JPS6234631B2 - - Google Patents
Info
- Publication number
- JPS6234631B2 JPS6234631B2 JP55009037A JP903780A JPS6234631B2 JP S6234631 B2 JPS6234631 B2 JP S6234631B2 JP 55009037 A JP55009037 A JP 55009037A JP 903780 A JP903780 A JP 903780A JP S6234631 B2 JPS6234631 B2 JP S6234631B2
- Authority
- JP
- Japan
- Prior art keywords
- container
- amount
- air
- liquid
- foaming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000007788 liquid Substances 0.000 claims description 24
- 238000005187 foaming Methods 0.000 claims description 20
- 239000006260 foam Substances 0.000 claims description 12
- 238000001514 detection method Methods 0.000 claims description 9
- 235000014171 carbonated beverage Nutrition 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 5
- 238000007599 discharging Methods 0.000 claims description 3
- 235000013405 beer Nutrition 0.000 description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 239000007789 gas Substances 0.000 description 8
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 235000011194 food seasoning agent Nutrition 0.000 description 4
- 230000004044 response Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B67—OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
- B67C—CLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
- B67C3/00—Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
- B67C3/02—Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus
- B67C3/22—Details
- B67C3/222—Head-space air removing devices, e.g. by inducing foam
Landscapes
- Vacuum Packaging (AREA)
- Filling Of Jars Or Cans And Processes For Cleaning And Sealing Jars (AREA)
- Sealing Of Jars (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はビール等の炭酸ガス含有飲料充填後の
容器ヘツドスペース内空気の排出方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for exhausting air from the head space of a container after filling a carbonated beverage such as beer.
第1図は充填機及び打栓機の平面配置図で、容
器1はコンベア2、スクリユー3、スターホイー
ル4を経て充填機5に供給され、液充填後転送ス
ターホイール6によつて打栓機7に転送され、こ
こで王冠、キヤツプ等を施された後、スターホイ
ール8を介してコンベア9上へ送り出されるよう
になつている。
FIG. 1 is a plan layout of a filling machine and a capping machine. A container 1 is supplied to a filling machine 5 via a conveyor 2, a screw 3, and a star wheel 4, and after being filled with liquid, it is transferred to a capping machine by a transfer star wheel 6. 7, where it is crowned, capped, etc., and then sent out onto a conveyor 9 via a star wheel 8.
炭酸ガス含有飲料例えばビールの場合、液充填
後の転送スターホイール6位置における容器内充
填液の状態は、通常第2図に示すように下部には
ビール液10が、その上部にはビールの泡11
が、さらにその上部には炭酸ガスを含む空気12
が存在し、そしてビール液10中では依然として
炭酸ガスを主体とした気体の分離が続いており、
分離気体の気泡13は上昇して順次、泡11に合
体し、泡11の一部は破れてビール液と気体に分
離する。 In the case of a carbonated beverage, such as beer, the state of the liquid in the container at the transfer star wheel 6 position after filling is usually as shown in FIG. 2, with beer liquid 10 at the bottom and beer foam at the top. 11
However, above it there is air 12 containing carbon dioxide gas.
exists, and the separation of gases mainly consisting of carbon dioxide continues in the beer liquid 10,
The separated gas bubbles 13 rise and sequentially combine with the foam 11, and a portion of the foam 11 is broken and separated into beer liquid and gas.
このような状態で容器1のヘツドスペースに空
気を残したまま打栓機7で王冠又はキヤツプを施
すと、主として封じ込まれた空気中の酸素がビー
ルの品質に悪影響を与える。なお、ビールの泡1
1も発生の過程によつて、その中に多量の空気を
含むケースがあり得る。このような観点から、容
器上部の空気12及び空気を含む泡11を追い出
した後、容器の口部をシールすることがビール等
炭酸ガス含有飲料の充填に際して、従来広く採用
されている。 If a crown or cap is applied by the capping machine 7 while air remains in the head space of the container 1 in such a state, the quality of the beer will be adversely affected mainly by the oxygen in the trapped air. In addition, beer foam 1
1 may also contain a large amount of air depending on the process of generation. From this point of view, sealing the mouth of the container after expelling the air 12 and air-containing bubbles 11 from the upper part of the container has been widely adopted when filling carbonated beverages such as beer.
