JPS6234338B2 - - Google Patents

Info

Publication number
JPS6234338B2
JPS6234338B2 JP57172589A JP17258982A JPS6234338B2 JP S6234338 B2 JPS6234338 B2 JP S6234338B2 JP 57172589 A JP57172589 A JP 57172589A JP 17258982 A JP17258982 A JP 17258982A JP S6234338 B2 JPS6234338 B2 JP S6234338B2
Authority
JP
Japan
Prior art keywords
resin particles
dispersion medium
particles
temperature
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57172589A
Other languages
Japanese (ja)
Other versions
JPS5967022A (en
Inventor
Hiroyuki Akyama
Shinkichi Shimoyashiki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP57172589A priority Critical patent/JPS5967022A/en
Publication of JPS5967022A publication Critical patent/JPS5967022A/en
Publication of JPS6234338B2 publication Critical patent/JPS6234338B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3461Making or treating expandable particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はポリオレフイン樹脂粒子の連続予備発
泡方法に関する。 従来よりポリオレフイン樹脂発泡成型体は例え
ば包装材、緩衝材等多方面に使用されている。こ
の種発泡体の製造方法の一つとして予備発泡粒子
を金型に充填して成型する所謂ビーズ成型法が行
なわれており、ここに用いられる予備発泡粒子は
例えば所定量の樹脂粒子を分散媒、揮発性発泡剤
必要に応じて架橋剤及び/又は分散剤と共に密閉
容器内に入れ、加熱昇温させた後、容器内の圧力
を揮発性発泡剤の蒸気圧以上または未満の圧力に
保持しながら容器の一端を開放して樹脂粒子と分
散媒とを同時に容器内より低圧の雰囲気に放出す
ることにより製造されている。しかしながら、こ
のようなバツチ式の方法により得られる予備発泡
粒子は、容器内に残留する樹脂粒子量が少なくな
つてから得られるもの、すなわち予備発泡の最後
の方で得られるものが最初の方で得られるものと
較べて発泡倍率等が異なつてしまい、結局バツチ
式の方法では一回の操作で得られる予備発泡粒子
のすべての粒子の品質を均一なものとなるように
制御することは困難であつた。また上記の方法で
は、大量に予備発泡粒子を得る場合、繰返し、同
様の操作を行なう必要があり、加熱、冷却の操作
を毎回行なわなければならないため熱効率が非常
に悪く、エネルギー消費が膨大なものとなる欠点
があつた。 また、上記の方法では樹脂粒子と分散媒を放出
するに当つて、窒素、空気等により背圧をかける
必要があり、ブタンは安価で有用な発泡剤である
が空気と接触すると爆発する危険があるため揮発
性発泡剤として用いることが困難であるなど使用
可能な揮発性発泡剤の種類が制限される欠点があ
つた。 本発明は上記従来技術の欠点を解消したポリオ
レフイン樹脂粒子の連続予備発泡方法を提供する
ことを目的とするものであつて、本発明者らは上
記欠点を解消すべく鋭意研究した結果、ポリオレ
フイン樹脂粒子と分散媒の供給、加熱、揮発性発
泡剤の含有および上記樹脂粒子と分散媒の放出を
間断なく連続的に行なうことにより、均一な予備
発泡粒子を得ることができ、かつ生産性および熱
効率を大幅に改善できることを見出すと共にその
連続予備発泡方法の開発に成功し、本発明を完成
するに至つた。 即ち本発明は、ポリオレフイン樹脂粒子、分散
媒、並びに必要に応じて架橋剤及び/又は分散剤
を、予め常圧下にて上記分散媒の沸点以下の温度
で混合した後、又は混合しつつ、該混合物を適宜
の送り手段により予備発泡粒子製造装置内に導入
し、加圧状態で加熱域を連続的に通過させて上記
樹脂粒子を所定温度に加熱し、次いで上記混合物
を発泡剤含有域を連続的に通過させて上記樹脂粒
子に揮発性発泡剤を含有させた後、上記樹脂粒子
を分散媒と共に上記装置内より低圧の雰囲気に連
続的に放出することを特徴とするポリオレフイン
樹脂粒子の連続予備発泡方法を要旨とするもので
ある。 本発明において、ポリオレフイン樹脂粒子の基
材樹脂としては、低密度ポリエチレン(以下、
LDPEという。)、直鎖低密度ポリエチレン、高密
度ポリエチレン等のポリエチレン樹脂、エチレン
−プロピレンランダム共重合体、エチレン−プロ
ピレンブロツク共重合体、プロピレン単独重合体
等のポリプロピレン系樹脂、エチレン−α−オレ
フイン共重合体、プロピレン−α−オレフイン共
重合体、ポリブテン等が挙げられる。これらのポ
リオレフイン樹脂は架橋していてもいなくてもよ
い。 本発明において、揮発性発泡剤としては、例え
ば二酸化炭素等の無機発泡剤、プロパン、ブタ
ン、ペンタン、ヘキサン、ヘプタン等で例示され
る脂肪族炭化水素類、シクロブタン、シクロペン
タン等で例示される環式脂肪族炭化水素類および
トリクロロフロロメタン、ジクロロジフロロメタ
ン、ジクロロテトラフロロエタン、メチルクロラ
イド、エチルクロライド、メチレンクロライド等
で例示されるハロゲン化炭化水素類等が使用され
る。この発泡剤の添加量は、樹脂粒子100重量部
に対し通常5〜30重量部である。また本発明にお
いて樹脂粒子を分散媒に分散させるが、このとき
要すれば分散剤、例えば微粒状の酸化アルミニウ
ムおよび酸化チタン、塩基性炭酸マグネシウム、
塩基性炭酸亜鉛、炭酸カルシウム等を用いること
ができる。この分散剤の添加量は樹脂粒子100重
量部に対し0.01〜10重量部である。また分散媒は
樹脂粒子を溶解させない溶媒であればよく、例え
ば水、エチレングリコール、グリセリン、メタノ
ール、エタノール等のうちの1種またはそれらの
2種以上の混合物が例示されるが通常は水が好ま
しい。樹脂粒子と分散媒との混合比は1:1〜
1:30、好ましくは1:2〜1:10である。 本発明において、特にポリエチレン系樹脂の場
合に架橋を行なうことがあるが、架橋剤として、
例えばジ−t−ブチルパーオキサイド、t−ブチ
ル−クミル−パーオキサイド、ジクミルパーオキ
サイド、α,α−ビス(t−ブチルパーオキシ)
p−ジイソプロピルベンゼン、2,5−ジメチル
−2,5−ジ−(t−ブチルパーオキシ)−ヘキシ
