JPS623416B2 - - Google Patents

Info

Publication number
JPS623416B2
JPS623416B2 JP8957479A JP8957479A JPS623416B2 JP S623416 B2 JPS623416 B2 JP S623416B2 JP 8957479 A JP8957479 A JP 8957479A JP 8957479 A JP8957479 A JP 8957479A JP S623416 B2 JPS623416 B2 JP S623416B2
Authority
JP
Japan
Prior art keywords
plasma
layer
printing
mask
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8957479A
Other languages
Japanese (ja)
Other versions
JPS5614238A (en
Inventor
Satoshi Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP8957479A priority Critical patent/JPS5614238A/en
Publication of JPS5614238A publication Critical patent/JPS5614238A/en
Publication of JPS623416B2 publication Critical patent/JPS623416B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Manufacture Or Reproduction Of Printing Formes (AREA)

Description

【発明の詳細な説明】 本発明は、活性ガスプラズマを用いた平版製版
法及び該方法に用いる材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a lithographic process using active gas plasma and materials used in the process.

平版印刷法はオフセツト印刷に代表される如
く、版面に親水部(非画線部)及び親油部(画線
部)を設けたのち、適当な水分(湿し水)の供給
により印刷インキの画線部への選択的付着を行な
わせ、次いで該インキをブランケツトに転写し、
更に被印刷体に再転写して印刷する方法である。
In the lithographic printing method, as typified by offset printing, a hydrophilic area (non-printing area) and an oleophilic area (printing area) are provided on the printing plate, and then printing ink is applied by supplying an appropriate amount of moisture (dampening water). selectively adhering the ink to the image area, and then transferring the ink to the blanket;
Furthermore, this is a method of re-transferring and printing onto a printing material.

平版製版法は旧い石版から金属板平版に移行
し、現在ではPS版(Pre−Sensitized版)製版が
主流を占めている。
The lithographic process has shifted from the old stone lithography to metal plate lithography, and currently PS (Pre-Sensitized) plate making is the mainstream.

PS版は親水性基板(通常Al板)面に感光性樹
脂を塗布したもので、写真原版を密着露光し、露
光部又は非露光部の感光性樹脂を現像により除去
し(ポジ型、及びネガ型がある)、残留感光性樹
脂部が親油部に、裸出基板面が親水部となつて刷
版が製造できる。
A PS plate is a photosensitive resin coated on the surface of a hydrophilic substrate (usually an Al plate).The original photographic plate is exposed to light, and the photosensitive resin in the exposed or non-exposed areas is removed by development (positive type and negative type). The remaining photosensitive resin part becomes the lipophilic part, and the bare substrate surface becomes the hydrophilic part, and a printing plate can be manufactured.

PS版の製版法は上記の様に簡便なため非常に
普及しているが、さらに刷版品質、例えば解像
性、耐刷性、操作性などの向上を目的として多数
の平版用感光性樹脂が提案されている。然しなが
ら現状は印刷側の要望を完全に充足させていると
は限らない。もし耐刷性を満足させようとすれ
ば、膜強度が大きい感光性樹脂であつて、かつ印
刷時の画線摩耗を考慮しある程度膜厚を大きくし
ておく必要がある。膜強度が大きく耐摩耗性のあ
る物質は多いが、感光性を賦与するに適した物質
は極めて限定される。また該物質に感光基を化学
的に導入する場合に、以前の性質を必ずしも保持
できないこと、更に写真特性を充分に満足させる
必要があること、及び摩耗に対応して膜厚を大に
することは写真特性(例えば現像性や解像性な
ど)を減退させることなど多くの問題点が存在す
る。従つて限定された探索範囲内で良質のPS版
用感光性樹脂を見出すのが極めて難かしい。
The PS plate making method is very popular because it is simple as mentioned above, but in order to improve the printing plate quality, such as resolution, printing durability, and operability, a large number of photosensitive resins for lithography are used. is proposed. However, the current situation does not necessarily fully satisfy the demands of the printing side. If printing durability is to be satisfied, it is necessary to use a photosensitive resin with high film strength and to increase the film thickness to some extent in consideration of image abrasion during printing. Although there are many materials that have high film strength and wear resistance, the materials that are suitable for imparting photosensitivity are extremely limited. Furthermore, when photosensitive groups are chemically introduced into the substance, it is not always possible to maintain the previous properties, it is necessary to fully satisfy the photographic properties, and the film thickness must be increased to cope with abrasion. There are many problems such as deterioration of photographic properties (such as developability and resolution). Therefore, it is extremely difficult to find a high quality photosensitive resin for PS plates within a limited search range.

本発明は上記に対し、高耐刷性を与える基板接
着性のよい耐摩耗性ある安価な一般樹脂を用い、
少くとも画線部の樹脂特性を変化させずに良質の
刷版を与える平版製版法及び同製版に用いる平版
用材料を提供するものである。
In contrast to the above, the present invention uses an inexpensive general resin with good substrate adhesion and abrasion resistance that provides high printing durability.
The object of the present invention is to provide a lithographic plate-making method that provides a high-quality printing plate without changing the resin properties of at least the image area, and a lithographic material used in the plate-making process.

