JPS6233947B2 - - Google Patents

Info

Publication number
JPS6233947B2
JPS6233947B2 JP8427881A JP8427881A JPS6233947B2 JP S6233947 B2 JPS6233947 B2 JP S6233947B2 JP 8427881 A JP8427881 A JP 8427881A JP 8427881 A JP8427881 A JP 8427881A JP S6233947 B2 JPS6233947 B2 JP S6233947B2
Authority
JP
Japan
Prior art keywords
ethylene
copolymer
layer
weight
vinyl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8427881A
Other languages
Japanese (ja)
Other versions
JPS57199657A (en
Inventor
Kichiji Maruhashi
Masao Tanigawa
Jinichi Yazaki
Sadao Hirata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP8427881A priority Critical patent/JPS57199657A/en
Priority to AU84416/82A priority patent/AU553648B2/en
Priority to CA000404421A priority patent/CA1201395A/en
Priority to DE8282302875T priority patent/DE3275926D1/en
Priority to EP82302875A priority patent/EP0071330B1/en
Priority to GB08216214A priority patent/GB2106471B/en
Publication of JPS57199657A publication Critical patent/JPS57199657A/en
Publication of JPS6233947B2 publication Critical patent/JPS6233947B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の詳細な説明〕 本発明は、酸素バリヤー性の改善されたプラス
チツク容器に関する。本発明は特に、エチレン−
ビニルアルコール共重合体を主体とする層と塩化
ビニリデン−アクリル(メタクリル)共重合体
(以下ポリ塩化ビニリデン系樹脂と記すこともあ
る)の被覆層とを隣接関係位置で設けると、何れ
の層の酸素透過係数よりも低い酸素透過係数が得
られるという新規知見に基づくものである。尚、
酸素透過係数とはc.c.・cm/cm2・sec・cmHgの単位
で表わされるものであり、厚みの次元とは無関係
な係数である。 プラスチツク容器は、程度の差はあれ容器壁を
通して酸素を透過し、この透過が無視できない場
合には、食品の長期保存を目的とする容器や、保
香性が要求される化粧料等の分野には不適当のも
のとなる。 このため、酸素バリヤー性に優れた樹脂を器壁
構成成分としたプラスチツク容器の開発も盛んに
行われている。現在、溶融押出可能な熱可塑性樹
脂の内最も酸素バリヤー性に優れた樹脂は、エチ
レン−酢酸ビニル共重合体ケン化物(エチレン−
ビニルアルコール共重合体)であるが、このケン
化共重合体は、耐湿性即ち水蒸気バリヤー性に劣
り、更に湿度の増大に伴なつて酸素透過係数が著
しく増大する傾向があり、かくして実際のプラス
チツク容器に使用する場合、ポリオレフインの如
き耐湿性樹脂でサンドイツチ状に重ね合せ、多層
積層物の形とすることによりこの欠点を改善して
いる。 エチレン−ビニルアルコール共重合体を器壁構
成成分としたプラスチツク容器に認められる他の
欠点は、紫外線の透過性が著しく大であり、従つ
て、このプラスチツク容器を用いた包装食品類
は、内容食品の酸敗等を防止するという目的に対
しては幾分満足し得るとしても、容器壁を通して
透過する紫外線により、色素、油脂、動物性蛋白
質、各種飲料エキス等が変質し、内容食品のフレ
ーバー、外観、衛生的特性を損うという問題があ
る。従来、プラスチツク容器における紫外線遮断
の手段としては、プラスチツク容器を構成する樹
脂に紫外線吸収剤を配合させることが知られてい
るが、このような手段は、容器の衛生的特性に関
して問題があると共に、その紫外線遮断効果にお
いても未だ十分に満足し得るものではない。 本発明者等は、エチレン−ビニルアルコール共
重合体を主体とする樹脂層と、以下に詳述する塩
化ビニリデン−アクリル(メタクリル)共重合体
の被覆層とを隣接関係位置で設けるときには、こ
の積層体は、何れの層の酸素透過係数よりも低い
酸素透過係数を示し、更に、この積層構造のプラ
スチツク容器は紫外線の遮断性においても顕著に
優れていることを見出した。 即ち、本発明の目的は、従来のプラスチツク容
器に比して酸素等の気体に対する遮断性に優れて
いるプラスチツク容器を提供するにある。 本発明の他の目的は、上述した低酸素透過係数
に加えて、紫外線遮断性をも有し、従つて内容物
を変質なしに長期間にわたつて安定に保存し得る
プラスチツク容器を提供するにある。 本発明の更に他の目的は、エチレン−ビニルア
ルコール共重合体の耐湿性や湿度の増大に伴なう
酸素透過の増大傾向も同時に改善された多層プラ
スチツク容器を提供するにある。 本発明によれば、少なくとも一方の表面がエチ
レン−ビニルアルコール共重合体を主体とする樹
脂から成るプラスチツク容器基質に、該エチレン
−ビニルアルコール共重合体を主体とする樹脂表
面と隣接する位置関係で、(a)99乃至70重量%の塩
化ビニリデン、及び(b)1乃至30重量%の下記式 式中、R1は水素原子或いはメチル基を表わ
し、Xはニトリル基或いは式、 (式中、Yはアルキルオキシ基、ヒドロキシア
ルキルオキシ基又はグリシジルオキシ基である)
で表わされる基である、 で表わされる単量体の少なくとも1種及び(c)前記
単量体(a)及び(b)の合計量100重量部当り50重量部
迄の塩化ビニリデン以外の塩素含有エチレン系不
飽和単量体の少なくとも1種から成る共重合体で
あつて、20℃、100%RHにおける酸素透過係数が
9×10-14c.c.・cm/cm2・sec・cmHg以下及び水蒸
気透過係数(JIS Z−0208)が3×10-3g・cm/
m2・day以下であるものの被覆層を設けたことを
特徴とする酸素バリヤー性の改善されたプラスチ
ツク容器が提供される。 びんの形の被覆プラスチツク容器を示す第1図
において、このびん1は、断面が円乃至は楕円状
の周壁部2、これに一体に連なるびん口部3、及
び周壁部の下端に連なる底部4から成つている。
これらのびんの器壁は全て、第2−A乃至2−D
図の拡大断面図に示す通り、少なくとも一方の表
面5がエチレン−ビニルアルコール共重合体を主
体とする樹脂から成るプラスチツク容器基質6
と、この樹脂表面5とする隣接する位置関係で設
けられた塩化ビニリデン−アクリル(乃至はメタ
クリル)共重合体を主体とする被覆層7とから成
つている。 第2−A図に示す通り、プラスチツク容器基質
6はエチレン−ビニルアルコール共重合体を主体
とする樹脂単層から成つており、第2−B図に示
すごとくその両表面5,5′に塩化ビニリデン−
アクリル(メタクリル)共重合体の被覆7,7′
が設けられていてもよい。 また、プラスチツク容器基質は、エチレン−ビ
ニルアルコール共重合体を主体とする樹脂と他の
樹脂との積層体から成つていてもよい。例えば、
第2−C図に示す通り、この容器基質6は、エチ
レン−ビニルアルコール共重合体を主体とする樹
脂(以下単にエチレン−ビニルアルコール共重合
体と呼ぶ)層5と、それ以外の樹脂、特にポリオ
レフイン樹脂の如き耐湿性熱可塑性樹脂層8とか
ら成ることができ、また第2−C図に示す通り、
エチレン−ビニルアルコール共重合体層5と耐湿
性熱可塑性樹脂層8とから成ることができる。こ
れら何れの場合にも、エチレン−ビニルアルコー
ル共重合体層5に対して、これと隣接するよう
に、即ち、第2−B図では両表面層として、また
第2−C図では最内層もしくは最外層として、塩
化ビニリデン−アクリル(メタクリル)共重合体
の被覆層7,7′が設けられる。更に、第2−D
図において、この容器基質6は、エチレン−ビニ
ルアルコール共重合体の内外両層5,5′とそれ
以外の熱可塑性樹脂の中間層8とから成り、これ
ら内外両層5,5′に対して塩化ビニリデン−ア
クリル(メタクリル)共重合体の被覆層7,7′
が設けられる。 本発明の重要な特徴は、既に前述した如くエチ
レン−ビニルアルコール共重合体層と塩化ビニリ
デン−アクリル(メタクリル)共重合体被覆層と
を隣接位置関係で設けると、この積層体は、同じ
厚みで比較して、何れか一方の層の酸素透過度よ
りも低い酸素透過度を示すという全く予想外の知
見に基づくものである。 第3図は、後述する実施例1におけるエチレン
−ビニルアルコール共重合体層の厚みをtEV、塩
化ビニリデン−アクリル(メタクリル)共重合体
層の厚みをtCAとしたとき、全体の厚みtCA+t
EVを15μで一定として、tCA/(tCA+tEV)の
比と37℃、関係湿度0%乃至15%RHにおける酸
素透過度との関係を示す。 この第3図を参照すると、本発明による被覆プ
ラスチツク容器は、破線の曲線Aで示される通
り、両樹脂層の調和平均値である曲線Bよりも著
しく低い酸素透過度を示すこと、及びしかも全く
意外なことに、tCA/(tCA+tEV)の比のかな
り広い範囲にわたつて、酸素透過係数の小さい方
のエチレン−ビニルアルコール共重合体のそれよ
りもむしろ小さい酸素透過度を示すことがわか
る。 同様に、第4図は、tCA+tEVを15μとした場
合のtCA/(tCA+tEV)の比と27℃、関係湿度
100%RH及び93%RHにおける酸素透過度との関
係を示す。既に前述した如く、エチレン−ビニル
アルコール共重合体は高湿度条件下では比較的大
きい酸素透過度を示すが、この場合にも、本発明
による被覆プラスチツク容器は、破線の曲線
A′に示される通り、両樹脂層の調和平均値B′よ
りも著しく低い酸素透過度を示すと共に、tCA
(tCA+tEV)の比の或る範囲内では、酸素透過
係数の小さい方の塩化ビニリデン−アクリル(メ
タクリル)共重合体よりも同じ厚さにおいて小さ
い酸素透過度を示すことがわかる。 第3図及び第4図の結果は、全体の厚みを15μ
で一定としているから、これらの図面に示した酸
素透過度は、厚みの因子を消去した酸素透過係数
そのものを示していると考えて何等差支えない。 例えば、昭和47年9月1日幸書房発行の「高分
子と水分」第287頁によると一般に、積層体の酸
素透過度は、モデル的に各層の酸素透過度の調和
平均値(前記第287頁中の7.16式)で表わされる
ことから、本発明の被覆プラスチツク容器におけ
る酸素透過度の著しい減少は、両樹脂層の単なる
積層効果によつてもたらされるものではなく、両
樹脂層の物理的乃至化学的相互作用に基づくもの
であることが了解されよう。 本発明によれば、このように容器壁の酸素透過
度を著しく減少させることが可能であり、特にエ
チレン−ビニルアルコール共重合体の表面に、薄
い塩化ビニリデン−アクリル(メタクリル)共重
合体の被覆を設けることによつて、酸素透過度の