ン−3、2,5−ジメチル−2,5−ジ−(ベン
ゾイルパーオキシ)ヘキサン、t−ブチルパーオ
キシイソプロピルカーボネート等を用いることが
できる。また必要に応じて架橋助剤を用いること
ができ、該架橋助剤としてはジビニルベンゼン、
ポリエチレングリコールジメタアクリレート、ト
リアリルシアヌレート、ジアリルフタレート等の
官能性ビニル化合物およびキノンジオキシム、ビ
スアミド等を挙げることができる。上記架橋剤は
樹脂粒子100重量部に対し0.01〜1.0重量部、架橋
助剤は0.05〜10重量部用いられる。 以下、本発明の実施例を図面に基き説明する。 第1図には本発明の1実施例であるポリオレフ
イン樹脂粒子の連続予備発泡方法の製造工程が略
図的に示されている。第1図中、1は予備発泡粒
子製造装置、2は原料供給槽、3〜6は加熱槽、
7,8は発泡剤含有槽、9はポンプ、11は発泡
剤導入管、12は導管、13は排出管である。上
記製造装置1を用いて予備発泡粒子を製造するに
当つて、ポリプロピレン系樹脂の場合を説明する
と、まず原料のポリプロピレン系樹脂、分散媒、
及び要すれば分散剤を原料供給槽2に導入し、常
圧下で分散媒の沸点以下の温度で混合した後又は
混合しつつ該混合物を原料供給槽2からポンプ9
により加熱槽3〜6に順次送り加熱する。ポンプ
9により製造装置1内の流量が決まり、該流量は
通常0.02〜1.2m3/hrであるが、混合物の容器内
での滞留時間、容器の容量等を変えることによつ
てこの範囲外の流量も適宜選択できる。混合物は
所定温度、例えば50〜180℃、好ましくは120〜
180℃に加熱されるが、樹脂粒子が軟化する温度
以上に加熱することが好ましい。加熱槽3〜6は
各槽内の温度を送り方向に順次高くなるように調
整し、保持する。次に混合物を発泡剤含有槽7,
8に導入し、適宜のポンプ(図示せず)により発
泡剤導入管11から供給される揮発性発泡剤を樹
脂粒子に含有させる。含有槽7,8の温度は上記
加熱温度と同様であり、通常は樹脂粒子が軟化す
る温度以上が好ましい。この後発泡剤含有槽8か
ら樹脂粒子と分散媒を同時に含有槽8より低圧の
雰囲気に連続的に放出して該粒子を発泡させ、し
かしてポリプロピレン系樹脂予備発泡粒子を得
る。 次に第2図に示されている如き製造装置1を用
いてポリエチレン系樹脂予備発泡粒子を製造する
場合について説明する。ポリエチレン系樹脂の製
造工程は、ポリプロピレン系樹脂の場合とほぼ同
様であるが、通常樹脂粒子を架橋する点で異な
る。架橋剤は樹脂粒子、分散媒等と共に原料供給
槽2に導入され、常圧下、分散媒の沸点以下の温
度、通常30℃以下の温度で均一に撹拌混合され
る。次いで加熱槽3〜4に送られ、加熱されて架
橋が行なわれるが、この温度は例えば100〜180
℃、好ましくは130〜170℃である。次いで混合物
を冷却器10により加熱槽5〜6の温度と同一又
はそれ以下の温度に降温した後加熱槽5〜6を通
過させて好ましくは樹脂粒子が軟化する温度以上
に加熱し、しかる後、発泡剤含有槽7,8に送
り、ポリプロピレン系樹脂の場合と同様に揮発性
発泡剤を樹脂粒子に含有させた後、樹脂粒子と分
散媒を同時に含有槽8より低圧の雰囲気に連続的
に放出して該粒子を発泡させ、しかして予備発泡
粒子を得る。 上記実施例では加熱槽を4槽用いているが、混
合物の容器内での滞留時間、容器の容量、流量等
を適宜変えることによつて混合物が目的とする温
度になれば、1槽でも何槽でもよい。 尚、本発明の連続予備発泡方法を実施するに当
つて使用する装置は、上記実施例で用いたものに
限られず、例えば細長いパイプ状のものの一部の
径を拡大して、上記装置の加熱槽、発泡剤含有槽
等に相当する空間を形成し、送り、加熱、発泡剤
含有等の機能を付加して構成したものを用いるこ
とができる。 本発明により得られるポリオレフイン樹脂予備
発泡粒子は、通常3〜60倍の発泡倍率を有するバ
ラツキが少ない均一なものである。 上記予備発泡粒子は例えば常温常圧下熟成さ
れ、要すれば無機ガスまたは無機ガスと揮発性発
泡剤との混合ガスにより所定圧力で所定時間加圧
熟成される。次いで予備発泡粒子を金型内に充填
し、加熱発泡することにより型通りの発泡成型体
を得ることができる。 このようにして得られる発泡成型体は例えば緩
衝材、包装材、断熱材、食品容器、建築資材、浮
揚材、玩具等に用いることができる。 以上説明したように本発明のポリオレフイン樹
脂粒子の連続予備発泡方法によれば、従来のバツ
チ式の予備発泡方法に較べて発泡倍率、形状等が
均一な予備発泡粒子を得ることができ、また間断
なく連続的に予備発泡粒子を製造できるので生産
効率が大幅に向上し、さらには所定量製造する毎
に加熱、冷却の操作を繰り返す必要がなく、常に
一定の温度に保持しておけばよいので熱効率がよ
く、従つてエネルギー消費が少なくて済む等種々
の利点を有するものである。また本発明によれ
ば、従来のバツチ式の場合のように空気等により
背圧をかける必要がないため揮発性発泡剤として
安価なブタンを用いることができ、経済的にも好
都合である。 以下、実施例を掲げて本発明をさらに詳細に説
明する。 実施例 1〜4 予備発泡粒子製造装置の原料供給槽に、第1表
に示す種類および使用量の基材樹脂粒子、分散剤
および分散媒を連続的に供給し常圧下、30℃にて
混合しながら該混合物を原料供給槽からポンプに
より第1表に示す流量で各内容積0.6m3の4槽の
加熱槽(4槽の加熱槽A,B,C,Dの温度を
各々第1表に示す。)に順次連続的に送り通過さ
せて加熱した。次いで混合物を第1表に示す温度
および圧力に保持されている各内容積0.6m3の発
泡剤含有槽に連続的に送り、適宜のポンプにより
含有槽内に導入される第1表に示す種類および使
用量の揮発性発泡剤を樹脂粒子に含有させた。次
いで排気管から大気下に樹脂粒子と分散媒を連続
的に放出して予備発泡粒子を連続的に得た。得ら
れた予備発泡粒子の発泡倍率を第1表に示すが、
発泡倍率および形状は均一なものであつた。 尚、基材樹脂としてLDPE粒子を用いた場合に
は、0.5重量部のジクミルパーオキサイドを架橋
剤として用いた。