この方法には、(1)容器の口部より高圧の液体又
は気体を注入する。(2)容器の外側より機械的に振
動を与える。(3)超音波を利用する。等の方法があ
る。 This method involves (1) injecting high-pressure liquid or gas from the mouth of the container; (2) Apply vibration mechanically from the outside of the container. (3) Utilize ultrasound. There are other methods.
しかし、上記した従来の方法では、いずれもオ
ペレータが目視で液充填後の泡立ち具合を確認し
たうえで、それぞれの方法の注入圧、振巾等の強
さ、個数、取付位置などを調整しており、このた
めの人手を要し、複数の容器の平均的な状況を対
象とし、応答速度がおそくならざるを得なかつ
た。
However, in all of the conventional methods described above, the operator visually checks the level of foaming after filling the liquid, and then adjusts the injection pressure, strength of shaking, etc., number of pieces, installation position, etc. This required a lot of manual effort, and the response speed was slow because it targeted the average situation of multiple containers.
例えば、第3図に示すように、転送スターホイ
ール6の回転軸15の軸芯部に高圧水又はビール
液源あるいは炭酸ガス供給源になる管16を回転
軸15に対し回転可能に設置し、これに定噴出量
のノズル17を接続したものの場合、オペレータ
が目視で泡立ち量を確認して、ノズル17を泡立
ち量に応じて図示矢印方向へ揺動調整するいわゆ
るジエツトフオーマ操作を行つていた。 For example, as shown in FIG. 3, a pipe 16 serving as a high-pressure water or beer liquid source or a carbon dioxide gas supply source is installed at the core of the rotating shaft 15 of the transfer star wheel 6 so as to be rotatable with respect to the rotating shaft 15. In the case where a nozzle 17 with a constant ejection amount is connected, the operator visually confirms the amount of foaming and performs a so-called jet former operation in which the nozzle 17 is oscillated in the direction of the arrow shown in the figure in accordance with the amount of foaming.
このような操作は、前記したように、容器上部
の空気及び空気を含む泡を追い出すことを目的に
行うものであるが充填液の安定性、容器の寸法誤
差、充填液の温度、炭酸ガス含有量等により泡立
ち状態にもバラツキがあるので、オペレータが経
験的に行つており、このため、オペレータの労力
負担、精度不良による充填液ロス、入味量のバラ
ツキ、空気の追い出し不十分、衛生的でない等
種々の問題があつた。 As mentioned above, this operation is carried out for the purpose of expelling air and air-containing bubbles from the upper part of the container, but there are various factors such as the stability of the filling liquid, the dimensional error of the container, the temperature of the filling liquid, and the carbon dioxide content. The foaming state varies depending on the amount, etc., so operators do this based on their experience, and this results in a burden on the operator, loss of filling liquid due to poor accuracy, variations in the amount of seasoning, insufficient air expulsion, and unsanitary conditions. Various problems arose.
特に最近、各飲料メーカーではG.M.P(Good
Manufacturing Practice)への努力が試みられて
おり、この試みの最重点は充填機周辺に置かれて
いるが、前記したジエツトフオーマ操作のための
オペレータの存在がG.M.P上大きなネツクとなつ
ていた。また、ジエツトフオーマ操作は機械の発
停、充填液の特性、容器の寸法誤差、入味精度の
管理、品質低下防止のためのヘツドスペース内空
気の管理等のために必要であるが、B.C.R(Bio
Clean Room)を作つた工場ではオペレータがB.
C.Rの外に居ることになるため充分コントロール
されず、上記した点の管理レベルが低下してお
り、以上のような問題点の解決が望まれていた。 Particularly recently, beverage manufacturers have been
However, the presence of operators to operate the jet former was a major bottleneck in terms of GMP. In addition, jet former operation is necessary for starting and stopping the machine, controlling the characteristics of the filling liquid, dimensional errors in the container, and seasoning accuracy, and managing the air in the head space to prevent quality deterioration.
At the factory where the Clean Room was made, the operator was B.
Since it is located outside the CR, it is not sufficiently controlled, and the level of management of the points mentioned above has deteriorated, and a solution to the above problems has been desired.
