Status (1)

Country Link
JP (1) JPS5659632A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09243860A (en) * 1996-03-11 1997-09-19 Fujikura Ltd Ferrule made of quartz glass and apparatus for production thereof
CN105541092A (en) * 2016-01-20 2016-05-04 广西丛欣实业有限公司 Production method of tempered glass for doors and windows
WO2017208972A1 (en) * 2016-05-30 2017-12-07 旭硝子株式会社 Method for manufacturing chemically strengthened glass plate and glass plate housing for chemical strengthening

Also Published As

Publication number Publication date
JPS5659632A (en) 1981-05-23

Similar Documents

Publication Publication Date Title
US5383484A (en) Static megasonic cleaning system for cleaning objects
US4804007A (en) Cleaning apparatus
US4998549A (en) Megasonic cleaning apparatus
US4869278A (en) Megasonic cleaning apparatus
US20130008473A1 (en) Ultrasonic cleaning apparatus and ultrasonic cleaning method
JPH0855827A (en) Wafer cassette and cleaning equipment using it
JPS6234691B2 (en)
JP2009125645A (en) Ultrasonic washing device and ultrasonic washing method
US2883310A (en) Surface cleaning apparatus and method
US8652262B2 (en) Ultrasonic cleaning method for generating ultrasonic vibrations by a frequency modulated signal
KR102065067B1 (en) An ultrasonic cleaning device based on multi-ultrasonic vibrator that drive multiple frequencies simultaneously
JP2003313688A (en) Continuous ultrasonic-cleaning apparatus
JPH05243203A (en) Ultrasonic washer
US2981268A (en) Vibratory treating apparatus
JP3645412B2 (en) Ultrasonic cleaner
JPH0487675A (en) Ultrasonic wave washing device and holding jig of material to be washed
JPH05308067A (en) Ultrasonic washing device and method
JPH07263397A (en) Ultrasonic cleaning method
JP3681328B2 (en) Substrate processing equipment
JP4316977B2 (en) Ultrasonic cleaning equipment
KR102138466B1 (en) Ultrasonic wave washer apparatus and method for manufacturing the same
JP2748429B2 (en) Semiconductor substrate cleaning equipment
JP2012055818A (en) Ultrasonic cleaning device, and ultrasonic cleaning method
JPWO2012043090A1 (en) Manufacturing method of substrate for information recording medium and cleaning apparatus used for manufacturing the same
JP3066574B2 (en) Cleaning device for rack and its hanging member after aluminum surface treatment