The present invention relates to a method for continuous pre-foaming of polyolefin resin particles. Conventionally, polyolefin resin foam moldings have been used in a wide variety of applications, such as packaging materials and cushioning materials. One of the methods for manufacturing this type of foam is the so-called bead molding method, in which pre-expanded particles are filled into a mold and molded. , a volatile blowing agent is placed in a sealed container together with a crosslinking agent and/or a dispersing agent if necessary, and after heating and raising the temperature, the pressure inside the container is maintained at a pressure above or below the vapor pressure of the volatile blowing agent. However, it is manufactured by opening one end of the container and simultaneously releasing the resin particles and dispersion medium from the inside of the container into a low-pressure atmosphere. However, the pre-foamed particles obtained by such a batch method are those obtained after the amount of resin particles remaining in the container is reduced, that is, those obtained at the end of the pre-foaming process, and those obtained at the beginning. The expansion ratio etc. will be different compared to what is obtained, and in the end, with the batch method, it is difficult to control the quality of all the pre-expanded particles obtained in one operation so that they are uniform. It was hot. In addition, in the above method, when obtaining a large amount of pre-expanded particles, it is necessary to repeat the same operation repeatedly, and heating and cooling operations must be performed each time, resulting in very poor thermal efficiency and huge energy consumption. There was a drawback. In addition, in the above method, it is necessary to apply back pressure using nitrogen, air, etc. when releasing the resin particles and dispersion medium, and although butane is a cheap and useful blowing agent, there is a risk of explosion when it comes into contact with air. Therefore, it is difficult to use it as a volatile blowing agent, and the types of volatile blowing agents that can be used are limited. The present invention aims to provide a method for continuous pre-foaming of polyolefin resin particles that eliminates the drawbacks of the above-mentioned conventional techniques. By continuously supplying the particles and dispersion medium, heating, containing the volatile blowing agent, and releasing the resin particles and dispersion medium without interruption, uniform pre-expanded particles can be obtained, and productivity and thermal efficiency can be improved. The inventors discovered that it was possible to significantly improve the process, and also succeeded in developing a continuous pre-foaming method, thereby completing the present invention. That is, the present invention provides polyolefin resin particles, a dispersion medium, and, if necessary, a crosslinking agent and/or a dispersant, which are mixed in advance at a temperature below the boiling point of the dispersion medium under normal pressure, or while being mixed. The mixture is introduced into a pre-expanded particle manufacturing apparatus by an appropriate feeding means, and the resin particles are heated to a predetermined temperature by passing continuously through a heating zone under pressure, and then the mixture is continuously passed through a blowing agent-containing zone. continuous preparation of polyolefin resin particles, characterized in that the resin particles are made to contain a volatile blowing agent by passing through the device, and then the resin particles are continuously discharged from the inside of the device into a low-pressure atmosphere together with a dispersion medium. The gist is the foaming method. In the present invention, the base resin of the polyolefin resin particles is low density polyethylene (hereinafter referred to as