湿度依存性を小さくすることが可能となる。 本発明において、両樹脂層は下記不等式 0.95≧tCA/(tCA+tEV)≧0.005、 特に 0.75≧tCA/(tCA+tEV)≧0.008、 tCA≧0.5μ、 特に tCA≧1.0μ、 を満足する様に設けるのが望ましい。 また、エチレン−ビニルアルコール共重合体層
の厚み(tEV)はそのエチレン含有量やケン化度
によつても相違するが、一般的にいつて、 tEV≧3.0μ、 特に tEV≧5.0μ、 を満足するように設けるのが望ましい。 本発明によれば更に、エチレン−ビニルアルコ
ール共重合体層の上に、塩化ビニリデン−アクリ
ル(メタクリル)共重合体の被覆層を設けること
により、優れた紫外線遮断性が得られる。 本発明の容器壁が優れた紫外線遮断性を有する
という事実は第5図を参照することにより直ちに
明白となる。即ち、第5図の曲線Aは、プラスチ
ツク容器基質、即ちポリオレフイン/エチレン−
ビニルアルコール共重合体のみから成る容器壁に
ついて、波長と透過率との関係を示している。こ
の曲線Aによると、上記プラスチツク容器は波長
が210乃至400mμの紫外線に対して、可視光と同
様にかなり大きな透過率を示すことがわかる。こ
れに対して、曲線Bは、上記プラスチツク容器基
質のエチレン−ビニルアルコール共重合体層に対
して塩化ビニリデン−アクリル(メタクリル)共
重合体の厚み30μの被覆を設けたものの波長−透
過率曲線であり、この曲線Bから、プラスチツク
容器基質のエチレン−ビニルアルコール共重合体
層に対しわずか30μの被覆を設けるという簡単な
手段で紫外線遮断性が得られることがわかる。 本発明の被覆プラスチツク容器においては、更
にこの紫外線遮断性が永続して得られるという予
想外の利点がある。即ち、第5図の曲線C及び曲
線Dは前記曲線Bの被覆プラスチツク容器を、
夫々ウエザロメーターで60℃、25時間及び60℃、
50時間の紫外線曝露に付したものの波長−透過率
曲線である。これらの曲線C及びDによると、本
発明の被覆プラスチツク容器においては、紫外線
に照射されればされる程、紫外線に対する透過率
がより低いレベルに抑制されると共に、より吸収
波長側に移行していることが明白である。かよう
に、本発明による被覆プラスチツク容器は、紫外
線が照射されればされる程、より紫外線を透過さ
せないように作用し、長時間の紫外線曝露に付さ
れた場合においてさえ、全体としての紫外線の透
過量を著しく低いレベルに抑制することが可能と
なるのである。この理由は、紫外線照射につれ
て、塩化ビニリデン−アクリル(メタクリル)共
重合体層には共役ジエン結合が形成され、この共
役ジエン結合がより紫外線を吸収するように作用
するためと思われる。 本発明において被覆層として使用する塩化ビニ
リデン−アクリル(メタクリル)共重合体は (a) 99乃至70重量%、特に96乃至80重量%の塩化
ビニリデン、 (b) 1乃至30重量%、特に4乃至220重量%の下
記式、 式中、R1は水素原子或いはメチル基を表わ
し、Xはニトリル基或いは式、 (式中、Yはアルキルオキシ基、ヒドロキシ
アルキルオキシ基又はグリシジルオキシ基であ
る)で表わされる基である、 で表わされるアクリル系乃至メタクリル系単量
体の少なくとも1種、 及び (c) 任意成分として前記単量体(a)及び(b)の合計量
100重量部当り50重量部迄の塩化ビニリデン以
外の塩素含有エチレン系不飽和単量体の少なく
とも一種、 から成る共重合体であつて、20℃、100%RHにお
ける酸素透過係数が9×10-14c.c.・cm/cm2・sec・
cmHg以下及び水蒸気透過係数(JIS Z−0208)
が3×10-3g・cm/m2・day以下のものである。 前記アクリル系乃至メタクリル系単量体(b)とし
ては、具体的には、アクリル酸、アクリロニトリ
ル、アクリル酸メチル、アクリル酸エチル、アク
リル酸プロピル、アクリル酸ブチル、アクリル酸
ヘキシル、アクリル酸オクチル、アクリル酸シク
ロヘキシル、アクリル酸グリシジル、アクリル酸
−2−ヒドロキシエチル、アクリル酸モノグリセ
リド、メタクリル酸、メタクリロニトリル、メタ
クリル酸メチル、メタクリル酸アミル、メタクリ
ル酸グリシジル、メタクリル酸モノグリセリド、
メタクリル酸−2−ヒドロキシプロピル、メタク
リル酸β−メトキシエチルを挙げることができ
る。 これらのアクリル系乃至はメタクリル系単量体
は単独でも2種以上の組合せで使用できる。本発
明の目的に特に好適なアクリル系乃至はメタクリ
ル系単量体(b)は、(i)アクリロニトリル、メタクリ
ロニトリル等のニトリル単量体、(ii)アクリル酸メ
チル、アクリル酸エチル、メタクリル酸メチル、
メタクリル酸−2−ヒドロキシエチル、アクリル
酸グリシジルメタクリル酸グリシジル、アクリル
酸モノグリセリドメタクリル酸モノグリセリドメ
トキシエチルアクリレート、メトキシエチルメチ
ルメタアクリレート等のエステル単量体及び(iii)上
記(i)及び(ii)の組合せである。 塩化ビニリデンを除く任意成分としての塩素含
有エチレン系不飽和単量体(c)としては、塩化ビニ
ル、三塩化エチレン、四塩化エチレン等を挙げる
ことができ、これらの単量体も単独或いは2種以
上の組合わせで使用し得る。 好適な共重合体の例は、これに限定されるもの
ではないが、次の通りである。 塩化ビニリデン/アクリロニトリル共重合体、 塩化ビニリデン/アクリロニトリル/メタクリ
ロニトリル共重合体、 塩化ビニリデン/メタクリロニトリル共重合
体、 塩化ビニリデン/アクリロニトリル/アクリル
酸グリシジル共重合体、 塩化ビニリデン/アクリロニトリル/メタクリ
ル酸グリシジル共重合体、 塩化ビニリデン/アクリロニトリル/アクリル
酸モノグリセリド共重合体、 塩化ビニリデン/アクリル酸エチル/アクリル
酸グリシジル共重合体、 塩化ビニリデン/アクリロニトリル/三塩化エ
チレン共重合体、 塩化ビニリデン/アクリロニトリル/塩化ビニ
ル共重合体、 塩化ビニリデン/アクリロニトリル/メタクリ
ル酸モノグリセリド/三塩化エチレン共重合体、 塩化ビニリデン/メトキシエチルメチルメタア
クリレート/メチルメタアクリレート/三塩化エ
チレン共重合体。 本発明に用いる共重合体においては、紫外線遮
断性やガスバリヤー性の点で、70重量%以上の塩
化ビニリデン単位を有することが重要であり、一
方紫外線遮断性やガスバリヤー性や耐湿性を損う
ことなしにプラスチツク容器への被覆を可能なら
しめるためには、少なくとも1重量%のアクリル
系単量体乃至はメタアクリル系単量体を含有する
ことが重要である。 また、種々のプラスチツクびん基質への密着性
を高めるには、式 式中、R2及びR3の各々は水酸基であり、ここ
でこれら2つの水酸基は脱水されてオキシラン環
を形成してもよい。 の単量体を全単量体当り0.5乃至15重量%の量
で用いるのが望ましい。 更に、プラスチツクびんへの被覆性能を一層向
上させる目的には、塩化ビニリデンとアクリル系
乃至はメタクリル系単量体との合計量100重量部
当り100重量部迄の他のエチレン系不飽和単量体
を含有することが許容される。 本発明に用いる共重合体は、一般に水性媒体中
に乳化剤及び分散剤の作用により、構成単量体を
乳化乃至は懸濁させ、ラジカル開始剤の存在下に
乳化重合乃至は懸濁重合させることにより容易に
得られる。ラジカル開始剤としては、それ自体公
知の過酸化物、アゾ化合物或いはレドツクス系の
触媒が使用される。 本発明に用いる共重合体の分子量は、一般にフ
イルムを形成するに足る分子量を有していればよ
い。本発明に用いる重合体は、熱溶融による成形
が一般に困難であり、有機溶媒溶液の形で、或い
は水性エマルジヨン乃至はラテツクスの形で、後
述する方法でプラスチツク容器の被覆に使用され
る。 プラスチツク容器基質を形成するエチレン−ビ
ニルアルコール共重合体としては、エチレン含有
量が20乃至80モル%、特に25乃至60モル%で、ケ
ン化度が90%以上、特に95%以上のエチレン−酢
酸ビニル共重合体ケン化物が好適に使用される。
このエチレン−ビニルアルコール共重合体単独を
使用する代りに、ガスバリヤー性を損わない範囲
内で、即ち、全体の50重量%を越えない範囲内
で、他の樹脂、例えばオレフイン系樹脂、ポリア
ミド等をブレンドして使用することができる。 エチレンビニルアルコール共重合体との組合せ
で使用される耐湿性熱可塑性樹脂としては、水蒸
気透過係数が5×10-1g・cm/m2・day(JIS Z
−0208)以下の熱可塑性樹脂、特に低−、中−、
或いは高−密度ポリエチレン、ポリプロピレン、
エチレン−プロピレン共重合体、エチレン−ブテ
ン−共重合体、アイオノマー、エチレン−酢酸ビ
ニル共重合体、エチレン−アクリル酸エステル共
重合体等のオレフイン系重合体;ポリエチレンテ
レフタレート、ポリブチレンテレフタレート、ポ
リエチレンテレフタレート/イソフタレート等の
ポリエステル;ナイロン6、ナイロン6,6、ナ
イロン6,10等のポリアミド;ポリスチレン、ス
チレン−ブタジエンブロツク共重合体、スチレン
−アクリロニトリル共重合体、スチレン−ブタジ
エン−アクリロニトリル共重合体(ABS樹脂)
等のスチレン系共重合体;ポリ塩化ビニル、塩化
ビニル−酢酸ビニル共重合体等の塩化ビニル系共
重合体;ポリメチルメタクリレート、メチルメタ
クリレート−エチルアクリレート共重合体等のア
クリル系共重合体;ポリカーボネート等である。
これらの熱可塑性樹脂は単独で使用しても或いは
2種以上のブレンド物の形で存在していてもよ
い。 耐湿性熱可塑性樹脂としては、経済性及び成形
性等の見地からポリエチレン、ポリプロピレン等
のポリオレフインを用いることが望ましい。 耐湿性樹脂層とエチレン−ビニルアルコール共
重合体層との間に接着性がない場合には、両層の
間にそれ自体公知の接着剤層を介在させることが
できる。かかる接着剤層としては、例えばアクリ
ル酸、マレイン酸、無水マレイン酸の如きエチレ
ン系不飽和カルボン酸乃至はその無水物でグラフ
ト変性されたオレフイン系樹脂を挙げることがで
きる。また、両者の間に接着剤を介在させる代り
に、例えば特公昭52−11263号公報に開示されて
いる通り、耐湿性樹脂層或いはエチレン−ビニル
アルコール共重合体層の少なくとも一方に、熱可
塑性含カルボニル基重合体を含有させて、両者の
接着性を向上させてもよい。 このプラスチツクびん基質は、それ自体公知の
成形法、例えばブロー成形法、二軸延伸ブロー成
形法、射出成形法等により製造することができ
る。 びんへの成形は、前述した熱可塑性樹脂の単独
乃至は複数種の組合せをパリソンの形に溶融押出
し、押出されたパリソンを割型の中で支持し、そ
の内容に流体を吹込むブロー成形によつて容易に
得られる。また、びんの耐衝撃性や透明性等を向
上させるために、溶融押出或いは射出成形により
予めパリソン乃至は予備成形物を製造し、このパ
リソン乃至は予備成形物を、その融点以下の延伸
温度において、軸方向に機械的に延伸すると共に
流体の吹込みにより周方向に延伸し、二軸方向に
分子配合されたプラスチツクびんとすることもで
きる。更に、射出成形によつてびんとすることも
できる。 本発明に用いるプラスチツク容器基質は、カツ
プ或いは広口びんの形態をしていることができ
る。このカツプ乃至は広口びんは、予め単独の押
出により形成された単層のフイルム乃至はシー
ト、または共押出成形或いはドライラミネーシヨ
ン、サンドイツチラミネーシヨン等の貼合せによ
り形成された多層のフイルム乃至はシートを、真
空成形、圧空成形、プラグアシスト成形等のそれ
自体公知の絞り成形乃至は張出し成形等に賦する
ことにより得られる。この際、単層乃至は多層フ
イルム乃至はシートを、構成樹脂層の延伸可能温
度で圧空成形、プラグアシスト成形等に賦すれ