本発明の骨子は活性ガスプラズマによつて親水
性基板上の親油性物質層を選択的に除去し、画線
部及び非画線部を形成させるにある。
The gist of the present invention is to selectively remove a lipophilic material layer on a hydrophilic substrate using active gas plasma to form image areas and non-image areas.

衆知の如く活性ガスプラズマは、適当な真空度
下で放電させる時発生する。真空中に微量に存在
するガスが活性ラジカルやイオン化されてプラズ
マ中に存在する。かかる活性ガスプラズマは物質
への功撃性あるいは反応性が高く、例えば酸素プ
ラズマであれば殆んどの有機物を炭酸ガスと水に
まで変化させ、また金属などでは酸化物化するこ
とが容易である。含有ガスの種類により被反応物
質と有効迅速な反応及び反応生成物の気化除去を
容易にすることができる。
As is well known, active gas plasma is generated during discharge under a suitable degree of vacuum. A trace amount of gas that exists in a vacuum becomes active radicals or ionized and exists in plasma. Such active gas plasma has a high impact or reactivity on substances; for example, oxygen plasma can convert most organic substances into carbon dioxide gas and water, and metals can easily be converted into oxides. Depending on the type of gas contained, effective and rapid reaction with the reactant substance and vaporization removal of the reaction product can be facilitated.

一方、ガスプラズマは強電界下で強いエネルギ
ーを持つた粒子性挙動も示すから、衝突によつて
他物質を破壊蒸発させる作用もある(いわゆる逆
スパツタリング)。従つてガスプラズマの作用は
化学的及び物理的の両面から行なわれ、被作用体
が無機物であるか有機物であるかは問わない。
On the other hand, since gas plasma exhibits particle-like behavior with strong energy under strong electric fields, it also has the effect of destroying and vaporizing other substances through collisions (so-called reverse sputtering). Therefore, the action of gas plasma is carried out both chemically and physically, and it does not matter whether the object to be affected is inorganic or organic.

現在この性質を利用している分野に半導体工業
があり、プラズマエツチングあるいはスパツタエ
ツチングとして知られている。半導体工業分野の
用法の1例は、被エツチング体(一般にシリコン
等の無機物)上に感光性レジスト層を形成し、露
光・現像してパターン化し、次いでプラズマ処理
し、レジストパターンをマスクとして選択的にエ
ツチングするものである。
One field currently utilizing this property is the semiconductor industry, where it is known as plasma etching or sputter etching. One example of usage in the semiconductor industry is to form a photosensitive resist layer on an object to be etched (generally an inorganic material such as silicon), expose and develop it to form a pattern, and then perform plasma treatment to selectively use the resist pattern as a mask. It is used for etching.

他の分野の用法としては、物体をマスキングな
しで全面処理して表面の清浄化を行なうと云う本
工程に供給する前処理工程に利用している場合も
ある。また有機物関係では特にフイルム類などに
表面加工(例えば印刷、コーテイング、蒸着な
ど)を行なう時に、コロナ放電処理では不十分な
場合などにプラズマ処理をすることがある。この
場合にはフイルムの本質を変化させないように表
面層のみを処理するので、一般に全面に弱いプラ
ズマをかけるのが常法である。
In other fields, it may be used in a pre-treatment process to clean the surface of an object by treating the entire surface without masking. In addition, in the case of organic materials, especially when surface processing (for example, printing, coating, vapor deposition, etc.) is performed on films, etc., plasma treatment is sometimes performed when corona discharge treatment is insufficient. In this case, since only the surface layer is treated so as not to change the essence of the film, it is common practice to apply weak plasma to the entire surface.

本発明は上記原理を平版製版に新たに利用した
ものであるが、その基本は基板上の樹脂層を選択
除去することにあり、有機物体の表面処理よりは
強い作用を与え、いわば親油性樹脂層の選択エツ
チングで該層を完全に蒸発させ、親水性基板面を
裸出させることにより平版製版を行なうものであ
る。
The present invention newly utilizes the above-mentioned principle in lithographic platemaking, but its basic purpose is to selectively remove the resin layer on the substrate, which has a stronger effect than the surface treatment of organic substances, so to speak. Lithographic plate making is carried out by selectively etching the layer to completely evaporate the layer and expose the surface of the hydrophilic substrate.

次に、本発明を詳細に説明する。 Next, the present invention will be explained in detail.

本発明の方法に係わる平版材料の基本構成は第
1図示のように単純である。平版用基板1は一般
にAl板が用いられており、本方法の材料も従来
基材と同様でよい。Al板面には親水性及び保水
性を与えるために砂目立て(粗面化)や化学酸化
あるいは電気化学的陽極酸化を行なうのが普通で
ある。
The basic structure of the lithographic material used in the method of the present invention is simple as shown in the first diagram. The planographic substrate 1 is generally an Al plate, and the material used in this method may be the same as the conventional substrate. The surface of the Al plate is usually subjected to graining (roughening), chemical oxidation, or electrochemical anodic oxidation to impart hydrophilicity and water retention properties.