It is called LDPE. ), polyethylene resins such as linear low-density polyethylene and high-density polyethylene, polypropylene resins such as ethylene-propylene random copolymers, ethylene-propylene block copolymers, and propylene homopolymers, ethylene-α-olefin copolymers , propylene-α-olefin copolymer, polybutene, and the like. These polyolefin resins may or may not be crosslinked. In the present invention, volatile blowing agents include, for example, inorganic blowing agents such as carbon dioxide, aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, etc., and cyclic blowing agents such as cyclobutane, cyclopentane, etc. Formula aliphatic hydrocarbons and halogenated hydrocarbons exemplified by trichlorofluoromethane, dichlorodifluoromethane, dichlorotetrafluoroethane, methyl chloride, ethyl chloride, methylene chloride, etc. are used. The amount of the blowing agent added is usually 5 to 30 parts by weight per 100 parts by weight of the resin particles. Furthermore, in the present invention, the resin particles are dispersed in a dispersion medium, and at this time, if necessary, a dispersant such as fine particles of aluminum oxide and titanium oxide, basic magnesium carbonate,
Basic zinc carbonate, calcium carbonate, etc. can be used. The amount of the dispersant added is 0.01 to 10 parts by weight per 100 parts by weight of the resin particles. Further, the dispersion medium may be any solvent that does not dissolve the resin particles, and examples thereof include water, ethylene glycol, glycerin, methanol, ethanol, etc., or a mixture of two or more thereof, but water is usually preferred. . The mixing ratio of resin particles and dispersion medium is 1:1 ~
The ratio is 1:30, preferably 1:2 to 1:10. In the present invention, crosslinking may be carried out especially in the case of polyethylene resin, but as a crosslinking agent,
For example, di-t-butyl peroxide, t-butyl-cumyl-peroxide, dicumyl peroxide, α,α-bis(t-butylperoxy)
p-diisopropylbenzene, 2,5-dimethyl-2,5-di-(t-butylperoxy)-hexyne-3, 2,5-dimethyl-2,5-di-(benzoylperoxy)hexane, t- Butyl peroxyisopropyl carbonate and the like can be used. In addition, a crosslinking aid may be used if necessary, and examples of the crosslinking aid include divinylbenzene,
Examples include functional vinyl compounds such as polyethylene glycol dimethacrylate, triallyl cyanurate, and diallyl phthalate, as well as quinone dioximes and bisamides. The above-mentioned crosslinking agent is used in an amount of 0.01 to 1.0 parts by weight, and the crosslinking aid is used in an amount of 0.05 to 10 parts by weight, based on 100 parts by weight of the resin particles. Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 schematically shows the manufacturing process of a continuous pre-foaming method for polyolefin resin particles, which is an embodiment of the present invention. In FIG. 1, 1 is a pre-expanded particle manufacturing device, 2 is a raw material supply tank, 3 to 6 are heating tanks,