本発明は上記した点に鑑み提案されたもので、
炭酸ガス含有飲料の充填された容器を充填機から
打栓機へ移送する間に容器ヘツドスペースの泡立
ち量を光透過量の相違として受光素子にて検出
し、受光量に応じた検出信号に変換し、この検出
信号により容器ヘツドスペース内空気を排出する
強制泡立て装置の能力を制御して容器ヘツドスペ
ースにおける泡立ち量を調整して容器ヘツドスペ
ース内空気を排出するようにしたことを特徴と
し、その目的とするところは打栓する前に容器の
ヘツドスペースに自動的かつ安定的に泡を生成す
ることにより液充填後の容器ヘツドスペース内空
気を確実に追い出し、もつて前記した種々の問題
点を解決しようとするものである。
The present invention was proposed in view of the above points, and
While the container filled with carbonated beverage is transferred from the filling machine to the capping machine, the amount of foaming in the container head space is detected by a light receiving element as a difference in the amount of light transmitted, and is converted into a detection signal according to the amount of light received. The detection signal controls the ability of the forced foaming device for discharging the air in the container headspace to adjust the amount of foaming in the container headspace and discharge the air in the container headspace. The purpose is to automatically and stably generate bubbles in the head space of the container before capping, thereby reliably expelling the air in the head space of the container after filling with liquid, thereby solving the various problems mentioned above. This is what we are trying to solve.
本発明は、上記したように、液充填後の容器が
充填機から打栓機へ移送される間に容器ヘツドス
ペースの泡立ち量を光透過量の相違として受光素
子にて検出し、この受光量に応じて変換した検出
信号により、強制泡立て装置に能力を制御して容
器ヘツドスペースに泡を生成し、これによつて容
器ヘツドスペースにおける泡立ち量を調整するよ
うにしているため、充填後の泡立ち量に対応し
て、強制泡立て装置により自動的に泡を生成する
ことができる。
As described above, the present invention detects the amount of bubbles in the head space of the container as a difference in the amount of transmitted light using a light receiving element while the container is being transferred from the filling machine to the capping machine after being filled with liquid. The detection signal converted according to the amount of foam controls the capacity of the forced foaming device to generate foam in the container headspace, thereby adjusting the amount of foaming in the container headspace, which reduces foaming after filling. Depending on the amount, foam can be generated automatically by means of a forced foaming device.
このため打栓前の容器ヘツドスペース内の泡立
ち量が常に安定し、空気の排出が確実となると共
に応答速度及び精度が向上するので、液ロス、入
味量のバラツキがなくなり、しかも衛生的で、オ
ペレータの負担が著しく軽減される。また従来、
ジエツトフオーマ操作はオペレータが経験的に手
動操作していたため、G.M.P(Good
Manufacturing Practice)上のネツクとなると共
にB.C.R(Bio Clean Room)では、ジエツトフ
オーマ操作による管理レベルが低下していたが、
本発明によりこれらの問題点をも解消することが
できる。
As a result, the amount of foam in the container head space before capping is always stable, ensuring air evacuation, and improving response speed and accuracy, eliminating liquid loss and variations in seasoning amount, and making it hygienic. The burden on the operator is significantly reduced. Also, conventionally,
Jetformer operations were performed manually by operators based on their experience, so GMP (Good
In addition to becoming a bottleneck in Manufacturing Practice), the management level of BCR (Bio Clean Room) was decreasing due to jet former operation.
The present invention can also solve these problems.
以下、本発明の一実施例を第4図乃至第6図に
基づいて説明する。
Hereinafter, one embodiment of the present invention will be described based on FIGS. 4 to 6.
20は第1図における転送スターホイール6に
相当する転送スターホイールで回転軸21と一体
となつている。 Reference numeral 20 denotes a transfer star wheel corresponding to the transfer star wheel 6 in FIG. 1, and is integrated with the rotating shaft 21.
22は回転軸21の軸芯部に同軸21に対し回
転可能に設置された管で、一端は図示していない
高圧水又はビール液源あるいは炭酸ガス等の気体
供給源に連なつており、他端には自動絞り弁23
を有するノズル24が転送スターホイール20に
より転送される容器25の口部上方に対向するよ
うに連設されている。 Reference numeral 22 denotes a pipe installed in the axial center of the rotating shaft 21 so as to be rotatable relative to the coaxial shaft 21. One end is connected to a high-pressure water or beer liquid source or a gas supply source such as carbon dioxide gas (not shown), and the other Automatic throttle valve 23 at the end
A nozzle 24 having a nozzle 24 is arranged in a row so as to face above the mouth of the container 25 transferred by the transfer star wheel 20.