この保水性基板1の面上に接着性のよい親油性
物質層2を、合成又は天然樹脂類の適当品を塗布
乾燥させ、平版材料とする。親油性樹脂の選択で
は種類が豊富な合成樹脂の方が有利である。塗布
膜厚は1μ〜5μが好ましいがこれに限定される
ものではなく、もし砂目立て面を用いるならば砂
目の突起先端を十分被覆する膜厚でなければなら
ない。膜厚の点からは砂目板よりも平滑面に陽極
酸化などで保水性を向上させた基板の方が有利で
ある。すなわち、基板は粗面でもよいが、平滑面
の方が好ましい。これは親油性物質層の局部的な
膜厚変動がなくなるため、該層がプラズマ処理に
より均一に除去され、除去されるべき部分の深い
所に樹脂が残存したりしなくなるからである。
A lipophilic material layer 2 with good adhesion is coated on the surface of this water-retaining substrate 1 with a suitable synthetic or natural resin and dried to obtain a lithographic material. When selecting lipophilic resins, it is more advantageous to use synthetic resins, which are available in a wide variety of types. The coating film thickness is preferably 1 to 5 microns, but is not limited to this. If a grained surface is used, the film must be thick enough to sufficiently cover the tips of the grained protrusions. From the viewpoint of film thickness, a substrate with a smooth surface improved in water retention by anodizing or the like is more advantageous than a grained board. That is, the substrate may have a rough surface, but a smooth surface is preferable. This is because there is no local variation in the thickness of the lipophilic substance layer, so the layer is uniformly removed by the plasma treatment, and no resin remains deep in the area to be removed.

使用樹脂は2次元分子構造もつ弾性を備えたも
のでもよいが、特に高耐刷性を目標とするなら
ば、塗布後に熱処理や架橋剤との反応などによつ
て3次元分子構造体をとり、表面強度や耐摩耗性
が著しく大きい値を示す樹脂が適している。
The resin used may be one with elasticity and a two-dimensional molecular structure, but if the goal is particularly high printing durability, a three-dimensional molecular structure can be formed by heat treatment or reaction with a crosslinking agent after application. Resins that exhibit extremely high values of surface strength and abrasion resistance are suitable.

この樹脂層上に任意のパターンのマスク3を形
成させるための方法としては、描画、印刷、転
写、写真などの手法がある。
Methods for forming the mask 3 in an arbitrary pattern on this resin layer include drawing, printing, transfer, photography, and other methods.

精密さを要しない粗いパターンであれば、マス
ク材を手描きしてもよいし、複版数があれば、シ
ルクスクリーン印刷法でマスキングしてもよい。
更に精密パターンを得るためには、あらかじめ他
の基材(フイルム等)上に感光性樹脂を塗布して
おき、露光・現像後前記親油性樹脂面に転写する
とよい。もし感光性樹脂パターンが熱接着性であ
れば熱で、感圧性であれば圧着で転写したり、他
の接着剤を介して転写してもよい。幸い接着剤が
非マスク部に残留してもプラズマ処理時に除去さ
れてしまう。
If the pattern is rough and does not require precision, the masking material may be hand-drawn, or if there are enough copies, it may be masked by silk screen printing.
In order to obtain a more precise pattern, it is preferable to apply a photosensitive resin on another base material (such as a film) in advance, and then transfer it to the lipophilic resin surface after exposure and development. If the photosensitive resin pattern is heat-adhesive, it may be transferred by heat, if it is pressure-sensitive, it may be transferred by pressure, or it may be transferred using another adhesive. Fortunately, even if adhesive remains in the non-masked areas, it is removed during plasma processing.

同様にエレクトログラフイーやマグネトグラフ
イーによる転写法も利用できる。
Similarly, transfer methods using electrography or magnetography can also be used.

第2図示の如くマスク3が形成されたなら真空
ペルジヤー内に入れ、真空度を0.05〜数トールと
して真空放電によりプラズマを発生させて処理す
る。これにより第3図示の如く、非遮蔽部の親油
性物質を除去して親水性基板面を露出させる。電
流電圧は装置の構造や所望処理速度、被処理材
料、使用ガスなどによつて異なり適時最適値を定
める必要がある。上例のように親油性物質が有機
物質であれば一般に酸素プラズマが有効で、親油
性樹脂層2は炭酸ガスと水になつて蒸発除去され
る。もし他の元素があつても、例えばNはNO2
に、SはSO2になり同様に気化される。
Once the mask 3 is formed as shown in the second figure, it is placed in a vacuum persier and processed by generating plasma by vacuum discharge at a vacuum degree of 0.05 to several torr. As a result, as shown in the third figure, the lipophilic substance in the non-shielded portion is removed and the hydrophilic substrate surface is exposed. The current and voltage vary depending on the structure of the apparatus, desired processing speed, material to be processed, gas used, etc., and it is necessary to determine the optimum value in a timely manner. If the lipophilic substance is an organic substance as in the above example, oxygen plasma is generally effective, and the lipophilic resin layer 2 is evaporated and removed as carbon dioxide and water. Even if there are other elements, for example, N is NO 2
Then, S becomes SO 2 and is similarly vaporized.