ば、容器壁に一軸乃至は二軸方向の分子配向を与
えることもできる。 更に、本発明に用いるプラスチツク容器基質
は、押出可能なチユーブ容器であることもでき
る。このチユーブ容器は、例えば特開昭55−5311
号公報に記載されている通り、ネジ付口部を備え
た薄肉の単層乃至多層プラスチツクびんをブロー
成形により製造し、このびんの底部を切断して除
き、胴壁の先端部を熱融着させることにより製造
される。 プラスチツク容器基質の肉質は、押出しチユー
ブのような比較的肉薄のものから、リジツト容器
のような比較的厚肉のものまで広範囲に変化させ
得る。一般に容器基質の肉厚は、0.05乃至2.5
mm、特に0.1乃至1.5mmの範囲にあるのがよく、ま
た多層の場合には、耐湿性樹脂層とエチレン−ビ
ニルアルコール共重合体層とは、1:10乃至
200:1、特に1:2乃至150:1の厚み比を有す
ることが望ましい。 本発明は、特に透明性を要求されるプラスチツ
ク容器の紫外線遮断に特に有用である。 本発明による被覆プラスチツク容器は前述した
共重合体の水性ラテツクス乃至は有機溶媒溶液
を、かくして製造されたプラスチツク容器基質の
少なくとも一方の表面に塗布し、次いで形成され
る塗膜を乾燥することにより形成される。この
際、塩化ビニリデン系共重合体を水性ラテツクス
の形で施こすのが望ましい。 共重合体の水性ラテツクスとしては、固形分濃
度が20乃至65%、粘度が3乃至500センチポイズ
の範囲にあるものが好適に使用され、一方有機溶
媒溶液としては、テトラヒドロフラン、酢酸エチ
ル、メチルエチルケトン、シクロヘキサン、ジメ
チルフオルムアミド、ジメチルスルフオキシド、
ジオキサン等の有機溶媒に固形分濃度が5乃至60
%となるように溶解した溶液が使用される。 プラスチツク容器基質に、上述したラテツクス
乃至は溶液を塗布するには、浸漬塗布法、スプレ
塗布法、ブラシ塗布法、ローラ塗布法、スラツシ
ユ塗布法、フローコート法、静電塗布法、遠心塗
布法、流延塗布法、電気泳動塗布法およびそれら
の組合せ等のそれ自体公知の塗布法が使用でき
る。塗布は一回で行つても、或いは2段以上の多
段塗布法で行つてもよく、更に塗布に際して、必
要に応じプラスチツク容器基質の濡れ特性を向上
させる目的で、フレーム処理、アンカー剤による
前処理、コロナ放電処理、界面活性剤塗布処理、
化学的エツチング処理等の前処理を行ない、また
導電性を賦与するために導電処理等を行つてもよ
い。 塗布した共重合体層の乾燥は、塗膜の厚みによ
つても相違するが、一般に40乃至150℃の温度
で、2秒乃至60分間程の乾燥で十分である。 また、本発明においてガスや香気の遮断向上効
果は前述した乾燥だけでも充分に発揮されるが、
必要な場合には乾燥後に30℃乃至120℃の温度下
で30秒乃至7日間エージング(熱処理)をおこな
えば、その効果はより一層顕著に発揮される。 本発明において、塩化ビニリデン系共重合体は
一般に0.5乃至50μ、特に1乃至40μの厚みで設
ければ満足すべき結果が得られる。 本発明のプラスチツクびんを製造する別法で
は、びんを構成すべき熱可塑性樹脂のパリソン、
プリフオーム、シート或いはフイルム等に、前述
した共重合体のラテツクス乃至は有機溶媒溶液を
塗布し、次いで乾燥して被覆層を形成した後、こ
の被覆構造物を前述した手段で成形して被覆プラ
スチツク容器を製造する。本発明に用いる前記共
重合体被覆層は、これらの加工に耐えると共に、
基質との密着性を失わないという優れた利点を示
す。 被覆層の形成に際して、所望によりそれ自体公
知の配合剤を、共重合体に含有させることができ
る。 例えば、補強剤、充填剤、可塑剤、熱安定剤、
酸化防止剤、紫外線吸収剤、増粘剤、減粘剤、ブ
ロツキング防止剤、滑剤、レベリング剤、着色料
等の1種或いは2種以上をそれ自体公知の処方に
従つて、共重合体中に配合できる。 勿論、上記の耐湿性熱可塑性樹脂には、所望に
応じて顔料、酸化防止剤、帯電防止剤、紫外線吸
収剤、滑剤などの添加剤の1種類或いは2種類以
上を樹脂100重量部当りに合計量として0.001部乃
至5.0部の範囲内で添加することもできる。ま
た、例えば、このびんを補強するために、ガラス
繊維、芳香族ポリアミド繊維、カーボン繊維、バ
ルブ、コツトン・リンター等の繊維補強材、或い
はカーボンブラツク、ホワイトカーボン等の粉末
補強材、或いはガラスフレーク、アルミフレーク
等のフレーク状補強材の1種類或いは2種類以上
を、前記熱可塑性樹脂100重量部当り合計量とし
て2乃至150重量部の量で配合でき、更に増量の
目的で、重質乃至軟質の炭酸カルシウム、雲母、
滑石、カオリン、石膏、クレイ、硫酸バリウム、
アルミナ粉、シリカ粉、炭酸マグネシウム等の1
種類或いは2種類以上を前記熱可塑性樹脂100重
量部当り合計量として5乃至150重量部の量でそ
れ自体公知の処方に従つて配合しても何ら差支え
ない。 本発明のプラスチツク容器は、上述した利点を
生かして、各種食品、調味料、飲料、医薬品、化
粧料、農薬類等を長期にわたつて保存する軽量プ
ラスチツク容器として有用である。 本発明を次の例で説明する。 各実施例に記載の各湿度条件下における酸素透
過度(QO2−DおよびQO2−W)、および波長が
280mμにおける紫外線透過率(UVT)は下記の
方法に従つて各測定をおこない、結果を計算し
た。 (i) 低湿度下(0%RH/15%RH)における酸素
透過度(QO2−D): 測定すべき空容器内を真空中で窒素ガスに置換
し、容器の口部をゴム栓で密封し、更に口部とゴ
ム栓との接触界面部分をエポキシ系接着剤で覆つ
たたのち、容器を温度が27℃、湿度が15%RHの
恒温恒湿槽内で一定期間保存したのち、容器内へ
透過した酸素の濃度をガスクロマトグラフで求
め、次式に従つて、容器内が0%RH、容器外が
15%RH(以下低湿度下と記す)、温度が27℃にお
ける酸素ガス透過度を算出し、更に厚さと酸素透
過度とが逆比例の関係にあることを利用して、ポ
リ塩化ビニリデン系樹脂のコート厚(tCA)とエ
チレンビニルアルコール共重合体の厚さ(tEV
との和が15μとなるように酸素ガス透過度を換算
した。従つてQO2−DはtCA+tEV=15(μ)に
おける酸素ガス透過度の値を意味する。結果はN
=3本の測定結果の平均値である。 こゝで m;容器内への窒素ガスの充填量〔ml〕、 t;温槽内での保存期間〔day〕、 ct;t日後の容器内の酸素濃度〔Vol%〕、 A;容器の有効表面積〔m2〕、 Op;酸素ガス分圧(=0.209)〔atm〕。 (ii) 高湿度下(100%RH/93%RH)における酸
素透過度(QO2−W): 測定すべき空容器内に、あらかじめ200c.c.の蒸
溜水を充填したのち容器内を真空中で窒素ガスに
置換し、容器の口部をゴム栓で密封し、更に口部
とゴム栓との接触界面部分をエポキシ系接着剤で
覆つたのち、容器を温度が27℃に設定され、か
つ、硝酸カリウムの飽和水溶液によつて湿度が93
%RHにコントロールされた恒温恒湿槽内で一定
期間保存したのち、容器内へ透過した酸素の濃度
をガスクロマトグラフで求め、(i)の低湿度下にお
ける酸素透過度の項に記載した式に従つて、容器
内が100%RH、容器外が93%RHの条件(以下高
湿度下と記す)、および温度が27℃における酸素
ガス透過度に算出し、更に厚さと酸素透過度とが
逆比例の関係にあることを利用して、ポリ塩化ビ
ニリデン系樹脂のコート厚(tCA)とエチレン−
ビニルアルコール共重合体の厚さ(tEV)との和
が15μとなるように酸素ガス透過度を換算した。
従つてQO2−WはtCA+tEV=15(μ)における
酸素ガス透過度の値を意味する。結果はN=3本
測定の平均値である。 (iii) 紫外線透過率(UVT): 得られた容器の胴部もしくは底部を所定の大き
さに切断し、(株)日立製作所製の自記分光光度計
(レコーデイングスペクトフオトメータ)を使用
した。第5図の場合と同様に、波長が210乃至700
mμに亘つて測定をおこない、波長が280mμ
(第5図中の矢印)における紫外線透過率をUVT
で表わした。 実施例 1 溶融押出成形可能な耐湿性熱可塑性樹脂として
メルトインデツクス(ASTM D−1238)が0.3
g/10min、密度(ASTM D−1505)が0.95
g/c.c.の高密度ポリエチレンを内層、無水マレイ
ン酸変性高密度ポリエチレン(三菱油化社製;H
−31B)を接着層とし、エチレン含有量が30モル
%、ケン化度が99%のエチレン−酢酸ビニル共重
合体ケン化物(エチレン・ビニルアルコール共重
合体)を外層とする3層構成の積層ボトル(内容
積:50ml)を公知の共押出中空成形法で成形した
(構成比、外層:接着層:内層=1:0.5:20で前
記エチレンビニルアルコール共重合体の厚さは平
均14.4μ)。 つぎに、得られた積層ボトルの外表面に、塩化
ビニリデンが83重量%、メトキシエチルメチルア
クリレート14重量%、メチルアクリレート3重量
%の合計量100重量部に対して、三塩化エチレン
40重量部の組成比を有するポリ塩化ビニリデン系
樹脂ラテツクス(分散媒;水、固形分濃度;47重
量%)を公知の浸漬塗布法によつて塗布し、パー
フエクトオーブン(空気循環式)を用いて70℃で
5分間加熱したのち、空気恒温構によつて80℃で
4分間エージング(熱処理)をおこなつた。 前記の乾燥および熱処理操作を1回乃至10回の
繰返しで施行した。 そして、第2−C図に記載されるような層構成
(外表面は前記ポリ塩化ビニリデン系樹脂で内表
面は前記高密度ポリエチレン)の塗布積層ボトル
を得た。得られたボトルの外表面に塗布された前
記ポリ塩化ビニリデン系樹脂の平均膜厚(コート
厚)は、上記の乾燥および熱処理操作が1回施こ
された場合には2.9μ、同じく2回繰返して施こ
された場合には6.4μ、同じく3回繰返しのもの
では9.7μ、同じく10回繰返しのものでは38.3μ
であつた。 尚、このポリ塩化ビニリデン系樹脂の20℃、
100%RHにおける酸素透過係数は、1.42×10-14
c.c.・cm/cm2・sec・cmHg及び水蒸気透過係数
(JIS Z−0208)は1.02×10-3g・cm/m2・dayで
ある。 得られた4種類の塗布積層ボトル、および比較
のために前記ポリ塩化ビニリデン系樹脂が塗布さ
れていない前記積層ボトル基質について、本文に
記載の方法に従つて、各湿度条件下における酸素
透過度QO2−DおよびQO2−W)および波長が
280mμにおける紫外線透過率(UVT)の各測定
をおこなつた。結果を表1に示す。 前記ポリ塩化ビニリデン系樹脂の存在によつて
エチレンビニルアルコール共重合体の示す酸素ガ
ス透過度の値そのものが改良されること、その湿
度・依存性が解消されること、さらに波長が280
mμにおける紫外線透過率が減少し、紫外線バリ
ヤー効果が発揮されていることが表1から知られ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to plastic containers with improved oxygen barrier properties. The present invention particularly relates to ethylene-
When a layer mainly composed of vinyl alcohol copolymer and a coating layer of vinylidene chloride-acrylic (methacrylic) copolymer (hereinafter also referred to as polyvinylidene chloride resin) are provided in adjacent positions, the This is based on the new finding that an oxygen permeability coefficient lower than the oxygen permeability coefficient can be obtained. still,