26はノズル24の配設位置より上流側で転送
される容器25の上部口部を照射するように設置
された投光装置、27は投光装置26と対向して
設置されたダイオードリニヤアレイカメラで、ダ
イオードリニヤアレイカメラ27は第6図に示す
ようにダイオードアレイ27aとこれの受光量レ
ベルに応じてオン・オフする切換装置27bを有
している。 26 is a light projecting device installed to illuminate the upper mouth of the container 25 transferred upstream from the nozzle 24, and 27 is a diode linear array camera installed facing the projector 26. As shown in FIG. 6, the diode linear array camera 27 has a diode array 27a and a switching device 27b that turns on and off depending on the level of the amount of light received by the diode array 27a.
28は自動絞り弁23の制御回路でカウンタ2
9、メモリ30、比較回路31、アンプ32、自
動絞り弁駆動回路33、同期回路34、設定回路
35から構成されており、同期回路34は容器2
5が検出位置に達すると、信号をカウンタ29へ
送るようになつている。 28 is a control circuit for the automatic throttle valve 23, and a counter 2
9, a memory 30, a comparison circuit 31, an amplifier 32, an automatic throttle valve drive circuit 33, a synchronization circuit 34, and a setting circuit 35.
5 reaches the detection position, a signal is sent to the counter 29.
上記構成において、容器25に光を照射するに
際し、投光装置26の光の強さを液体及び泡の光
の透過量と液体及び泡のない場合の光の透過量の
差が最大になるように設定する。 In the above configuration, when irradiating light onto the container 25, the intensity of the light from the light projecting device 26 is set such that the difference between the amount of light transmitted through the liquid and foam and the amount of light transmitted when there is no liquid and bubbles is maximized. Set to .
次に容器25の口部から入味液面までの許容最
大長さを電圧値におきかえ設定回路35を設定す
る。 Next, the maximum allowable length from the mouth of the container 25 to the level of the flavored liquid is replaced with a voltage value, and the setting circuit 35 is set.
転送スターホイール20により液充填後の容器
25が検出位置に転送されてくると投光装置26
からの光は容器25を介してダイオードリニヤア
レイカメラ27に受光されダイオードアレイ27
a上に容器25の映像が結ばれる。容器25のヘ
ツドスペースに存在する泡によつて減光された映
像と、そうでない映像は切換装置27bに入り、
減光されない光が切換装置27bをオンさせて出
力し、減光された切換装置27bをオフさせる。
カウンタ29では同期回路34からの信号により
切換装置27bからの出力をカウントし、メモリ
30へ出力する。比較回路31では設定回路35
の設定電圧とメモリ30からの出力電圧が比較さ
れ、設定電圧に達しないメモリ30からの出力は
アンプ32を介して自動絞り弁駆動回路33に送
られ、メモリ30からの出力に応じて自動絞り弁
23の開度を制御し、ノズル24からの泡立て用
高圧水等の噴射量を検出位置での泡立ち状態に対
応して自動的に決定し、容器ヘツドスペースに泡
を生成する。なお、メモリ30からの出力が設定
電圧より大きければ比較回路31からの出力はな
い。 When the container 25 filled with liquid is transferred to the detection position by the transfer star wheel 20, the light projecting device 26
The light from the is received by the diode linear array camera 27 via the container 25, and the diode array 27
An image of the container 25 is tied onto a. The image whose light has been dimmed due to the bubbles present in the head space of the container 25 and the image whose light has not been dimmed enter the switching device 27b.
The unattenuated light turns on and outputs the switching device 27b, and turns off the attenuated switching device 27b.
The counter 29 counts the output from the switching device 27b based on the signal from the synchronization circuit 34 and outputs it to the memory 30. In the comparison circuit 31, the setting circuit 35
The set voltage and the output voltage from the memory 30 are compared, and the output from the memory 30 that does not reach the set voltage is sent to the automatic throttle valve drive circuit 33 via the amplifier 32, and the automatic throttle valve is activated according to the output from the memory 30. The degree of opening of the valve 23 is controlled, the amount of high-pressure foaming water etc. to be jetted from the nozzle 24 is automatically determined in accordance with the foaming state at the detection position, and foam is generated in the container head space. Note that if the output from the memory 30 is higher than the set voltage, there is no output from the comparison circuit 31.