実際には単純でなく中間生成物などが多いが気
化可能となれば直ちに除去されるからあまり考慮
する必要はない。また樹脂合成時の触媒やその他
の原因で混在する無機物は、蒸発するものもある
が、殆んどが灰分となつて残留する。しかし一般
には酸化物化され、親水性であること及び微量な
ため余り問題にならない。必要ならば処理完了後
洗滌除去も容易である。
In reality, it is not simple and there are many intermediate products, but they will be removed as soon as they can be vaporized, so there is no need to consider them too much. In addition, some of the inorganic substances mixed in as catalysts during resin synthesis and other causes evaporate, but most remain as ash. However, since it is generally oxidized, hydrophilic, and in a small amount, it does not pose much of a problem. If necessary, it can be easily washed away after the treatment is completed.

マスク3も一般に有機物質であるから、プラズ
マ処理時に樹脂層2と同様に攻撃されて徐々に表
面から蒸発除去され、普通は樹脂層2に近い蒸発
比率で減少する。しかし適当な膜厚であればマス
ク3が残留している間に樹脂層2の除去が完了す
る。この場合、処理後に第4図示の如く残留マス
ク材3を適当な方法で除去してもよいが、一般に
プラズマ処理後の方が樹脂層2と接着が増してい
ること、及びマスク材自体が親油性であることか
ら特に除去する必要もない場合が多い。
Since the mask 3 is generally an organic material, it is attacked in the same way as the resin layer 2 during plasma processing and is gradually evaporated and removed from the surface, and normally decreases at an evaporation rate close to that of the resin layer 2. However, if the film thickness is appropriate, the removal of the resin layer 2 will be completed while the mask 3 remains. In this case, after the treatment, the residual mask material 3 may be removed by an appropriate method as shown in Figure 4, but in general, the adhesion to the resin layer 2 is greater after the plasma treatment, and the mask material itself is less resistant. Since it is oil-based, there is often no need to remove it.

また、マスク3の膜厚が樹脂層2を完全除去す
るのに不十分な厚さであつても、当初の段差は保
持されるから画線樹脂の膜厚が減少するだけで刷
版として使用することができる。しかしこの場合
は耐刷性や解像性などの制御面で若干不安定とな
るのであまり得策ではない。このマスク性能を向
上させるためには次の対応を行うとよい。
In addition, even if the film thickness of the mask 3 is insufficient to completely remove the resin layer 2, the original level difference is maintained, so the film thickness of the image resin only decreases and it can be used as a printing plate. can do. However, in this case, it is not a good idea because it becomes somewhat unstable in terms of control of printing durability, resolution, etc. In order to improve this mask performance, the following measures should be taken.

マスク材料中に使用するガスプラズマに攻撃さ
れにくいか又は攻撃されても固体(灰分)として
残留する無機微粉末を混入するのが効果的であ
る。例えば金属粉末、その酸化物粉末などであ
る。
It is effective to mix into the mask material an inorganic fine powder that is not easily attacked by the gas plasma used or remains as a solid (ash) even if attacked. For example, metal powder, its oxide powder, etc.

マスク3表面の有機物がプラズマで除去され、
無機粉末が攻撃されても蒸発せずに残留するから
マスク効果は減退しない。幸いプラズマの攻撃性
は化学エツチングと異なり指向性が強く、マスク
端から殆んど直角に入るため、いわゆるサイドエ
ツチが極めて少ない。従つて単に物体が載置され
るだけでマスク効果がある。
Organic matter on the surface of mask 3 is removed by plasma,
Even if the inorganic powder is attacked, it will not evaporate and will remain, so the mask effect will not diminish. Fortunately, unlike chemical etching, the aggressiveness of plasma is highly directional and enters almost perpendicularly from the edge of the mask, so so-called side etching is extremely rare. Therefore, simply placing an object on it has a masking effect.

この様にマスク材中に不揮発性微粒子が存在す
るとプラズマ攻撃によるマスクの減少量が少ない
ために、ある程度マスク3の厚さが小さくても樹
脂層2が完全に除去されるまで十分に耐えるもの
となる。しかし処理後マスク材表面に無機物質が
裸出するから親水性となり易く、そのためマスク
材は適当な溶剤で除去した方がよい。ある場合に
は無機微粒子のまわりの結合剤が蒸発しているの
で、マスク材として結着しておらず軽く擦つた
り、水や溶剤で洗うと容易に除去されて親油部
(マスク材の未攻撃成分を含めて)が現れること
もある。この種のマスク3を用いると当初の樹脂
層2の膜厚及び性質が温存されて刷版特性が保持
し易い。
In this way, if non-volatile fine particles exist in the mask material, the amount of loss of the mask due to plasma attack is small, so even if the thickness of the mask 3 is small to some extent, it will be able to withstand until the resin layer 2 is completely removed. Become. However, since inorganic substances are exposed on the surface of the mask material after treatment, it tends to become hydrophilic, so it is better to remove the mask material with an appropriate solvent. In some cases, the binder around the inorganic particles has evaporated, so they are not bound to the mask material and can be easily removed by rubbing lightly or washing with water or solvent, and the lipophilic part (of the mask material) is removed. (including unattacked components) may also appear. When this type of mask 3 is used, the original thickness and properties of the resin layer 2 are preserved, making it easy to maintain the printing plate characteristics.