The oxygen permeability coefficient is expressed in units of cc·cm/cm 2 ·sec·cmHg, and is a coefficient independent of the thickness dimension. Plastic containers allow oxygen to permeate through the container walls to varying degrees, and when this permeation cannot be ignored, they are used in fields such as containers intended for long-term food storage and cosmetics that require fragrance retention. becomes inappropriate. For this reason, the development of plastic containers whose walls are made of resin with excellent oxygen barrier properties is being actively conducted. Currently, the resin with the best oxygen barrier properties among melt-extrudable thermoplastic resins is saponified ethylene-vinyl acetate copolymer (ethylene-vinyl acetate copolymer).
(vinyl alcohol copolymer), but this saponified copolymer has poor moisture resistance, i.e., water vapor barrier properties, and furthermore, its oxygen permeability coefficient tends to increase significantly with increasing humidity, thus making it difficult to use in practical plastics. When used in containers, this drawback is overcome by layering moisture-resistant resins such as polyolefins in a sandwich pattern to form a multilayer laminate. Another disadvantage of plastic containers whose walls are made of ethylene-vinyl alcohol copolymer is that they are highly transparent to ultraviolet rays. Although the purpose of preventing food from going rancid may be somewhat satisfied, the ultraviolet light transmitted through the container wall may alter the quality of pigments, fats and oils, animal proteins, various beverage extracts, etc., resulting in changes in the flavor and appearance of the food contents. , there is a problem of impairing hygienic properties. Conventionally, as a means of blocking ultraviolet rays in plastic containers, it has been known to incorporate an ultraviolet absorber into the resin constituting the plastic container, but such a method has problems with the hygienic properties of the container, and Its ultraviolet blocking effect is still not fully satisfactory. When the present inventors provide a resin layer mainly composed of an ethylene-vinyl alcohol copolymer and a coating layer of a vinylidene chloride-acrylic (methacrylic) copolymer described in detail below in an adjacent position, this lamination It has been found that the plastic container exhibits a lower oxygen permeability coefficient than that of any of the layers, and that the plastic container with this laminated structure is also significantly superior in blocking ultraviolet rays. That is, an object of the present invention is to provide a plastic container that has better barrier properties against gases such as oxygen than conventional plastic containers. Another object of the present invention is to provide a plastic container which, in addition to the above-mentioned low oxygen permeability coefficient, also has UV blocking properties, and therefore allows the contents to be stored stably for a long period of time without deterioration. be. Still another object of the present invention is to provide a multilayer plastic container in which the moisture resistance of the ethylene-vinyl alcohol copolymer and the tendency for oxygen permeation to increase with increase in humidity are also improved. According to the present invention, at least one surface of the plastic container substrate is made of a resin mainly composed of an ethylene-vinyl alcohol copolymer, and the plastic container substrate has a surface adjacent to the resin surface mainly composed of the ethylene-vinyl alcohol copolymer. , (a) 99 to 70% by weight of vinylidene chloride, and (b) 1 to 30% by weight of the following formula: In the formula, R 1 represents a hydrogen atom or a methyl group, and X represents a nitrile group or a formula, (In the formula, Y is an alkyloxy group, a hydroxyalkyloxy group, or a glycidyloxy group)
A group represented by at least one monomer represented by and (c) containing up to 50 parts by weight of chlorine other than vinylidene chloride per 100 parts by weight of the total amount of the monomers (a) and (b). A copolymer consisting of at least one ethylenically unsaturated monomer, which has an oxygen permeability coefficient of 9×10 -14 cc・cm/cm 2・sec・cmHg or less at 20°C and 100%RH and water vapor permeability. Coefficient (JIS Z-0208) is 3×10 -3 g・cm/
There is provided a plastic container with improved oxygen barrier properties, characterized in that it is provided with a coating layer of less than m 2 ·day. In FIG. 1 showing a bottle-shaped coated plastic container, the bottle 1 has a circumferential wall portion 2 having a circular or elliptical cross section, a bottle mouth portion 3 integrally connected to the circumferential wall portion 2, and a bottom portion 4 continuous to the lower end of the circumferential wall portion. It consists of
The walls of these bottles are all 2-A to 2-D.
