JPS6234079Y2 - - Google Patents

Info

Publication number
JPS6234079Y2
JPS6234079Y2 JP1980099322U JP9932280U JPS6234079Y2 JP S6234079 Y2 JPS6234079 Y2 JP S6234079Y2 JP 1980099322 U JP1980099322 U JP 1980099322U JP 9932280 U JP9932280 U JP 9932280U JP S6234079 Y2 JPS6234079 Y2 JP S6234079Y2
Authority
JP
Japan
Prior art keywords
gas
inner cylinder
pipe
bog
sealed chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980099322U
Other languages
Japanese (ja)
Other versions
JPS5724400U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1980099322U priority Critical patent/JPS6234079Y2/ja
Publication of JPS5724400U publication Critical patent/JPS5724400U/ja
Application granted granted Critical
Publication of JPS6234079Y2 publication Critical patent/JPS6234079Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

【考案の詳細な説明】 この考案は例えば液化天然ガス(LNG)貯蔵
タンクより発生するような蒸発ガス((BOG
(Boll Off Gas)))を圧縮機で加圧して燃料ガス
として送るに際し、圧縮機の入口温度制御以下の
所定の温度に冷却するガス冷却装置に関するもの
であり、更に詳しくは、BOGを圧送するに際
し、圧縮機の入口温度制御は、低温用ターボ圧縮
機の場合、−130〜−150℃であり、又レシプロ型
圧縮機の場合は、−80〜−150℃であるため、それ
ぞれ使用する圧縮機のこれ等の温度制限の範囲内
に冷却するためのガス冷却装置に係る考案であ
る。
[Detailed explanation of the invention] This invention is based on the evaporative gas (BOG
This relates to a gas cooling device that cools BOG to a predetermined temperature below the compressor inlet temperature control when pressurizing (Boll Off Gas))) with a compressor and sending it as fuel gas. In this case, the inlet temperature control of the compressor is -130 to -150°C in the case of a low-temperature turbo compressor, and -80 to -150°C in the case of a reciprocating type compressor. The invention relates to a gas cooling system for cooling the machine within these temperature limits.

従来は、上述のような蒸発ガス、例えばBOG
を冷却するのにはラインスプレー方式と云い、第
1図に示すように、液化天然ガス貯蔵タンクgよ
りのBOGラインa中に、管bで導いて来た、別
にLNGポンプ(図示省略)で昇圧されている冷
却用液体、例えばLNGを、別の圧搾気体例えば
圧縮機で昇圧されたガスで噴霧させて冷却し、そ
の後サイクロンのような気液分離ドラムcにより
ガスと液とに分離させ、圧縮機dにより冷却済気
体(冷却済BOG)を所望の箇所に圧送させる
か、又は液化天然ガス貯蔵タンク中に発生した
BOGを缶体(例えばノツクアウトドラム)中に
導き、該貯蔵タンクよりのLNGを該缶体中に設
けたスプレーノズルより散布して該BOGと向流
接触させることにより冷却するようにしたもの
(特開昭55−72998号公報参照)が提案されてい
た。
Conventionally, evaporative gases such as those mentioned above, such as BOG
The line spray method is used to cool liquefied natural gas, and as shown in Figure 1, a separate LNG pump (not shown) is used to cool the liquefied natural gas, which is led through pipe b into BOG line a from liquefied natural gas storage tank g. Pressurized cooling liquid, such as LNG, is cooled by spraying with another compressed gas, such as gas pressurized by a compressor, and then separated into gas and liquid by a gas-liquid separation drum c such as a cyclone, The compressor d pumps the cooled gas (cooled BOG) to the desired location, or the gas generated in the liquefied natural gas storage tank
BOG is introduced into a can body (for example, knockout drum), and LNG from the storage tank is sprayed from a spray nozzle installed in the can body and cooled by bringing it into countercurrent contact with the BOG ( (See Japanese Patent Application Laid-Open No. 55-72998) was proposed.