一方、マスク転写方式では本発明の平版材料自
体にPS版的性格を与えることが出来ず、製版が
やや面倒で高品質刷版を得るのが難かしい。そこ
で第5図に示すように第1図示の平版材上に更に
適当なマスク用感光材料層4を備えると、マスク
形成方法がPS版と同様となり、写真原版の焼
付・現像で簡便にマスキング可能となる。感光材
料層4も同様にプラズマ攻撃されて除去されるか
ら、前記と同様に不揮発性材料を混入させておく
とよい。この場合比較的薄い感光材料層4でもプ
ラズマ処理により厚い樹脂層2を除去する効果が
ある。
On the other hand, with the mask transfer method, the lithographic material of the present invention itself cannot have PS plate-like characteristics, and plate making is somewhat troublesome and it is difficult to obtain a high-quality printing plate. Therefore, as shown in FIG. 5, if a suitable photosensitive material layer 4 for a mask is further provided on the lithographic material shown in FIG. becomes. Since the photosensitive material layer 4 is also removed by plasma attack, it is preferable to mix a nonvolatile material in the same manner as described above. In this case, even if the photosensitive material layer 4 is relatively thin, the plasma treatment is effective in removing the thick resin layer 2.

上記感光材料として一般の感光性樹脂を用いる
時には酸化アルミニウムやチタンホワイト等の無
機微粉末を適当量混合して塗布するとよい。特に
好ましいのはエロジルと呼ばれる酸化ケイ素微粉
末で、屈折率も感光性樹脂に近く、解像性の低下
などを最小限とすることができる。
When using a general photosensitive resin as the above-mentioned photosensitive material, it is preferable to mix an appropriate amount of inorganic fine powder such as aluminum oxide or titanium white and apply it. Particularly preferred is silicon oxide fine powder called Erosil, which has a refractive index close to that of photosensitive resin and can minimize deterioration in resolution.

本発明の使用材料は一般に以下の物質類である
が必ずしもこれに限定されるものではない。
The materials used in the present invention are generally the following substances, but are not necessarily limited thereto.

支持基板として前述の様にAl板が最も好まし
いが、他の金属板、例えばFe、Cu、Zn、Mg、
あるいはこれらにCrやNiなどを電気メツキした
金属板などが使用できる。
As mentioned above, Al plate is most preferable as the support substrate, but other metal plates such as Fe, Cu, Zn, Mg,
Alternatively, metal plates electroplated with Cr, Ni, etc. can be used for these.

支持基板上の親油性樹脂層としてはポリエステ
ル、ポリプロピレン、ポリエチレン、ポリスチレ
ン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ
エチレンテレフタレート、ABS樹脂、ナイロ
ン、ポリアセタール、アセテート樹脂、アクリル
樹脂、ポリカーボネート、フエノール樹脂、ユリ
ア樹脂、メラミン樹脂、エポキシ樹脂、キシレン
樹脂、アルキツド樹脂、ゴム類(天然及び合
成)、その他天然あるいは合成樹脂類又はこれら
の選択的混合樹脂などが使用できる。
The lipophilic resin layer on the support substrate includes polyester, polypropylene, polyethylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyethylene terephthalate, ABS resin, nylon, polyacetal, acetate resin, acrylic resin, polycarbonate, phenol resin, urea resin, Melamine resins, epoxy resins, xylene resins, alkyd resins, rubbers (natural and synthetic), other natural or synthetic resins, or selective mixtures thereof can be used.

マスク材料としては種々の皮膜性天然又は合成
樹脂類、感光性樹脂類があり、感光性樹脂類とし
てはケイ皮酸系、アジド系、ジアジド系、アクリ
ル酸系、ナイロン系、環化ゴム系などの油溶性感
光性樹脂類やゼラチン、グルー、卵白、ポリビニ
ルアルコールなどを母体とした重クロム酸塩やジ
ケゾ化合物などで光架橋する水溶性感光性樹脂な
どが使用できる。
Mask materials include various film-forming natural or synthetic resins and photosensitive resins. Photosensitive resins include cinnamic acid-based, azide-based, diazide-based, acrylic acid-based, nylon-based, cyclized rubber-based, etc. Oil-soluble photosensitive resins, water-soluble photosensitive resins that are photocrosslinked with dichromate, diqueso compounds, etc. based on gelatin, glue, egg white, polyvinyl alcohol, etc. can be used.

マスク補強用の無機物質は好ましくは粒径が精
密像には0.5μ以下、粗い像には30μ以下程度の
二酸化硅素、酸化チタン、酸化アルミニウム、酸
化亜鉛、酸化鉛、水酸化アルミニウム、Fe、
Zn、Sn、Ni、Cu、Ge、Al、その他の金属粉末あ
るいは金属硫化物、複塩、錯塩等粉末化可能な物
質(無機顔料類は好ましい)などが使用できる。
これらは単独でもしくは混合してマスク材料中に
10〜70重量%程度混入させることが望ましい。
Inorganic substances for mask reinforcement preferably include silicon dioxide, titanium oxide, aluminum oxide, zinc oxide, lead oxide, aluminum hydroxide, Fe, and particles with particle sizes of 0.5μ or less for precise images and 30μ or less for rough images.
Zn, Sn, Ni, Cu, Ge, Al, other metal powders, metal sulfides, double salts, complex salts, and other substances that can be powdered (inorganic pigments are preferred) can be used.
These can be used alone or in combination in mask materials.
It is desirable to mix it in an amount of about 10 to 70% by weight.