As shown in the enlarged sectional view of the figure, at least one surface 5 of the plastic container substrate 6 is made of a resin mainly composed of ethylene-vinyl alcohol copolymer.
and a coating layer 7 mainly composed of vinylidene chloride-acrylic (or methacrylic) copolymer provided in a positional relationship adjacent to the resin surface 5. As shown in Figure 2-A, the plastic container substrate 6 consists of a single layer of resin mainly composed of ethylene-vinyl alcohol copolymer, and as shown in Figure 2-B, both surfaces 5 and 5' are coated with chloride. Vinylidene
Acrylic (methacrylic) copolymer coating 7,7'
may be provided. Further, the plastic container substrate may be made of a laminate of a resin mainly composed of ethylene-vinyl alcohol copolymer and other resins. for example,
As shown in FIG. 2-C, this container substrate 6 includes a resin layer 5 mainly composed of ethylene-vinyl alcohol copolymer (hereinafter simply referred to as ethylene-vinyl alcohol copolymer) and other resins, especially A moisture-resistant thermoplastic resin layer 8 such as a polyolefin resin, and as shown in FIG. 2-C,
It can consist of an ethylene-vinyl alcohol copolymer layer 5 and a moisture-resistant thermoplastic resin layer 8. In any of these cases, the ethylene-vinyl alcohol copolymer layer 5 is coated adjacently thereto, that is, as both surface layers in FIG. 2-B, and as the innermost layer or the innermost layer in FIG. 2-C. As the outermost layer, a vinylidene chloride-acrylic (methacrylic) copolymer coating layer 7, 7' is provided. Furthermore, 2nd-D
In the figure, this container substrate 6 consists of both inner and outer layers 5, 5' of ethylene-vinyl alcohol copolymer and an intermediate layer 8 of thermoplastic resin. Vinylidene chloride-acrylic (methacrylic) copolymer coating layer 7, 7'
will be provided. An important feature of the present invention is that, as already mentioned above, when the ethylene-vinyl alcohol copolymer layer and the vinylidene chloride-acrylic (methacrylic) copolymer coating layer are provided adjacently, this laminate has the same thickness. This is based on the completely unexpected finding that, in comparison, the oxygen permeability is lower than that of either one of the layers. FIG. 3 shows the total thickness tCA, where tEV is the thickness of the ethylene-vinyl alcohol copolymer layer and tCA is the thickness of the vinylidene chloride-acrylic (methacrylic) copolymer layer in Example 1, which will be described later. +t
The relationship between the ratio of t CA /(t CA +t EV ) and the oxygen permeability at 37° C. and relative humidity of 0% to 15% RH is shown, assuming that EV is constant at 15μ. Referring to this FIG. 3, it can be seen that the coated plastic container according to the invention exhibits a significantly lower oxygen permeability, as shown by dashed curve A, than curve B, which is the harmonic mean value of both resin layers, and yet completely Surprisingly, over a fairly wide range of ratios of t CA /(t CA + t EV ), it exhibits an oxygen permeability that is rather smaller than that of the ethylene-vinyl alcohol copolymer, which has a lower oxygen permeability coefficient. I understand. Similarly, Figure 4 shows the ratio of t CA /(t CA + t EV ) when t CA + t EV is 15μ, and the relative humidity at 27°C.
The relationship with oxygen permeability at 100%RH and 93%RH is shown. As already mentioned above, ethylene-vinyl alcohol copolymers exhibit relatively high oxygen permeability under conditions of high humidity; even in this case, the coated plastic containers according to the invention can be
As shown in A', the oxygen permeability is significantly lower than the harmonic average value B' of both resin layers, and t CA /
It can be seen that within a certain range of the ratio of (t CA +t EV ), the oxygen permeability is lower at the same thickness than the vinylidene chloride-acrylic (methacrylic) copolymer, which has a smaller oxygen permeability coefficient. The results in Figures 3 and 4 show that the total thickness is 15μ.
Therefore, the oxygen permeability shown in these drawings can be considered to be the oxygen permeability coefficient itself, excluding the thickness factor. For example, according to page 287 of "Polymer and Moisture" published by Koshobo on September 1, 1971, the oxygen permeability of a laminate is generally calculated as the harmonic average value of the oxygen permeability of each layer (the 7.16 on page), the significant reduction in oxygen permeability in the coated plastic container of the present invention is not caused by the mere lamination effect of both resin layers, but is due to the physical and It will be understood that it is based on chemical interactions. According to the invention, it is thus possible to significantly reduce the oxygen permeability of the container wall, in particular by applying a thin coating of vinylidene chloride-acrylic (methacrylic) copolymer to the surface of the ethylene-vinyl alcohol copolymer. By providing this, it becomes possible to reduce the humidity dependence of oxygen permeability. In the present invention, both resin layers satisfy the following inequality: 0.95≧t CA /(t CA +t EV )≧0.005, especially 0.75≧t CA /(t CA +t EV )≧0.008, t CA ≧0.5 μ, especially t CA ≧1.0 It is desirable to provide it so that μ, is satisfied. In addition, the thickness (t EV ) of the ethylene-vinyl alcohol copolymer layer varies depending on its ethylene content and degree of saponification, but generally, t EV ≧3.0μ, especially t EV ≧5.0. It is desirable to provide it so that μ, is satisfied. According to the present invention, excellent ultraviolet blocking properties can also be obtained by providing a vinylidene chloride-acrylic (methacrylic) copolymer coating layer on the ethylene-vinyl alcohol copolymer layer. The fact that the container wall of the present invention has excellent UV blocking properties is immediately apparent by reference to FIG. That is, curve A in FIG.
The relationship between wavelength and transmittance is shown for a container wall made only of vinyl alcohol copolymer. According to this curve A, it can be seen that the above-mentioned plastic container exhibits a considerably high transmittance for ultraviolet light having a wavelength of 210 to 400 mμ, similar to visible light. On the other hand, curve B is a wavelength-transmittance curve for a case in which a 30μ thick coating of vinylidene chloride-acrylic (methacrylic) copolymer is provided on the ethylene-vinyl alcohol copolymer layer of the plastic container substrate. Curve B shows that ultraviolet light blocking properties can be obtained by simply applying a coating of only 30 microns to the ethylene-vinyl alcohol copolymer layer of the plastic container substrate. The coated plastic containers of the present invention also have the unexpected advantage of providing permanent UV protection. That is, curves C and D in FIG. 5 represent the coated plastic container of curve B.
60℃, 25 hours and 60℃ with Weatherometer, respectively.
This is a wavelength-transmittance curve of a sample exposed to ultraviolet light for 50 hours. According to these curves C and D, in the coated plastic container of the present invention, the more it is irradiated with ultraviolet rays, the more its transmittance to ultraviolet rays is suppressed to a lower level, and the more it shifts to the absorption wavelength side. It is clear that there are. Thus, the more a coated plastic container according to the invention is irradiated with UV light, the more it acts to prevent the transmission of UV light, and even when subjected to prolonged UV exposure, the overall UV light is reduced. This makes it possible to suppress the amount of transmission to a significantly low level. The reason for this is thought to be that conjugated diene bonds are formed in the vinylidene chloride-acrylic (methacrylic) copolymer layer as the layer is irradiated with ultraviolet rays, and these conjugated diene bonds act to absorb more ultraviolet rays. The vinylidene chloride-acrylic (methacrylic) copolymer used as the coating layer in the present invention contains (a) 99 to 70% by weight, especially 96 to 80% by weight of vinylidene chloride, (b) 1 to 30% by weight, especially 4 to 80% by weight. 220% by weight of the following formula, In the formula, R 1 represents a hydrogen atom or a methyl group, and X represents a nitrile group or a formula, (wherein, Y is an alkyloxy group, a hydroxyalkyloxy group, or a glycidyloxy group); at least one acrylic or methacrylic monomer represented by the following; and (c) an optional component. as the total amount of monomers (a) and (b) above.
A copolymer comprising up to 50 parts by weight per 100 parts of at least one chlorine-containing ethylenically unsaturated monomer other than vinylidene chloride, the copolymer having an oxygen permeability coefficient of 9 x 10 - at 20°C and 100% RH. 14 cc・cm/ cm2・sec・
cmHg or less and water vapor permeability coefficient (JIS Z-0208)
is 3×10 -3 g・cm/m 2・day or less. Specifically, the acrylic or methacrylic monomer (b) includes acrylic acid, acrylonitrile, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, hexyl acrylate, octyl acrylate, and acrylic. Cyclohexyl acrylate, glycidyl acrylate, 2-hydroxyethyl acrylate, monoglyceride acrylate, methacrylic acid, methacrylonitrile, methyl methacrylate, amyl methacrylate, glycidyl methacrylate, monoglyceride methacrylate,
Examples include 2-hydroxypropyl methacrylate and β-methoxyethyl methacrylate. These acrylic or methacrylic monomers can be used alone or in combination of two or more. Acrylic or methacrylic monomers (b) particularly suitable for the purpose of the present invention include (i) nitrile monomers such as acrylonitrile and methacrylonitrile, (ii) methyl acrylate, ethyl acrylate, and methacrylic acid. methyl,
Ester monomers such as 2-hydroxyethyl methacrylate, glycidyl acrylate, glycidyl methacrylate, acrylic acid monoglyceride, methacrylic acid monoglyceride, methoxyethyl acrylate, methoxyethyl methyl methacrylate, and (iii) combinations of (i) and (ii) above. It is. Examples of the chlorine-containing ethylenically unsaturated monomer (c) as an optional component other than vinylidene chloride include vinyl chloride, ethylene trichloride, ethylene tetrachloride, etc. These monomers may be used singly or in combination. The above combinations can be used. Examples of suitable copolymers include, but are not limited to: Vinylidene chloride/acrylonitrile copolymer, vinylidene chloride/acrylonitrile/methacrylonitrile copolymer, vinylidene chloride/methacrylonitrile copolymer, vinylidene chloride/acrylonitrile/glycidyl acrylate copolymer, vinylidene chloride/acrylonitrile/glycidyl methacrylate Copolymer, vinylidene chloride/acrylonitrile/monoglyceride acrylate copolymer, vinylidene chloride/ethyl acrylate/glycidyl acrylate copolymer, vinylidene chloride/acrylonitrile/ethylene trichloride copolymer, vinylidene chloride/acrylonitrile/vinyl chloride copolymer Polymer, vinylidene chloride/acrylonitrile/monoglyceride methacrylate/ethylene trichloride copolymer, vinylidene chloride/methoxyethyl methyl methacrylate/methyl methacrylate/ethylene trichloride copolymer. In the copolymer used in the present invention, it is important to have 70% by weight or more of vinylidene chloride units in terms of UV blocking properties and gas barrier properties; In order to be able to coat plastic containers without causing damage, it is important to contain at least 1% by weight of acrylic monomer or methacrylic monomer. Additionally, to improve adhesion to various plastic bottle substrates, formula In the formula, each of R 2 and R 3 is a hydroxyl group, where these two hydroxyl groups may be dehydrated to form an oxirane ring. The monomers are preferably used in an amount of 0.5 to 15% by weight based on total monomers. Furthermore, in order to further improve the coating performance on plastic bottles, up to 100 parts by weight of other ethylenically unsaturated monomers may be added per 100 parts by weight of the total amount of vinylidene chloride and acrylic or methacrylic monomers. is allowed to contain. The copolymer used in the present invention is generally prepared by emulsifying or suspending the constituent monomers in an aqueous medium by the action of an emulsifier and a dispersant, and then carrying out emulsion polymerization or suspension polymerization in the presence of a radical initiator. can be easily obtained by As the radical initiator, peroxides, azo compounds, or redox catalysts, which are known per se, are used. The copolymer used in the present invention generally has a molecular weight sufficient to form a film. The polymer used in the present invention is generally difficult to mold by hot melting, and is used in the form of an organic solvent solution or in the form of an aqueous emulsion or latex to coat plastic containers by the method described below. Ethylene-vinyl alcohol copolymers forming plastic container substrates include ethylene-acetic acid with an ethylene content of 20 to 80 mol%, especially 25 to 60 mol%, and a saponification degree of 90% or more, especially 95% or more. Saponified vinyl copolymers are preferably used.