7 and 8 are foaming agent containing tanks, 9 is a pump, 11 is a foaming agent introduction pipe, 12 is a conduit, and 13 is a discharge pipe. When manufacturing pre-expanded particles using the manufacturing apparatus 1 described above, the case of polypropylene resin will be explained. First, the raw material polypropylene resin, the dispersion medium,
and, if necessary, a dispersant is introduced into the raw material supply tank 2, and after or while mixing at a temperature below the boiling point of the dispersion medium under normal pressure, the mixture is pumped from the raw material supply tank 2 to the pump 9.
The material is sequentially sent to heating tanks 3 to 6 and heated. The pump 9 determines the flow rate in the manufacturing apparatus 1, and the flow rate is normally 0.02 to 1.2 m 3 /hr, but it can be adjusted outside this range by changing the residence time of the mixture in the container, the volume of the container, etc. The flow rate can also be selected as appropriate. The mixture is heated to a predetermined temperature, e.g. 50-180°C, preferably 120-180°C.
Although it is heated to 180°C, it is preferably heated to a temperature higher than the temperature at which the resin particles soften. The heating tanks 3 to 6 adjust and maintain the temperature in each tank so that it increases successively in the feeding direction. Next, the mixture is transferred to the blowing agent containing tank 7.
8, and the volatile foaming agent supplied from the foaming agent introduction pipe 11 by an appropriate pump (not shown) is incorporated into the resin particles. The temperature of the containing tanks 7 and 8 is the same as the above-mentioned heating temperature, and is usually preferably higher than the temperature at which the resin particles soften. Thereafter, the resin particles and dispersion medium are simultaneously and continuously discharged from the foaming agent-containing tank 8 into a low-pressure atmosphere to foam the particles, thereby obtaining pre-expanded polypropylene resin particles. Next, a case will be described in which pre-expanded polyethylene resin particles are manufactured using the manufacturing apparatus 1 as shown in FIG. The manufacturing process for polyethylene resin is almost the same as that for polypropylene resin, but differs in that the resin particles are usually crosslinked. The crosslinking agent is introduced into the raw material supply tank 2 together with the resin particles, dispersion medium, etc., and is uniformly stirred and mixed under normal pressure at a temperature below the boiling point of the dispersion medium, usually below 30°C. Next, it is sent to heating tanks 3 and 4, where it is heated and crosslinked, and this temperature is, for example, 100 to 180°C.