活性プラズマ用ガス類としては空気、水蒸気、
アルゴン、窒素、酸素、ハロゲン、ハロゲン化水
素などが単独又は混合ガスとして使用できる。
Gases for active plasma include air, water vapor,
Argon, nitrogen, oxygen, halogen, hydrogen halide, etc. can be used alone or as a mixed gas.

以下、実施例を示して本発明をさらに詳細に説
明する。
Hereinafter, the present invention will be explained in more detail by showing examples.

実施例 1 表面を砂目立てした0.3mm厚のAl板にポリエス
テル樹脂を約5μ厚で塗布・乾燥した。別に適当
な画像を常法によつて作製したシルクスクリーン
を用意し、上記ポリエステル面に置き、通常のシ
ルクスクリーンインキを用いて印刷した。乾燥後
のインキ膜厚は8μで、インキは有機・青色顔料
(シアニンブルー)で着色したものである。
Example 1 Polyester resin was applied to a thickness of about 5 μm on a 0.3 mm thick Al plate with a grained surface and dried. Separately, a silk screen with a suitable image prepared by a conventional method was prepared, placed on the polyester surface, and printed using a conventional silk screen ink. The ink film thickness after drying is 8 μm, and the ink is colored with an organic blue pigment (cyanine blue).

印刷後プラズマエツチング装置(東京応化社
製)を用い、真空度2〜3トールの酸素雰囲気
下、300Wでプラズマ処理したが、非マスキング
部のポリエステル樹脂を除去してAl板面を裸出
させるのに約40分を要した。処理後の残留インキ
膜厚は1〜2μとなつていた。
After printing, a plasma etching device (manufactured by Tokyo Ohka Co., Ltd.) was used to perform plasma treatment at 300 W in an oxygen atmosphere at a vacuum level of 2 to 3 Torr, but the polyester resin in the non-masking areas was removed to expose the Al plate surface. It took about 40 minutes. The residual ink film thickness after treatment was 1 to 2 microns.

溶剤で残留インキを除去すると同時にAl板面
の若干の灰分も清掃して印刷版とした。この版は
湿し水を用いたオフセツト印刷機で5〜10万枚の
耐刷性をもつていた。
A printing plate was prepared by removing residual ink with a solvent and at the same time cleaning some ash on the surface of the Al plate. This plate had a printing life of 50,000 to 100,000 sheets on an offset printing press using dampening water.

実施例 2 上例において、スクリーン印刷インキ内に微細
金属粉(300メツシユ鉄粉)を20%混入して同様
に処理した。この時のインキ膜厚は5μであつた
が、処理後の残留インキ膜厚は1μであり、金属
粉混入によりマスキングインキの膜厚を減少でき
ることが判明した。
Example 2 In the above example, 20% of fine metal powder (300 mesh iron powder) was mixed into the screen printing ink and treated in the same manner. The ink film thickness at this time was 5 μm, but the residual ink film thickness after treatment was 1 μm, indicating that the masking ink film thickness could be reduced by mixing metal powder.

実施例 3 0.3mm厚のAl板の一面を陽極酸化して保水性を
与えたのち、フエノール樹脂を3μ厚に塗布・硬
化させて基板とした。別に0.2mm厚のポリエステ
ル樹脂フイルムにAZ・111(シツプレー社製ポジ
型ホトレジスト)を4μ厚に塗布・乾燥し、150
線/吋の網版及び文字写真原版を真空密着焼付し
た。ついで指定現像液にて現像乾燥したのち、前
記Al板のフエノール樹脂面に画像転写してマス
クとした。転写はフエノール樹脂面に市販の感圧
接着剤を薄く塗布し、AZ−111画像フイルムを重
ねてローラーで圧着したのちポリエステルフイル
ムのみを剥離した。
Example 3 One side of a 0.3 mm thick Al plate was anodized to give water retention properties, and then a phenol resin was applied to a thickness of 3 μm and cured to form a substrate. Separately, AZ・111 (positive type photoresist manufactured by Shippray Co., Ltd.) was applied to a thickness of 4μ on a 0.2mm thick polyester resin film and dried.
The line/inch halftone plate and the letter/photo original plate were vacuum-contact-printed. After developing and drying with a designated developer, the image was transferred onto the phenol resin surface of the Al plate to form a mask. For transfer, a commercially available pressure-sensitive adhesive was applied thinly to the phenol resin surface, AZ-111 image film was layered and pressed with a roller, and then only the polyester film was peeled off.

ポリエステルフイルムとAZ−レジストの接着
はあまり強くないから比較的容易に転写ができ
た。
The adhesion between the polyester film and the AZ-resist was not very strong, so the transfer was relatively easy.

つぎに前記プラズマ装置で同一条件でプラズマ
処理をしたが、約30分でAl面が現れ、AZ−111マ
スク部以外の場所の接着剤とフエノール樹脂が除
去された。また残留レジスト膜厚は1μで強固に
接着しており、親油性なので除去しないでそのま
ま印刷版とした。
Next, plasma treatment was performed using the plasma apparatus under the same conditions, and an Al surface appeared in about 30 minutes, and the adhesive and phenol resin were removed from areas other than the AZ-111 mask area. Further, the residual resist film thickness was 1 μm and it was firmly adhered, and since it was lipophilic, it was used as a printing plate without being removed.