Instead of using this ethylene-vinyl alcohol copolymer alone, other resins such as olefin resins and polyamides may be used within a range that does not impair gas barrier properties, that is, within a range that does not exceed 50% by weight of the total. etc. can be used by blending them. The moisture-resistant thermoplastic resin used in combination with ethylene vinyl alcohol copolymer has a water vapor permeability coefficient of 5×10 -1 g・cm/m 2・day (JIS Z
-0208) The following thermoplastic resins, especially low-, medium-,
Or high-density polyethylene, polypropylene,
Olefin polymers such as ethylene-propylene copolymer, ethylene-butene copolymer, ionomer, ethylene-vinyl acetate copolymer, ethylene-acrylic ester copolymer; polyethylene terephthalate, polybutylene terephthalate, polyethylene terephthalate/ Polyester such as isophthalate; Polyamide such as nylon 6, nylon 6,6, nylon 6,10; Polystyrene, styrene-butadiene block copolymer, styrene-acrylonitrile copolymer, styrene-butadiene-acrylonitrile copolymer (ABS resin) )
Styrenic copolymers such as polyvinyl chloride and vinyl chloride-vinyl acetate copolymers; acrylic copolymers such as polymethyl methacrylate and methyl methacrylate-ethyl acrylate copolymers; polycarbonates etc.
These thermoplastic resins may be used alone or in the form of a blend of two or more. As the moisture-resistant thermoplastic resin, it is desirable to use polyolefins such as polyethylene and polypropylene from the viewpoints of economy and moldability. If there is no adhesiveness between the moisture-resistant resin layer and the ethylene-vinyl alcohol copolymer layer, a known adhesive layer may be interposed between the two layers. Examples of such an adhesive layer include olefinic resins graft-modified with ethylenically unsaturated carboxylic acids such as acrylic acid, maleic acid, and maleic anhydride or their anhydrides. Alternatively, instead of interposing an adhesive between the two, at least one of the moisture-resistant resin layer or the ethylene-vinyl alcohol copolymer layer may contain a thermoplastic material, as disclosed in Japanese Patent Publication No. 11263/1983. A carbonyl group polymer may be included to improve the adhesion between the two. This plastic bottle substrate can be manufactured by molding methods known per se, such as blow molding, biaxial stretch blow molding, injection molding, and the like. Bottles are formed by blow molding, in which a single thermoplastic resin or a combination of thermoplastic resins mentioned above is melt-extruded into a parison, the extruded parison is supported in a split mold, and a fluid is blown into the contents. Therefore, it is easily obtained. In addition, in order to improve the impact resistance and transparency of the bottle, a parison or preform is produced in advance by melt extrusion or injection molding, and the parison or preform is stretched at a stretching temperature below its melting point. It is also possible to make a plastic bottle which is mechanically stretched in the axial direction and also stretched in the circumferential direction by blowing fluid into it to form a biaxially molecularly blended plastic bottle. Furthermore, bottles can also be made by injection molding. The plastic container substrate used in the present invention can be in the form of a cup or jar. This cup or wide mouth bottle is made of a single layer film or sheet formed in advance by single extrusion, or a multilayer film or sheet formed by coextrusion molding, dry lamination, sandwich lamination, etc. is obtained by subjecting the sheet to drawing or stretch forming, which is known per se, such as vacuum forming, pressure forming, plug-assist forming, or the like. At this time, if the single-layer or multi-layer film or sheet is subjected to pressure molding, plug assist molding, etc. at a temperature that allows stretching of the constituent resin layers, uniaxial or biaxial molecular orientation can be imparted to the container wall. can. Furthermore, the plastic container substrate used in the present invention can also be an extrudable tube container. This tube container is, for example, published in JP-A-55-5311.
As described in the publication, a thin-walled single- or multi-layer plastic bottle with a threaded opening is manufactured by blow molding, the bottom of the bottle is cut off, and the tip of the body wall is heat-sealed. Manufactured by The texture of plastic container substrates can vary widely from relatively thin walls such as extruded tubes to relatively thick walls such as rigid containers. Generally, the wall thickness of the container substrate is between 0.05 and 2.5
mm, particularly preferably in the range of 0.1 to 1.5 mm, and in the case of multilayers, the ratio of the moisture-resistant resin layer and the ethylene-vinyl alcohol copolymer layer is 1:10 to 1:1.
It is desirable to have a thickness ratio of 200:1, especially 1:2 to 150:1. The present invention is particularly useful for blocking ultraviolet light in plastic containers that require transparency. The coated plastic container according to the present invention is formed by applying an aqueous latex or organic solvent solution of the aforementioned copolymer to at least one surface of the plastic container substrate thus produced, and then drying the formed coating film. be done. At this time, it is desirable to apply the vinylidene chloride copolymer in the form of an aqueous latex. As the aqueous latex of the copolymer, one having a solid content concentration of 20 to 65% and a viscosity of 3 to 500 centipoise is preferably used, while as an organic solvent solution, tetrahydrofuran, ethyl acetate, methyl ethyl ketone, cyclohexane are used. , dimethyl formamide, dimethyl sulfoxide,
Solid content concentration in organic solvent such as dioxane is 5 to 60
% solution is used. To apply the above-mentioned latex or solution to the plastic container substrate, dip coating, spray coating, brush coating, roller coating, slush coating, flow coating, electrostatic coating, centrifugal coating, Coating methods known per se can be used, such as casting coating methods, electrophoretic coating methods, and combinations thereof. The application may be carried out in a single application or in a multi-stage application method of two or more stages.Furthermore, in order to improve the wetting properties of the plastic container substrate, the plastic container substrate may be pre-treated with a frame treatment or an anchoring agent, if necessary. , corona discharge treatment, surfactant coating treatment,
A pretreatment such as a chemical etching treatment may be performed, and a conductive treatment or the like may be performed to impart conductivity. Drying of the applied copolymer layer varies depending on the thickness of the coating film, but generally drying at a temperature of 40 to 150°C for about 2 seconds to 60 minutes is sufficient. In addition, in the present invention, the gas and fragrance blocking effect is sufficiently exhibited by the above-mentioned drying alone; however,
If necessary, aging (heat treatment) at a temperature of 30° C. to 120° C. for 30 seconds to 7 days after drying will further enhance the effect. In the present invention, satisfactory results can be obtained if the vinylidene chloride copolymer is provided at a thickness of generally 0.5 to 50 μm, particularly 1 to 40 μm. An alternative method of manufacturing the plastic bottles of the invention includes a parison of thermoplastic resin from which the bottle is to be made;
A latex or organic solvent solution of the above-mentioned copolymer is applied to a preform, sheet, film, etc., and then dried to form a coating layer, and this coating structure is then molded by the above-mentioned method to form a coated plastic container. Manufacture. The copolymer coating layer used in the present invention can withstand these treatments, and
It exhibits the excellent advantage of not losing adhesion to the substrate. When forming the coating layer, the copolymer may contain, if desired, a compounding agent known per se. For example, reinforcing agents, fillers, plasticizers, heat stabilizers,
One or more of antioxidants, ultraviolet absorbers, thickeners, thinners, antiblocking agents, lubricants, leveling agents, colorants, etc. are added to the copolymer according to known formulations. Can be mixed. Of course, the above-mentioned moisture-resistant thermoplastic resin may contain one or more additives such as pigments, antioxidants, antistatic agents, ultraviolet absorbers, and lubricants, if desired, per 100 parts by weight of the resin. It can also be added in an amount of 0.001 part to 5.0 parts. For example, in order to reinforce this bottle, fiber reinforcing materials such as glass fiber, aromatic polyamide fiber, carbon fiber, bulb, cotton linter, etc., powder reinforcing materials such as carbon black and white carbon, or glass flakes, One or more types of flaky reinforcing materials such as aluminum flakes can be blended in a total amount of 2 to 150 parts by weight per 100 parts by weight of the thermoplastic resin. calcium carbonate, mica,
Talc, kaolin, gypsum, clay, barium sulfate,
1 such as alumina powder, silica powder, magnesium carbonate, etc.
There is no problem in blending one or more types in a total amount of 5 to 150 parts by weight per 100 parts by weight of the thermoplastic resin according to a known formulation. The plastic container of the present invention takes advantage of the above-mentioned advantages and is useful as a lightweight plastic container for storing various foods, seasonings, beverages, medicines, cosmetics, agricultural chemicals, etc. over a long period of time. The invention is illustrated by the following example. The oxygen permeability (Q O2 -D and Q O2 -W) and wavelength under each humidity condition described in each example are
The ultraviolet transmittance (UVT) at 280 mμ was measured in accordance with the method described below, and the results were calculated. (i) Oxygen permeability (Q O2 -D) under low humidity (0%RH/15%RH): The inside of the empty container to be measured is replaced with nitrogen gas in a vacuum, and the mouth of the container is sealed with a rubber stopper. After sealing and covering the contact interface between the mouth and the rubber stopper with epoxy adhesive, the container was stored for a certain period of time in a constant temperature and humidity chamber at a temperature of 27℃ and a humidity of 15%RH. The concentration of oxygen permeated into the container is determined using a gas chromatograph, and according to the following formula, the inside of the container is 0%RH and the outside of the container is 0%RH.