以上のようにして、液充填後の容器ヘツドスペ
ースの泡立ち量を検出し、これに対応してノズル
24からの泡立て用高圧水等の噴射量を制御し
て、容器ヘツドスペースにおける泡立ち量を調整
し、容器ヘツドスペース内に存在する空気を追い
出すことができる。 As described above, the amount of foaming in the container headspace after liquid filling is detected, and the amount of foaming high-pressure water etc. ejected from the nozzle 24 is controlled accordingly to adjust the amount of foaming in the container headspace. air present in the container headspace can be expelled.
従つて、打栓される前の容器ヘツドスペース内
の泡立ち量が常に安定させることができ、空気の
排出を確実に行わせることが可能となると共に応
答速度及び精度が格段に向上し、液ロス、入味量
のバラツキ発生を防止できる。しかも自動制御で
あるため衛生的であると共にオペレータの負担が
著しく軽減される。また、G.M.P上のネツクが解
消されると共にB.C.Rによる管理レベルの低下を
も解消することができる。 Therefore, the amount of bubbles in the container head space before being capped can be stabilized at all times, making it possible to ensure air evacuation, dramatically improving response speed and accuracy, and reducing liquid loss. , it is possible to prevent variations in the amount of seasoning. Moreover, since it is automatically controlled, it is hygienic and the burden on the operator is significantly reduced. In addition, the GMP bottlenecks can be eliminated, as well as the reduction in the level of control caused by BCR.
なお、第7図に示すようにメモリ30と比較回
路31との間に積分回路36を接続することによ
り、メモリ30からの出力を予め定められた連続
して転送される容器の本数に対応する時定数に従
つて積分し、その出力と、容器の本数に対して設
定された設定回路27からの設定電圧とを比較回
路31で比較して、連続する複数本の容器の平均
的泡立ち量で自動絞り弁23の開度を制御するこ
とができる。 Note that by connecting an integrating circuit 36 between the memory 30 and the comparator circuit 31 as shown in FIG. 7, the output from the memory 30 can be adjusted to correspond to a predetermined number of containers to be continuously transferred. The output is integrated according to a time constant, and the comparison circuit 31 compares the output with the set voltage from the setting circuit 27 set for the number of containers, and calculates the average foaming amount of multiple consecutive containers. The opening degree of the automatic throttle valve 23 can be controlled.
また、上記実施例ではダイオードリニヤアレイ
27aを用いているがこれに代えて複数の光電管
を並設した構成とすることもできる。さらに上記
実施例では、ノズルからの高圧水等の噴射量を制
御するようにしているが、圧力を制御するように
してもよく、また、高圧の液体又は気体の注入に
よるものだけでなく、容器の外側より機械的に振
動を与える例えばスプリング力を利用して容器側
面をたたくようにしたもの、あるいは、超音波を
利用したもの等を強制泡立て装置としその衝撃
力、あるいは振動子の出力を泡立ち量検出信号で
制御するようにしてもよいことはもちろんであ
る。 Further, although the diode linear array 27a is used in the above embodiment, a configuration in which a plurality of phototubes are arranged in parallel may be used instead. Furthermore, in the above embodiment, the amount of high-pressure water etc. sprayed from the nozzle is controlled, but the pressure may also be controlled. For example, a device that applies mechanical vibration from the outside of the container, such as one that uses spring force to strike the side of the container, or one that uses ultrasonic waves, is used as a forced foaming device, and the impact force or the output of a vibrator is used to create foam. Of course, the control may be performed using a quantity detection signal.
第1図は充填機及び打栓機の平面配置図、第2
図は充填機から打栓機へ転送される間の容器内充
填液の状態を示す図、第3図は従来のものの一例
を示す平面図、第4図は本発明の一実施例を示す
平面図、第5図は第4図のX―X矢視図、第6図
は制御回路の一例を示すブロツク図、第7図は制
御回路の他の例を示すブロツク図である。
20…転送スターホイール、22…管、23…
自動絞り弁、24…ノズル、25…容器、26…
投光装置、27…ダイオードリニヤアレイカメ
ラ、28…制御回路。
Figure 1 is a plan layout of the filling machine and capping machine, Figure 2
The figure shows the state of the filling liquid in the container while being transferred from the filling machine to the capping machine, Figure 3 is a plan view showing an example of a conventional one, and Figure 4 is a plane view showing an example of the present invention. 5 is a view taken along the line X--X in FIG. 4, FIG. 6 is a block diagram showing one example of the control circuit, and FIG. 7 is a block diagram showing another example of the control circuit. 20... Transfer star wheel, 22... Tube, 23...
automatic throttle valve, 24...nozzle, 25...container, 26...