℃, preferably 130-170℃. Next, the mixture is cooled by a cooler 10 to a temperature equal to or lower than the temperature of the heating tanks 5 to 6, and then passed through the heating tanks 5 to 6, preferably heated to a temperature higher than the temperature at which the resin particles soften, and then, After sending the resin particles to foaming agent containing tanks 7 and 8 and incorporating a volatile foaming agent into the resin particles in the same manner as in the case of polypropylene resin, the resin particles and dispersion medium are simultaneously released continuously from containing tank 8 into a low pressure atmosphere. to foam the particles, thus obtaining pre-expanded particles. In the above example, four heating tanks are used, but if the mixture reaches the desired temperature by appropriately changing the residence time of the mixture in the container, the capacity of the container, the flow rate, etc., any heating tank can be used in one tank. A tank may also be used. The apparatus used to carry out the continuous pre-foaming method of the present invention is not limited to the one used in the above embodiments, and for example, the diameter of a part of a long and thin pipe-shaped object may be enlarged to heat the apparatus. It is possible to use a structure in which a space corresponding to a tank, a foaming agent-containing tank, etc. is formed, and functions such as feeding, heating, and foaming agent containing are added. The polyolefin resin pre-expanded particles obtained by the present invention are uniform with little variation and usually have an expansion ratio of 3 to 60 times. The pre-expanded particles are aged, for example, at room temperature and pressure, and if necessary, pressure aged at a predetermined pressure for a predetermined time using an inorganic gas or a mixed gas of an inorganic gas and a volatile blowing agent. Next, the pre-expanded particles are filled into a mold and heated and foamed to obtain a foam molded article according to the mold. The foam molded product thus obtained can be used, for example, as a cushioning material, a packaging material, a heat insulating material, a food container, a building material, a flotation material, a toy, and the like. As explained above, according to the continuous pre-foaming method for polyolefin resin particles of the present invention, it is possible to obtain pre-foamed particles with uniform expansion ratio, shape, etc. compared to the conventional batch-type pre-foaming method, and Production efficiency is greatly improved because pre-expanded particles can be produced continuously, and there is no need to repeat heating and cooling operations every time a predetermined amount is produced, and it is only necessary to maintain a constant temperature at all times. It has various advantages such as high thermal efficiency and low energy consumption. Further, according to the present invention, since there is no need to apply back pressure using air or the like as in the case of the conventional batch type, inexpensive butane can be used as a volatile blowing agent, which is economically advantageous. Hereinafter, the present invention will be explained in more detail with reference to Examples. Examples 1 to 4 Base resin particles, dispersant, and dispersion medium of the types and amounts shown in Table 1 were continuously supplied to the raw material supply tank of the pre-expanded particle manufacturing device and mixed at 30°C under normal pressure. Meanwhile, the mixture is pumped from the raw material supply tank into four heating tanks each having an internal volume of 0.6 m3 at the flow rate shown in Table 1 (the temperatures of the four heating tanks A, B, C, and D are shown in Table 1). (shown in Figure 1). The mixture is then continuously fed into tanks containing blowing agents each having an internal volume of 0.6 m 3 maintained at the temperature and pressure shown in Table 1, and blowing agents of the type shown in Table 1 are introduced into the tanks by suitable pumps. and the amount used of a volatile blowing agent were included in the resin particles. Next, the resin particles and dispersion medium were continuously discharged from the exhaust pipe into the atmosphere to continuously obtain pre-expanded particles. The expansion ratio of the obtained pre-expanded particles is shown in Table 1.