然し、前者の方法では、BOGの冷却を行わせ
るためには熱交換、即ち注入したLNGを気化さ
せ、その潜熱を以てBOGの冷却を行うためにス
プレーノズルeの位置より気液分離ドラムcまで
に約30mの配管fが必要となり、又、BOGの発生
量の変動巾は、その時々の条件によつて大巾に変
動するので、BOGの流量が少くない場合、アト
マイジングガスがないと、スプレーしたLNGは
うまく霧状にならず、熱交換の効率が著しく悪く
なるから、上記LNGを噴霧させるための圧搾気
体、即ちアトマイジングガスが必要となり、この
ため上記冷却済圧縮BOGの一部をさいて上記ス
プレーノズルeに送り、上記アトマイジングガス
として使用させたり、更には又、気化ガスライン
a中に冷却液を噴霧させるので冷却液が滞留した
り或は重質残留液が逆流しないように配管設計上
に特別の配慮を施したり、ミストの一部が圧縮機
内に同伴されるためトラブルを起したり、或は
又、上述のように、冷却済圧縮BOGの一部をス
プレーノズルに送らねばならないので圧縮機動力
の増加を来す等の種々の欠点があつた。
However, in the former method, in order to cool the BOG, heat exchange is required, that is, the injected LNG is vaporized and the BOG is cooled using the latent heat. Approximately 30 m of piping f is required, and the amount of BOG generated fluctuates widely depending on the conditions at the time. Since the LNG that has been dehydrated does not atomize well and the efficiency of heat exchange becomes extremely poor, compressed gas, that is, atomizing gas, is required to atomize the LNG. The coolant is sent to the spray nozzle e and used as the atomizing gas, and furthermore, the coolant is sprayed into the vaporized gas line a, so that the coolant does not stagnate or the heavy residual liquid does not flow back. Special consideration must be given to the piping design, some of the mist may be entrained into the compressor, causing trouble, or, as mentioned above, some of the cooled compressed BOG may be sent to the spray nozzle. As a result, there were various drawbacks such as an increase in compressor power.

又後者の方法では、BOGの発生量が前記の通
りその時々の条件によつて大巾に変動するので
BOGコンプレツサーは常時作動と停止とを繰返
すものであることから、例えばターボ型圧縮機を
使用する場合、起動時やアンチサージなどの場合
には圧縮ガスを圧縮機に戻す必要があるが、その
際、圧縮機に戻す圧縮ガスの温度は常温近くまで
上昇し、これを前記入口温度制限範囲内の−130
〜−150℃まで冷却するため缶体内でBOGに液化
天然ガス貯蔵タンクよりのLNGの一回のスプレ
ーでこの温度まで降下させるのには缶体は膨大な
容積のものを必要とするし、又この方式ではミス
トが缶体内で完全に分離されないで圧縮機に入り
トラブルを起す等の大きな欠点があつた。
In addition, in the latter method, the amount of BOG generated fluctuates widely depending on the conditions at the time, as mentioned above.
Since the BOG compressor constantly operates and stops, for example, when using a turbo compressor, it is necessary to return compressed gas to the compressor when starting up or for anti-surge purposes. , the temperature of the compressed gas returned to the compressor rises to near room temperature, and this temperature is reduced to −130°C, which is within the inlet temperature limit range.
In order to cool the BOG to ~-150°C, a huge volume of the can is required to lower the temperature to this temperature with a single spray of LNG from the liquefied natural gas storage tank. This method had major drawbacks, such as the mist not being completely separated within the can and entering the compressor, causing trouble.

この考案は叙上の欠点を叙去できたガス冷却装
置を提供するのをその目的とする。
The purpose of this invention is to provide a gas cooling device which can eliminate the above-mentioned drawbacks.