We calculated the oxygen gas permeability at 15% RH (hereinafter referred to as low humidity) and a temperature of 27°C, and further utilized the fact that the thickness and oxygen permeability are inversely proportional to the polyvinylidene chloride resin. coating thickness (t CA ) and ethylene vinyl alcohol copolymer thickness (t EV )
The oxygen gas permeability was converted so that the sum of Therefore, Q O2 -D means the value of oxygen gas permeability at t CA +t EV =15 (μ). The result is N
= Average value of three measurement results. Here, m: Amount of nitrogen gas filled into the container [ml], t: Storage period in the hot tank [day], ct: Oxygen concentration in the container after t days [Vol%], A: Effective surface area [m 2 ], Op; oxygen gas partial pressure (=0.209) [atm]. (ii) Oxygen permeability (Q O2 -W) under high humidity (100% RH/93% RH): Fill the empty container to be measured with 200 c.c. of distilled water in advance, and then vacuum the inside of the container. After replacing the inside with nitrogen gas, sealing the mouth of the container with a rubber stopper, and covering the interface between the mouth and the rubber stopper with epoxy adhesive, the temperature of the container was set at 27°C. And the humidity is reduced to 93% by the saturated aqueous solution of potassium nitrate.
After storing for a certain period of time in a constant temperature and humidity chamber controlled at %RH, the concentration of oxygen that permeated into the container was determined using a gas chromatograph, and calculated using the formula described in the section on oxygen permeability under low humidity in (i). Therefore, the oxygen gas permeability was calculated under conditions of 100% RH inside the container and 93% RH outside the container (hereinafter referred to as high humidity) and a temperature of 27°C, and furthermore, the thickness and oxygen permeability were reversed. Utilizing the proportional relationship, the coating thickness of polyvinylidene chloride resin (t CA ) and ethylene-
The oxygen gas permeability was converted so that the sum with the thickness of the vinyl alcohol copolymer ( tEV ) was 15μ.
Therefore, Q O2 -W means the value of oxygen gas permeability at t CA +t EV =15 (μ). The results are the average values of N=3 measurements. (iii) Ultraviolet transmittance (UVT): The body or bottom of the obtained container was cut into a predetermined size, and a recording spectrophotometer manufactured by Hitachi, Ltd. was used. As in the case of Figure 5, the wavelength is between 210 and 700.
Measurements were made over mμ, and the wavelength was 280mμ.
(arrow in Figure 5)
It was expressed as Example 1 A moisture-resistant thermoplastic resin that can be melt-extruded and has a melt index (ASTM D-1238) of 0.3.
g/10min, density (ASTM D-1505) 0.95
g/cc of high-density polyethylene as the inner layer, maleic anhydride-modified high-density polyethylene (manufactured by Mitsubishi Yuka Co., Ltd.;
-31B) as the adhesive layer, and the outer layer is a saponified ethylene-vinyl acetate copolymer (ethylene-vinyl alcohol copolymer) with an ethylene content of 30 mol% and a degree of saponification of 99%. A bottle (inner volume: 50 ml) was molded by a known coextrusion blow molding method (component ratio: outer layer: adhesive layer: inner layer = 1:0.5:20, and the average thickness of the ethylene vinyl alcohol copolymer was 14.4 μm). . Next, on the outer surface of the obtained laminated bottle, ethylene trichloride was added to 100 parts by weight of a total of 83% by weight of vinylidene chloride, 14% by weight of methoxyethyl methyl acrylate, and 3% by weight of methyl acrylate.
A polyvinylidene chloride resin latex (dispersion medium: water, solid content concentration: 47% by weight) having a composition ratio of 40 parts by weight was applied by a known dip coating method, and a perfect oven (air circulation type) was used. After heating at 70°C for 5 minutes, aging (heat treatment) was performed at 80°C for 4 minutes in an air constant temperature system. The drying and heat treatment operations described above were repeated 1 to 10 times. Then, a coated laminated bottle having a layer structure as shown in FIG. 2-C (the outer surface was the above-mentioned polyvinylidene chloride resin and the inner surface was the above-mentioned high-density polyethylene) was obtained. The average film thickness (coat thickness) of the polyvinylidene chloride resin applied to the outer surface of the obtained bottle was 2.9μ when the above drying and heat treatment operations were performed once, and the same was repeated twice. 6.4μ when applied repeatedly, 9.7μ when applied 3 times, and 38.3μ when applied 10 times.
It was hot. In addition, the temperature of this polyvinylidene chloride resin at 20℃,
The oxygen permeability coefficient at 100%RH is 1.42×10 -14
The cc·cm/cm 2 ·sec·cmHg and water vapor permeability coefficient (JIS Z-0208) are 1.02×10 −3 g·cm/m 2 ·day. The oxygen permeability Q under each humidity condition was determined using the method described in the text for the four types of coated laminated bottles obtained and, for comparison, the laminated bottle substrate to which the polyvinylidene chloride resin was not coated. O2 −D and Q O2 −W) and wavelength are
Each measurement of ultraviolet transmittance (UVT) at 280 mμ was performed. The results are shown in Table 1. The presence of the polyvinylidene chloride resin improves the oxygen gas permeability value of the ethylene vinyl alcohol copolymer, eliminates its dependence on humidity, and further improves the wavelength of 280.
It is known from Table 1 that the ultraviolet transmittance at mμ is reduced and the ultraviolet barrier effect is exhibited.

【表】 さらに、前記積層ボトル基質の内表面(高密度
ポリエチレン側)に前記ポリ塩化ビニリデン系樹
脂を1回塗布した。塗布方法、乾燥及びエージン
グ方法や条件は前記と同じであり、内表面にコー
トされた前記ポリ塩化ビニリデン系樹脂の平均コ
ート厚みは3.1μであつて。 得られた前記内表面塗装積層ボトルについても
明細書に記載された方法に従つて、各条件下にお
ける酸素透過度を測定した。QO2−Dは0.54c.c./
m2・day・atm(tCA+tEV=15μに換算)、QO2
−Wは11.48c.c./m2・day・atm(tCA+tEV=15
μに換算)であり、前記ポリ塩化ビニリデン系樹
脂層と前記エチレン・ビニルアルコール共重合体
層とが隣接した位置関係にある層構成の塗布積層
ボトルのほうが、前記ビニリデン系樹脂層と前記
ビニルアルコール系樹脂層との間に前記ポリエチ
レン層(接着層を含む)を介在させた層構成の塗
布積層ボトルよりも、QO2−D、QO2−Wともに
明らかに値が小さいことが、表1および上記の結
果の比較から知られる。 実施例 2 エチレン含有量が59モル%、ケン化度が96%の
エチレン−酢酸ビニル共重合体ケン化物(エチレ
ン・ビニルアルコール共重合体)を公知の射出成
形法によつて直径(内径)が4cm、高さが11cm、
肉厚が0.4mmの円筒状のカツプに成形した。 つぎに得られたカツプの内表面および外表面
に、塩化ビニリデンが89重量%、アクリロニトリ
ルが4重量%、メチルメタアクリレートが5重量
%、メチルアクリレートが2重量%の組成比を有
するポリ塩化ビニリデン系樹脂ラテツクス(分散
媒;水、固形分濃度;52重量%)を公知のフロー
コート法によつて前記カツプの外表面に塗布し、
80℃で2分間空気循環式オーブン内で乾燥したの
ち、公知のスラツシユ塗布法によつて前記カツプ
の内表面に塗布し、前記オープン内で80℃、3分
間さらに乾燥した。 そして第2−B図に記載されるような層構成
(基材は前記エチレン・ビニルアルコール共重合
体で、内外表面は前記ポリ塩化ビニリデン系樹
脂)の塗布カツプを得た。得られたカツプの外表
面に塗布された前記ポリ塩化ビニリデン系樹脂の
平均膜厚(コート厚)は10.7μ、同じくカツプ内
表面のコート厚は7.4μであつた(合計厚み;
18.1μ)。 尚、このポリ塩化ビニリデン系樹脂の20℃、
100%RHにおける酸素透過係数は、1.33×10-14
c.c.・cm/cm2・sec・cmHg、及び水蒸気透過係数
(JIS Z−0208)は0.97×10-3g・cm/m2・dayで
ある。 次にこの塗布積層チユーブに、スガ試験機(株)製
サンシヤイン型ウエザロメーターによつて60℃で
50時間照射を行つた(照射エネルギー=1.2×107
ジユール/m2)。 このようにして得られた塗布積層カツプ、及び
比較のために前記ポリ塩化ビニリデン系樹脂が塗
布されていない前記エチレン・ビニルアルコール
共重合体単体のカツプについて、本文に記載の方
法に従つて、各湿度条件下における酸素透過度
(QO2−DおよびQO2−W)および波長が280mμ
における紫外線透過率(UVT)の各測定をおこ
なつた。結果を表2に示す。 さらに上記2種類のカツプ(単体カツプおよび
塗布カツプ)に135c.c.の水道水を充填し、口部を
アルミ箔入りの積層フイルムで密封したのち、50
℃、10%RHに調整された恒温槽内に21日間放置
した。 21日後、各カツプに充填された水道水の減量を
500mg迄坪量が可能な上皿天坪によつて秤量し水
分減量(=1−放置後の水分量/充填直後の水分
量)を求めた。 前記水分減量は前記エチレン−ビニルアルコー
ル共重合体単体のカツプでは0.84であつたのに対
して、前記膜厚のポリ塩化ビニリデン系樹脂が内
外表面にコートされたエチレン・ビニルアルコー
ル共重合体カツプでは前記天秤が検知可能な範囲
内では減量測定が不可能であつた。
[Table] Furthermore, the polyvinylidene chloride resin was coated once on the inner surface (high-density polyethylene side) of the laminated bottle substrate. The coating method, drying and aging method and conditions were the same as above, and the average coating thickness of the polyvinylidene chloride resin coated on the inner surface was 3.1μ. The oxygen permeability of the obtained laminated bottle with the inner surface coated was also measured under various conditions according to the method described in the specification. Q O2 −D is 0.54cc/
m 2・day・atm (converted to t CA + t EV = 15 μ), Q O2
−W is 11.48cc/m 2・day・atm (t CA +t EV = 15
(converted to μ), and the coated laminated bottle with a layer structure in which the polyvinylidene chloride resin layer and the ethylene-vinyl alcohol copolymer layer are in an adjacent positional relationship is better. Tables 1 and 2 show that both Q O2 -D and Q O2 -W are clearly smaller than the coated laminated bottle with a layered structure in which the polyethylene layer (including the adhesive layer) is interposed between the polyethylene resin layer and the polyethylene layer (including the adhesive layer). It is known from the comparison of the above results. Example 2 A saponified ethylene-vinyl acetate copolymer (ethylene-vinyl alcohol copolymer) with an ethylene content of 59 mol% and a saponification degree of 96% was molded to a diameter (inner diameter) by a known injection molding method. 4cm, height 11cm,
It was molded into a cylindrical cup with a wall thickness of 0.4 mm. Next, a polyvinylidene chloride system having a composition ratio of 89% by weight of vinylidene chloride, 4% by weight of acrylonitrile, 5% by weight of methyl methacrylate, and 2% by weight of methyl acrylate is applied to the inner and outer surfaces of the obtained cup. Applying resin latex (dispersion medium: water, solid content concentration: 52% by weight) to the outer surface of the cup by a known flow coating method,
After drying in an air circulation oven at 80°C for 2 minutes, it was applied to the inner surface of the cup by a known slush coating method and further dried in the open oven at 80°C for 3 minutes. Then, a coated cup having a layer structure as shown in FIG. 2-B (the base material was the above-mentioned ethylene/vinyl alcohol copolymer, and the inner and outer surfaces were the above-mentioned polyvinylidene chloride resin) was obtained. The average film thickness (coat thickness) of the polyvinylidene chloride resin applied to the outer surface of the resulting cup was 10.7μ, and the coat thickness on the inner surface of the cup was 7.4μ (total thickness;
18.1μ). In addition, the temperature of this polyvinylidene chloride resin at 20℃,
The oxygen permeability coefficient at 100%RH is 1.33×10 -14
cc·cm/cm 2 ·sec·cmHg and water vapor permeability coefficient (JIS Z-0208) are 0.97×10 −3 g·cm/m 2 ·day. Next, the coated laminated tube was heated at 60°C using a sunshine-type weatherometer manufactured by Suga Test Instruments Co., Ltd.