The expansion ratio and shape were uniform. Note that when LDPE particles were used as the base resin, 0.5 parts by weight of dicumyl peroxide was used as a crosslinking agent.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すもので、第1図お
よび第2図は本発明方法の発泡工程を示す略図で
ある。 1…予備発泡粒子製造装置、2…原料供給槽、
3,4,5,6…加熱槽、7,8…発泡剤含有
槽、9…ポンプ、10…冷却器、11…発泡剤導
入管、12…導管、13…排出管。
The drawings show embodiments of the invention, and FIGS. 1 and 2 are schematic diagrams illustrating the foaming process of the method of the invention. 1... Pre-expanded particle manufacturing device, 2... Raw material supply tank,
3, 4, 5, 6... Heating tank, 7, 8... Foaming agent containing tank, 9... Pump, 10... Cooler, 11... Foaming agent introduction pipe, 12... Conduit, 13... Discharge pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリオレフイン樹脂粒子、分散媒、並びに必
要に応じて架橋剤及び/又は分散剤を、予め常圧
下にて上記分散媒の沸点以下の温度で混合した
後、又は混合しつつ、該混合物を適宜の送り手段
により予備発泡粒子製造装置内に導入し、加圧状
態で加熱域を連続的に通過させて上記樹脂粒子を
所定温度に加熱し、次いで上記混合物を発泡剤含
有域を連続的に通過させて上記樹脂粒子に揮発性
発泡剤を含有させた後、上記樹脂粒子を分散媒と
共に上記装置内より低圧の雰囲気に連続的に放出
することを特徴とするポリオレフイン樹脂粒子の
連続予備発泡方法。
1 After mixing the polyolefin resin particles, dispersion medium, and optionally a crosslinking agent and/or dispersant under normal pressure at a temperature below the boiling point of the dispersion medium, or while mixing, the mixture is heated to an appropriate temperature. The resin particles are introduced into a pre-expanded particle manufacturing apparatus by a feeding means, and are continuously passed through a heating zone under pressure to heat the resin particles to a predetermined temperature, and then the mixture is continuously passed through a blowing agent-containing zone. A method for continuous pre-foaming of polyolefin resin particles, characterized in that after the resin particles contain a volatile foaming agent, the resin particles are continuously discharged together with a dispersion medium into a low-pressure atmosphere from inside the apparatus.
JP57172589A 1982-10-01 1982-10-01 Continuous pre-expanding method of polyolefin resin beads Granted JPS5967022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57172589A JPS5967022A (en) 1982-10-01 1982-10-01 Continuous pre-expanding method of polyolefin resin beads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57172589A JPS5967022A (en) 1982-10-01 1982-10-01 Continuous pre-expanding method of polyolefin resin beads

Publications (2)

Publication Number Publication Date
JPS5967022A JPS5967022A (en) 1984-04-16
JPS6234338B2 true JPS6234338B2 (en) 1987-07-27

Family

ID=15944643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57172589A Granted JPS5967022A (en) 1982-10-01 1982-10-01 Continuous pre-expanding method of polyolefin resin beads

Country Status (1)

Country Link
JP (1) JPS5967022A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH082989B2 (en) * 1987-05-11 1996-01-17 日本スチレンペ−パ−株式会社 Pre-expansion method of polyolefin resin particles

Also Published As

Publication number Publication date
JPS5967022A (en) 1984-04-16

Similar Documents

Publication Publication Date Title
US4303756A (en) Process for producing expandable thermoplastic resin beads
US3709806A (en) Process for the preparation of radiation-crosslinkable foamable polyolefin particles
EP0783543B1 (en) Moldable thermoplastic polymer foam beads
US4308352A (en) Process of extruding polysulfone foam
EP0450205A1 (en) Moldable shrunken thermoplastic polymer foam beads
JPS5923731B2 (en) Polypropylene resin pre-expanded particles
JPS6234335B2 (en)
JP3732418B2 (en) Expandable styrene resin particles
JPS59184630A (en) Manufacture of polyolefin form
JPH082989B2 (en) Pre-expansion method of polyolefin resin particles
JPH0711041A (en) Preliminarily foamed granule of thermoplastic resin and its production
JPS6234338B2 (en)
JPS6234339B2 (en)
JP2002302567A (en) Method for continuous production of pre-expanded bead of biodegradable polyester-based resin
JPS5851123A (en) Method of molding preliminarily foamed polypropylene resin particles in mold
JPS58215326A (en) Manufacture of polyolefin resin molding foamed in force
JPS59111823A (en) Manufacture of preliminarily expanded polymer particle
JPH06104749B2 (en) Moldable shrinkable thermoplastic polymer foam beads
JPS59147029A (en) Preparation of expanded particles of polyethylene having uniform and fine bubbles
JPH0420937B2 (en)
JP3763725B2 (en) Polypropylene resin particles for foaming and method for producing the same
JPH05255531A (en) Production of molded polymer foam
JPS5940164B2 (en) Method for producing expandable thermoplastic resin particles
JPH0218225B2 (en)
JPS6341942B2 (en)