Light projector, 27... diode linear array camera, 28... control circuit.
Claims (1)
から打栓機へ移送する間に容器ヘツドスペースの
泡立ち量を光透過量の相違として受光素子にて検
出し、受光量に応じた検出信号に変換し、この検
出信号により容器ヘツドスペース内空気を排出す
る強制泡立て装置の能力を制御して、容器ヘツド
スペースにおける泡立ち量を調整して容器ヘツド
スペース内空気を排出するようにしたことを特徴
とする液充填後の容器ヘツドスペース内空気の排
出方法。1. While a container filled with a carbonated beverage is being transferred from a filling machine to a capping machine, the amount of foam in the container head space is detected as a difference in the amount of light transmitted by a light receiving element, and a detection signal corresponding to the amount of light received is detected. This detection signal controls the ability of the forced foaming device to discharge the air in the container headspace, thereby adjusting the amount of foaming in the container headspace and discharging the air in the container headspace. Method for discharging air from the container head space after filling with liquid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP903780A JPS56106790A (en) | 1980-01-29 | 1980-01-29 | Method of discharging air in vessel head space after filling liquid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP903780A JPS56106790A (en) | 1980-01-29 | 1980-01-29 | Method of discharging air in vessel head space after filling liquid |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56106790A JPS56106790A (en) | 1981-08-25 |
JPS6234631B2 true JPS6234631B2 (en) | 1987-07-28 |
Family
ID=11709447
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP903780A Granted JPS56106790A (en) | 1980-01-29 | 1980-01-29 | Method of discharging air in vessel head space after filling liquid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS56106790A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6045189A (en) * | 1983-08-11 | 1985-03-11 | マンズワイン株式会社 | Method and device for correcting cork stopper |
JPH01199892A (en) * | 1988-11-29 | 1989-08-11 | Manzuwain Kk | Method and apparatus for correcting cork |
DE102006022464B4 (en) * | 2006-05-13 | 2008-09-25 | Khs Ag | Method and device for the controlled foaming of a product introduced in bottles or the like |
JP6448913B2 (en) * | 2014-04-16 | 2019-01-09 | アサヒビール株式会社 | Method and apparatus for filling containers with effervescent liquid |
-
1980
- 1980-01-29 JP JP903780A patent/JPS56106790A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS56106790A (en) | 1981-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4514953A (en) | Device for removing air from filled bottles or other containers | |
EP2086868B1 (en) | Filler valve unit | |
US20210339997A1 (en) | Filling element, filling system, and method for filling containers | |
US3837137A (en) | Method and means for filling beer or the like into containers without introduction of air | |
US2862528A (en) | Sterilizing and packaging beverages | |
WO2015055397A1 (en) | A method for a filling valve, and a filling valve system | |
JPS6234631B2 (en) | ||
US6112780A (en) | 4-tube apparatus for gaseous contaminant control during bottling processes | |
US4436124A (en) | Process and apparatus for bottling oxygen-sensitive liquids | |
US3088831A (en) | Air free packaging | |
WO2016207130A1 (en) | Device for rendering inert bottled effervescent liquids before sealing | |
JPH0577810A (en) | Manufacture of bottled beverage | |
US2338108A (en) | Method of packaging beverages | |
US20210229971A1 (en) | Device and method for treating containers filled with foamable liquid filling material | |
JP4243907B2 (en) | Beverage pouring method and apparatus | |
CN111847353B (en) | Device and method for foaming a filling product filled into a container | |
JPH05229595A (en) | Method and device for filling and packing of liquid | |
JP3083107B2 (en) | Method for producing bottled beverage and apparatus used therefor | |
JP7288837B2 (en) | Filling method and filling equipment | |
JP2888685B2 (en) | Method for producing food in sealed container and apparatus used therefor | |
JP5292076B2 (en) | Container gas replacement method and apparatus | |
CN114940478B (en) | Container treatment plant and method for operating the same | |
US8365780B2 (en) | Method for filling containers | |
JPH0734877Y2 (en) | Bottling machine | |
JP2020075766A (en) | Method for counter pressure filling of container and filling system of counter pressure filling machine |