第2図に示す実施例に基づいてその構成を説明
すると、このガス冷却装置は、縦型内筒状密閉室
1の中心線上に、天井より該密閉室内に、直内筒
状部が下端に続く截頭円錐形状の内筒4を設け、
該内筒4の下端部に充填物層3を設け、該内筒4
内の該天井の部分に被冷却ガス導入管5を開口さ
せ、該密閉室1の上部室壁6には冷却済ガス排出
管7を開口させることにより、該被冷却ガス導入
管5により内筒4の内部を降下し、折返し該内筒
の外部を上昇して前記ガス排出管7に抜けるガス
通路Aを形成させ、該内筒4の上部には冷却液管
8を導入して末端にスプレーノズル9を設け、該
内筒外周のガスの上昇通路A′中にはミストエリ
ミネーター10を設け、該密閉室1の底部11に
は冷却液排出管12を開口させたものである。
The structure of this gas cooling device will be explained based on the embodiment shown in FIG. A continuing truncated cone-shaped inner cylinder 4 is provided,
A filling layer 3 is provided at the lower end of the inner cylinder 4.
A cooled gas inlet pipe 5 is opened in the ceiling part of the chamber, and a cooled gas discharge pipe 7 is opened in the upper chamber wall 6 of the sealed chamber 1. A cooling liquid pipe 8 is introduced into the upper part of the inner cylinder 4 and sprayed at the end. A nozzle 9 is provided, a mist eliminator 10 is provided in the gas ascending passage A' on the outer periphery of the inner cylinder, and a coolant discharge pipe 12 is opened at the bottom 11 of the sealed chamber 1.

この実施例は叙上のような構成を有するから、
今LNG貯蔵タンク中のLGNが入熱によつて自然
気化して生じたBOGを冷却する場合、被冷却ガ
スであるBOGをガス導入管5に導入させると、
BOGはガス通路Aを通つてガス排出管7に抜け
出るが、その際截頭円錐形状部2を設けたことに
より、流速は下方に行くに従つて次第に低下し、
即ち、滞留時間が大きくなる。一方冷却液管8に
冷却液LNGを導しスプレーノズル9より該ガス
流れ中にスプレーさせ、該BOGとスプレーした
LNGとの接触により該BOGの冷却を図るが、こ
の際、截頭円錐形状の下部に行く程流速が低下
し、滞留時間が長くなることによりBOGとLNG
とは互によく接触し、冷却効果を増すことができ
る。そして内部の流れは併流のため気液は総て下
部の充填物層3に流下し、この充填物層内の、面
積にして大きい熱交換面で充分熱交換が行われ、
BOGはよく冷却されガス通路A中の折返し部を
通つて上昇通路Aに移る。この時、急激な方向変
換により、よくミストと分離され、更に上昇通路
A′中に設けたミストエリミネーターで除去され
る。一方ガス排出管7の開口付近は前記截頭円錐
形部2の外側に当り、断面積が次第に大きくなつ
て来ている所で即ち容積にして大きな空間を形成
しているので、流速は次第に緩漫になるため、偏
流が防止され、又残存ミストがあつても、この部
分では上部方向への流速が遅く滞留時間が長いた
めよく分離され方向変換してガス排出管7より排
出される。
Since this embodiment has the configuration as described above,
In order to cool the BOG produced by natural vaporization of LGN in the LNG storage tank due to heat input, if the BOG, which is the gas to be cooled, is introduced into the gas introduction pipe 5,
BOG escapes to the gas exhaust pipe 7 through the gas passage A, but due to the provision of the truncated conical section 2, the flow velocity gradually decreases as it goes downward.
That is, the residence time becomes longer. On the other hand, coolant LNG was introduced into the coolant pipe 8 and sprayed into the gas flow from the spray nozzle 9, and was sprayed with the BOG.
The BOG is cooled by contact with LNG, but at this time, the flow velocity decreases toward the bottom of the truncated conical shape, and the residence time increases, causing the BOG and LNG to cool.
and can come into good contact with each other, increasing the cooling effect. Since the internal flows flow simultaneously, all the gas and liquid flow down to the lower packed layer 3, and sufficient heat exchange is performed on the large heat exchange surface in this packed layer.
The BOG is well cooled and moves to the ascending passage A through the turning section in the gas passage A. At this time, due to the sudden direction change, the mist is well separated, and the upward passage
It is removed by the mist eliminator installed in A′. On the other hand, the vicinity of the opening of the gas discharge pipe 7 is on the outside of the truncated conical part 2, and the cross-sectional area gradually increases, that is, a large space is formed in terms of volume, so the flow velocity gradually slows down. Even if there is residual mist, the flow velocity in the upper direction is slow in this part and the residence time is long, so it is well separated, changed direction, and discharged from the gas exhaust pipe 7.