これをオフセツト印刷機に着装して印刷テスト
を行なつたところ、耐刷性は約20万枚を示し良好
な印刷物が得られた。
When this was installed in an offset printing machine and a printing test was carried out, the printing durability was approximately 200,000 sheets, and good printed matter was obtained.

実施例 4 市販の軽印刷用酸化亜鉛マスター紙(リコー社
製)に暗室中でコロナ帯電させ、数種の線数から
成る網版写真フイルムを密着法で露光して静電潜
像を形成させた。ついで同マスター紙用現像トナ
ー(黒色)を用いて磁気ブラシ法で現像した。一
方実施例1のAl−ポリエステル基板のポリエス
テル面に負性コロナ帯電を与えたのち(電荷約
400W)、前記現像済みの酸化亜鉛マスター紙を重
ねて密着して同紙を剥し、ポリエステル面にトナ
ー像を転写した。次に120℃の加熱を行ないトナ
ーを融着させて定着したところ、約10μ厚のトナ
ーマスクが得られた。実施例1と同条件でこれを
プラズマ処理し約40分で印刷版が得られた。耐刷
性は実施例1と同様であつたが解像性は80線/吋
程度であつた。
Example 4 Commercially available zinc oxide master paper for light printing (manufactured by Ricoh Co., Ltd.) was corona charged in a dark room, and a halftone photographic film consisting of several line numbers was exposed by the contact method to form an electrostatic latent image. Ta. Then, development was carried out by a magnetic brush method using the same developing toner for master paper (black). On the other hand, after giving a negative corona charge to the polyester surface of the Al-polyester substrate of Example 1 (charge approximately
400W), the above-mentioned developed zinc oxide master paper was placed on top of the paper and the paper was peeled off, and the toner image was transferred to the polyester surface. Next, heating was performed at 120°C to fuse and fix the toner, resulting in a toner mask approximately 10μ thick. This was subjected to plasma treatment under the same conditions as in Example 1, and a printing plate was obtained in about 40 minutes. The printing durability was the same as in Example 1, but the resolution was about 80 lines/inch.

実施例 5 実施例3のAl−フエノール樹脂基板上にAZ−
111を約4μ厚の厚さに直接塗布して一種のPS版
とした。150線/インチの網版及び文字の写真原
版を真空密着焼付したのち、指定処理法に従つて
現像・乾燥しレジストマスク版を得た。
Example 5 AZ-
111 was directly applied to a thickness of about 4μ to make a type of PS plate. After vacuum contact printing of the 150 lines/inch halftone plate and letter photographic original plate, a resist mask plate was obtained by developing and drying according to the specified processing method.

ついで前記プラズマ装置で同様に処理したとこ
ろ約20分で印刷版が得られた。実施例3と比較し
てより良好な画像が得られると同時に接着剤が存
在しないために処理時間が短縮できた。
The plate was then treated in the same manner using the plasma apparatus described above, and a printing plate was obtained in about 20 minutes. As compared with Example 3, a better image was obtained and at the same time, the processing time was shortened due to the absence of adhesive.

実施例 6 実施例5においてAZ−111の感光液中に二酸化
硅素Sio2の微粉末(商品名エロジル)を25%添加
して塗布し、膜厚を3μとした。前記写真原版を
密着焼付・現像後プラズマ処理したところ、約20
分で前例より良い画質の印刷版が得られた。この
理由はSiO2粉末のマスク効果のためレジスト膜
厚が減少できき、解像性が向上したからである。
Example 6 In Example 5, 25% of fine powder of silicon dioxide Sio 2 (trade name Erosil) was added to the AZ-111 photosensitive solution and applied to give a film thickness of 3 μm. When the above-mentioned photographic original plate was subjected to plasma treatment after contact printing and development, it was found that approximately 20
A print plate with better image quality than the previous example was obtained in minutes. The reason for this is that the masking effect of the SiO 2 powder made it possible to reduce the resist film thickness and improve resolution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は本発明の平版製版法の各工程
を例示する模式断面図であり、第5図は本発明の
平版製版法に用いる材料を例示する模式断面図で
ある。 1……親水性基板、2……親油性物質層、3…
…マスクパターン、4……感光材料層。
1 to 4 are schematic sectional views illustrating each step of the lithographic plate-making method of the present invention, and FIG. 5 is a schematic sectional view illustrating materials used in the lithographic plate-making method of the present invention. 1...Hydrophilic substrate, 2...Lipophilic substance layer, 3...
...Mask pattern, 4...Photosensitive material layer.

Claims (1)

【特許請求の範囲】 1 親水性基板面に親油性物質層を設け、該層上
に活性プラズマ遮蔽性マスクパターンを形成し、
次いで該マスクパターンの非遮蔽部である親油性
物質裸出面を活性プラズマに曝露し、非遮蔽部の
親油性物質を選択的に除去して親水性基板面を裸
出させ、必要に応じて上記マスクパターンを除去
することを特徴とするプラズマを用いた平版製版
法。 2 前記マスクパターンには予め無機微粉末を混
入させておく前記第1項の平版製版法。 3 基材上にマスキング用感光性樹脂パターンを
設けた後、該パターンを前記親油性物質層上に転
写することにより前記マスクパターンを形成する
前記第1項又は第2項の平版製版法。 4 前記親油性物質層上にマスキング用感光材料
層を設けた後、該材料層にパターンを焼付、現像
することにより前記マスクパターンを形成する前
記第1項又は第2項の平版製版法。 5 親水性基板上に親油性樹脂層を有し、さらに
その上に感光性樹脂層を有することを特徴とする
プラズマを用いた平版製版法用の平版刷版用材
料。 6 前記感光性樹脂層中には無機微粉末が混入さ
れている前記第5項記載の材料。
[Claims] 1. A lipophilic material layer is provided on the surface of a hydrophilic substrate, and an active plasma shielding mask pattern is formed on the layer,
Next, the exposed surface of the lipophilic substance, which is the non-shielded part of the mask pattern, is exposed to active plasma, and the lipophilic substance in the non-shielded part is selectively removed to expose the hydrophilic substrate surface. A planographic process using plasma that is characterized by removing mask patterns. 2. The lithographic platemaking method of item 1 above, wherein the mask pattern is mixed with inorganic fine powder in advance. 3. The lithographic platemaking method according to item 1 or 2 above, wherein the mask pattern is formed by providing a masking photosensitive resin pattern on the base material and then transferring the pattern onto the lipophilic substance layer. 4. The lithographic platemaking method according to item 1 or 2, wherein the mask pattern is formed by providing a photosensitive material layer for masking on the lipophilic substance layer, and then printing and developing a pattern on the material layer. 5. A lithographic printing plate material for use in lithographic platemaking using plasma, characterized by having a lipophilic resin layer on a hydrophilic substrate and further having a photosensitive resin layer thereon. 6. The material according to item 5 above, wherein an inorganic fine powder is mixed in the photosensitive resin layer.
JP8957479A 1979-07-14 1979-07-14 Lithographic plate preparation and material for its preparation Granted JPS5614238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8957479A JPS5614238A (en) 1979-07-14 1979-07-14 Lithographic plate preparation and material for its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8957479A JPS5614238A (en) 1979-07-14 1979-07-14 Lithographic plate preparation and material for its preparation

Publications (2)

Publication Number Publication Date
JPS5614238A JPS5614238A (en) 1981-02-12
JPS623416B2 true JPS623416B2 (en) 1987-01-24

Family

ID=13974565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8957479A Granted JPS5614238A (en) 1979-07-14 1979-07-14 Lithographic plate preparation and material for its preparation

Country Status (1)

Country Link
JP (1) JPS5614238A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007534012A (en) * 2004-04-10 2007-11-22 イーストマン コダック カンパニー Relief image manufacturing method
US9799534B1 (en) 2017-01-04 2017-10-24 International Business Machines Corporation Application of titanium-oxide as a patterning hardmask

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6408755B1 (en) * 1999-08-31 2002-06-25 Agfa-Gavaert Method for erasing a lithographic printing master
DE102005000891B4 (en) * 2005-01-07 2013-09-12 Robert Bosch Gmbh Process for producing a structured wafer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50102401A (en) * 1974-01-17 1975-08-13
JPS5444904A (en) * 1977-08-23 1979-04-09 Fromson H A Method of making flat printing plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50102401A (en) * 1974-01-17 1975-08-13
JPS5444904A (en) * 1977-08-23 1979-04-09 Fromson H A Method of making flat printing plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007534012A (en) * 2004-04-10 2007-11-22 イーストマン コダック カンパニー Relief image manufacturing method
US9799534B1 (en) 2017-01-04 2017-10-24 International Business Machines Corporation Application of titanium-oxide as a patterning hardmask

Also Published As

Publication number Publication date
JPS5614238A (en) 1981-02-12

Similar Documents

Publication Publication Date Title
US2714066A (en) Planographic printing plate
US4204865A (en) Direct-imaging flexible offset printing plate and method of manufacture
US3121009A (en) Preparation of etched plates
US3479182A (en) Lithographic plates
US3640712A (en) Hydrophilic-hydrophobic photon-sensitive medium
JPS623416B2 (en)
CA2012258A1 (en) Image-forming material and process for forming images
GB1563322A (en) Printing plate
JPS6158032B2 (en)
CA1077343A (en) Lithographic printing plate
US3445224A (en) Preparation of imaged offset master
US5217829A (en) Method for producing photomasks
US3208849A (en) Planographic printing plate having a fibrous alumina coating thereon
JPS62271741A (en) Printing method
JPS5921542B2 (en) Printing plate manufacturing method
JPS58150953A (en) Manufacture of lithographic plate and photosensitive material used for lithographic plate
JP2780281B2 (en) Lithographic printing plate and manufacturing method thereof
JPH0224662B2 (en)
EP0104625A1 (en) Printing plate for raised printing and method of making the same
JPH1134526A (en) Planography base and method of producing planography block comprising the same
GB1561545A (en) Method of making flexible plates and plates made thereby
JPH11109610A (en) Original plate for planographic printing and manufacture of planographic printing plate using the same
JP3452626B2 (en) Lithographic printing plate for electrophotography
JPS592613B2 (en) Heihan Insatsubanno Seizouhou
EP0012833A2 (en) Process and apparatus for making lithographic printing plates