なお、充填材層3は截頭円錐状部2の底に設
け、一番広い断面積を使用するよう図つているの
で、層の厚さは同一の接触面積をとる場合におい
て最も薄くでき、これにより通過抵抗を極力小さ
く押えることができる。なお又過剰のLNGは液
排出管12より係外に排出される。
Note that the filler layer 3 is provided at the bottom of the truncated conical portion 2 and is intended to use the widest cross-sectional area, so the layer thickness can be made the thinnest for the same contact area. This allows the passage resistance to be kept as low as possible. Furthermore, excess LNG is discharged to the outside from the liquid discharge pipe 12.

この考案は叙上のような構成作用を有するか
ら、従来のラインスプレー方式のようにスプレー
ノズルより気液分離ドラムまで30mに及ぶような
長い熱交換用配管fを必要としたり、又単なる向
流スプレー方式のように、熱交換率が低いため、
缶体に容量の極めて大きなものを使用し、設備費
を高騰させたりすることなく、縦型内筒状密閉室
1中に直内筒状部が下端に続く截頭円錐形状の内
筒4を設けた構造としたため、BOGの流速を次
第に緩漫にし、よく気液を接触させ、熱交換率を
高め、その上で更に充填物層3に導くようにした
為、熱交換率は一層高められ、即ち、内筒と充填
物層とを組合わせることにより極めて小型で高効
率の熱交換を図り得るようにしたものである。
Since this device has the above-mentioned configuration, it does not require a long heat exchange pipe f of 30 m from the spray nozzle to the gas-liquid separation drum, unlike the conventional line spray method, or it requires a simple countercurrent flow. Unlike the spray method, the heat exchange rate is low, so
By using a can body with an extremely large capacity and without increasing equipment costs, we have created a truncated cone-shaped inner cylinder 4 with a direct inner cylindrical part continuing to the lower end in the vertical inner cylindrical sealed chamber 1. Because of this structure, the flow rate of BOG is gradually slowed down, allowing good contact between gas and liquid, increasing the heat exchange rate, and then leading it to the packed layer 3, which further increases the heat exchange rate. That is, by combining the inner cylinder and the packing layer, it is possible to achieve extremely compact and highly efficient heat exchange.

又冷却用液はアトマイジングガスで噴射される
ものでないので、省エネルギーに貢献でき、冷却
ガスは流れの方向を180℃変換するので、気液の
分離効率がよく、更に冷却ガスは上昇通路A′通
過中にミストエリミネーター10によりガス流れ
中のミストはよく除去され、捕集されたミストは
常に落下するのでミスト分離効果がよく、ガス排
出管7の開口近辺は内筒4の截頭円錐形状部の外
側に当り、容積を大きくとつて上昇流速を低下さ
せているので残留ミストは完全に分離除去され
る。又従来のように、長い配管中でスプレーによ
る冷却を行うと、配管に繰り返し熱応力を生じる
が、この考案においては底部11に冷却液の溜つ
ている密閉室中の比較的短かく太い内筒中で熱交
換が行われるのでそのような欠点がなく、又、熱
交換部に冷却液が滞留することもない。更に又こ
の考案は上述のような構成を採つたことにより気
液接触効率、及び気液分離効率を飛躍的に増大さ
せることができ、このため冷却装置は全体として
規模のものとすることができ、又従来方式で問題
となつていたミスト同伴による圧縮機のインペラ
ーの腐蝕を完全に防止した点の効果は極めて大き
く、従来のように、気液接触効率の低い点を冷却
液の増量や大容積の缶体でカバーしようとする方
法に比し、動力費や建設費の節約、気液分離効率
の低いため気液同伴によつて生じる圧縮機廻りの
トラブルの回避等の効果を有する。又ラインスプ
レー方式ではスプレー量が制限されるので、高温
のBOG圧縮機リサイクルガスは圧縮機のアンチ
サージのためタンクに戻していたが、普通タンク
ヤードと圧縮機とは可なり離れており、例えば
500mにも及ぶので、その間に必要なステンレス
材のリサイクル用配管を配設することは大きなコ
ストアツプとなつていた。然しこの考案による冷
却装置では冷却能力が大きいのでこのガスをタン
クまで戻すことなく、直接冷却装置に戻すことが
でき建設費の低減を図ることができる等顕著な効
果がある。
In addition, since the cooling liquid is not injected with atomizing gas, it can contribute to energy saving, and the direction of flow of the cooling gas is changed by 180°C, which improves the separation efficiency of gas and liquid. The mist in the gas flow is well removed by the mist eliminator 10 during the passage, and the collected mist always falls, resulting in a good mist separation effect. The residual mist is completely separated and removed because the volume is large and the upward flow velocity is reduced. Furthermore, when spray cooling is performed in a long pipe as in the past, repeated thermal stress is generated in the pipe, but in this design, cooling is carried out in a relatively short and thick inner cylinder in a closed chamber where the cooling liquid is collected at the bottom 11. Since the heat exchange is performed in the heat exchange section, there is no such drawback, and there is no possibility that the cooling liquid will remain in the heat exchange section. Furthermore, by adopting the above-mentioned configuration, this invention can dramatically increase the gas-liquid contact efficiency and the gas-liquid separation efficiency, and therefore the cooling device as a whole can be made larger. In addition, the effect of completely preventing corrosion of the compressor impeller due to mist entrainment, which was a problem with the conventional method, is extremely large. Compared to a method that attempts to cover the volume with a can body, this method has effects such as saving power costs and construction costs, and avoiding troubles around the compressor caused by entrainment of gas and liquid due to the low gas-liquid separation efficiency. In addition, with the line spray method, the spray amount is limited, so the high temperature BOG compressor recycled gas was returned to the tank for anti-surge of the compressor, but normally the tank yard and the compressor are quite far apart, for example.
Since the length is 500m, installing the necessary stainless steel recycling piping along that length would have resulted in a significant cost increase. However, since the cooling device according to this invention has a large cooling capacity, this gas can be returned directly to the cooling device without returning to the tank, and has remarkable effects such as being able to reduce construction costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のガス冷却装置の一例を示す系統
図、第2図はこの考案に係るガス冷却装置の縦断
正面図を夫々示し、1は縦型密閉室、3は充填物
層、4は内筒、5は被冷却ガス導入管、6は上部
室壁、7は冷却済ガス排出管、8は冷却液管、9
はスプレーノズル、10はミストエリミネータ
ー、Aはガス通路、A′は上昇通路を夫々示す。
Fig. 1 is a system diagram showing an example of a conventional gas cooling device, and Fig. 2 is a longitudinal sectional front view of the gas cooling device according to the invention, where 1 is a vertical closed chamber, 3 is a filling layer, and 4 is a vertical sectional front view of the gas cooling device according to the invention. Inner cylinder, 5 is a cooled gas introduction pipe, 6 is an upper chamber wall, 7 is a cooled gas discharge pipe, 8 is a coolant pipe, 9
10 is a spray nozzle, 10 is a mist eliminator, A is a gas passage, and A' is a rising passage.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 縦型円筒状密閉室1の中心線上に、天井より該
密閉室内に直円筒状部が下端に続く截頭円錐形状
の内筒4を垂設し、該内筒4の下端部に充填物層
3を設け、該内筒4内の該天井の部分に被冷却ガ
ス導入管5を開口させ、該密閉室の上部室壁6に
は冷却済ガス排出管7を開口させることにより、
該被冷却ガス導入管5より内筒4の内部を降下
し、折返し該内筒の外部を上昇して前記ガス排出
管7に抜けるガス通路Aを形成させ、該内筒の上
部には少くとも1本の冷却液管8を導入して管端
にスプレーノズル9を設け、該内筒外周のガスの
上昇通路A′中にはミストエリミネーター10を
設け、該密閉室の底部11には冷却液排出管12
を開口させたことを特徴とするガス冷却装置。
On the center line of the vertical cylindrical sealed chamber 1, a truncated cone-shaped inner cylinder 4 with a right cylindrical part continuing from the lower end is suspended from the ceiling into the sealed chamber, and a filling layer is placed at the lower end of the inner cylinder 4. 3, a cooled gas introduction pipe 5 is opened in the ceiling part of the inner cylinder 4, and a cooled gas discharge pipe 7 is opened in the upper chamber wall 6 of the sealed chamber.
A gas passage A is formed which descends inside the inner cylinder 4 from the cooled gas inlet pipe 5, ascends the outside of the inner cylinder by turning, and exits to the gas discharge pipe 7, and at least a gas passage A is formed in the upper part of the inner cylinder. One coolant pipe 8 is introduced, a spray nozzle 9 is provided at the end of the pipe, a mist eliminator 10 is provided in the gas ascending passage A' on the outer periphery of the inner cylinder, and a coolant is provided at the bottom 11 of the sealed chamber. Discharge pipe 12
A gas cooling device characterized by having an opening.
JP1980099322U 1980-07-16 1980-07-16 Expired JPS6234079Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980099322U JPS6234079Y2 (en) 1980-07-16 1980-07-16

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980099322U JPS6234079Y2 (en) 1980-07-16 1980-07-16

Publications (2)

Publication Number Publication Date
JPS5724400U JPS5724400U (en) 1982-02-08
JPS6234079Y2 true JPS6234079Y2 (en) 1987-08-31

Family

ID=29460989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980099322U Expired JPS6234079Y2 (en) 1980-07-16 1980-07-16

Country Status (1)

Country Link
JP (1) JPS6234079Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124294A (en) * 1999-10-29 2001-05-11 Tokyo Electric Power Co Inc:The Boil-off gas(bog) cooling system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51111913A (en) * 1975-03-28 1976-10-02 Nissan Shoji Kk An injection method of the liquid-gas
JPS5572998A (en) * 1978-11-27 1980-06-02 Hitachi Zosen Corp Method of treating boiling-off gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51111913A (en) * 1975-03-28 1976-10-02 Nissan Shoji Kk An injection method of the liquid-gas
JPS5572998A (en) * 1978-11-27 1980-06-02 Hitachi Zosen Corp Method of treating boiling-off gas

Also Published As

Publication number Publication date
JPS5724400U (en) 1982-02-08

Similar Documents

Publication Publication Date Title
US3981156A (en) Vapor recovery system and method
GB1376308A (en) Art of evaporative cooling
GB1375972A (en) Vapour recovery apparatus
US4653282A (en) Process and apparatus for superheating a refrigeration fluid
US3707277A (en) Combination cross flow and counter flow cooling tower
JPS6234079Y2 (en)
JPS56124650A (en) Piston for internal combustion engine
US2689623A (en) Apparatus for separating liquid entrained or carried by a gas or vapor
US4924672A (en) Heat exchanger for lowering temperature of exhaust gas from internal combustion engine
US3903213A (en) Counter flow, forced draft, blow-through heat exchangers
JPS643825Y2 (en)
CN2169825Y (en) Jacket cooling air and water separator
CN2104324U (en) Oil and water-removed device for compressed air
CN215654542U (en) Waste gas recovery device
CN213983855U (en) Oil heating and cooling integrated air conditioning device
CN214697994U (en) Novel oil-gas separator
JPS5634987A (en) Refrigerant compressor
JPS632861Y2 (en)
US2580805A (en) Means for preventing entrainment of liquid refrigerant with refrigerant gas
US2143635A (en) Fire extinguisher
JPS62171762U (en)
CN206477996U (en) One kind is used for water seal type vacuum pump servicing unit
JPH0238023Y2 (en)
JPS5931000U (en) gas cooling device
JPS59229072A (en) Gas compressor for well of natural gas