Irradiation was performed for 50 hours (irradiation energy = 1.2 × 10 7
joule/ m2 ). The thus obtained coated laminated cups, and for comparison, cups made of the ethylene-vinyl alcohol copolymer alone, which were not coated with the polyvinylidene chloride resin, were each treated according to the method described in the text. Oxygen permeability (Q O2 -D and Q O2 -W) and wavelength under humidity conditions are 280 mμ
Various measurements of ultraviolet transmittance (UVT) were carried out. The results are shown in Table 2. Furthermore, after filling the above two types of cups (single cup and coated cup) with 135 c.c. of tap water and sealing the mouth with laminated film containing aluminum foil,
It was left in a constant temperature bath adjusted to ℃ and 10% RH for 21 days. After 21 days, reduce the amount of tap water in each cup.
It was weighed using a top plate balance capable of weighing up to 500 mg, and the moisture loss (=1 - moisture content after standing/moisture content immediately after filling) was determined. The moisture loss was 0.84 for the ethylene-vinyl alcohol copolymer cup, whereas it was 0.84 for the ethylene-vinyl alcohol copolymer cup coated with polyvinylidene chloride resin of the above thickness on the inner and outer surfaces. It was impossible to measure weight loss within the range that the balance could detect.

【表】 実施例 3 下記の3層構成を有する四角型の積層カツプ
(内容積:540ml)を公知の共押出および固相圧空
成形法によつて成形した。 外層:メルトインデツクスが1.4g/10min、
密度が0.91g/c.c.のアイソタクテイツ
クポリプロピレン 接着層:無水マレイン酸変性ポリプロピレン
(三菱油化社製、P−40B) 内層:エチレン含有量が25モル%ケン化度が
99.6%のエチレン・ビニルアルコール
共重合体 この場合の各層の構成比は外層:接着層:内層
=1:0.1:1であり、前記エチレンビニルアル
コール共重合体層(内層)の厚さは平均148μで
あつた。 つぎに得られた積層カツプの内表面に、塩化ビ
ニリデンが90重量%、アクリロニトリルが10重量
%の組成比を有するポリ塩化ビニリデン系樹脂ラ
テツクス(分散媒:水、固形分濃度:30重量%)
を公知の浸漬塗布法によつて塗布し、空気循環式
オーブンを使用して、60℃で30分間乾燥した。さ
らにその後空気恒温槽によつて40℃で2日間エー
ジング(熱処理)をおこなつた。そして第2−C
図に示されるような層構成(外表面は前記アイソ
タクテイツクポリプロピレンで、内表面は前記ポ
リ塩化ビニリデン系樹脂)からなる塗布積層カツ
プを得た。得られたカツプの内表面に塗布された
前記ポリ塩化ビニリデン系樹脂の平均膜厚(コー
ト厚)は1.4μであつた。 尚、このポリ塩化ビニリデン系樹脂の20℃、
100%RHにおける酸素透過係数は、1.25×10-14
c.c.・cm/cm2・sec・cmHg、及び水蒸気透過係数
(JIS Z−0208)は0.89×10-3g・cm/m2・dayで
ある。 得られた塗布積層カツプおよび比較のために前
記ポリ塩化ビニリデン系樹脂が塗布されていない
前記積層カツプ基質について、本文に記載の方法
に従つて、各湿度条件下における酸素透過度(Q
O2−DおよびQO2−W)および波長が280mμに
おける紫外線透過率(UVT)の各測定をおこな
つた。結果を表3に示す。
[Table] Example 3 A rectangular laminated cup (inner volume: 540 ml) having the following three-layer structure was molded by known coextrusion and solid state air pressure forming methods. Outer layer: Melt index is 1.4g/10min,
Isotactic polypropylene with a density of 0.91 g/cc Adhesive layer: Maleic anhydride modified polypropylene (manufactured by Mitsubishi Yuka Co., Ltd., P-40B) Inner layer: ethylene content 25 mol% saponification degree
99.6% ethylene/vinyl alcohol copolymer In this case, the composition ratio of each layer is outer layer: adhesive layer: inner layer = 1:0.1:1, and the average thickness of the ethylene vinyl alcohol copolymer layer (inner layer) is 148μ It was hot. Next, a polyvinylidene chloride resin latex (dispersion medium: water, solid content concentration: 30% by weight) having a composition ratio of 90% by weight of vinylidene chloride and 10% by weight of acrylonitrile is applied to the inner surface of the obtained laminated cup.
was applied by a known dip coating method and dried at 60° C. for 30 minutes using a circulating air oven. Furthermore, aging (heat treatment) was performed for 2 days at 40°C in an air constant temperature bath. And the second-C
A coated laminated cup having the layer structure shown in the figure (the outer surface was made of the above-mentioned isotactic polypropylene, and the inner surface was made of the above-mentioned polyvinylidene chloride resin) was obtained. The average film thickness (coat thickness) of the polyvinylidene chloride resin coated on the inner surface of the resulting cup was 1.4 μm. In addition, the temperature of this polyvinylidene chloride resin at 20℃,
The oxygen permeability coefficient at 100%RH is 1.25×10 -14
cc·cm/cm 2 ·sec·cmHg and water vapor permeability coefficient (JIS Z-0208) are 0.89×10 −3 g·cm/m 2 ·day. The oxygen permeability (Q
O2 -D and Q O2 -W) and ultraviolet transmittance (UVT) at a wavelength of 280 mμ were measured. The results are shown in Table 3.

【表】 実施例 4 下記の2層構成を有する積層ボトル(内容積:
1000ml)を公知の共押出および二軸延伸中空成形
法によつて成形した。 外層:エチレン含有量が50モル%、ケン化度が
98.2%エチレン酢酸ビニル共重合体ケン
化物(エチレン・ビニルアルコール共重
合体) 内層:平均重合度が850のポリ塩化ビニル97重
量%と、3重量%のアクリロニトリル・
スチレン・ブタジエン共重合体とのブレ
ンド物。 この場合の各層の構成比は外層:内層=1:50
であり、前記エチレンビニルアルコール共重合体
層(外層)の厚さは平均9.7μであつた。 つぎに得られた積層ボトルの外表面に、塩化ビ
ニリデンが70重量%、アクリル酸メチルが10重量
%、およびアクリル酸グリシジル20重量%の組成
比を有するポリ塩化ビニリデン系樹脂ラテツクス
(分散媒:水、固形分濃度:64重量%)を公知の
スプレー塗布法によつて塗布し、空気循環式オー
ブンを使用して、100℃で10秒間乾燥した。さら
にその後空気恒温槽によつて100℃で15秒間エー
ジング(熱処理)をおこなつた。 そして第2−C図に示されるような層構成(内
表面は前記ポリ塩化ビニル系樹脂で、外表面は前
記ポリ塩化ビニリデン系樹脂)からなる塗布積層
ボトルを得た。得られたボトルの外表面に塗布さ
れた前記ポリ塩化ビニリデン系樹脂の平均膜厚
(コート厚)は22.1μであつた。 尚、このポリ塩化ビニリデン系樹脂の20℃、
100%RHにおける酸素透過係数は、2.49×10-14
c.c.・cm/cm2・sec・cmHg、及び水蒸気透過係数
(JIS Z−0208)は1.76×10-3g・cm/m2・dayで
ある。 次にこの塗布積層ボトルに、実施例2に記載の
ウエザロメーターを用いて、実施例2と同条件で
照射を行つた。 この様にして得られた塗布積層ボトルおよび比
較のために前記ポリ塩化ビニリデン系樹脂が塗布
されていない前記積層ボトル基質について、本文
に記載の方法に従つて、各湿度条件下における酸
素透過度(QO2−DおよびQO2−W)および波長
が280mμにおける紫外線透過率(UVT)の各測
定をおこなつた。結果を表4に示す。
[Table] Example 4 Laminated bottle with the following two-layer structure (inner volume:
1000 ml) was molded by known coextrusion and biaxial stretching blow molding methods. Outer layer: ethylene content is 50 mol%, saponification degree is
98.2% saponified ethylene vinyl acetate copolymer (ethylene/vinyl alcohol copolymer) Inner layer: 97% by weight polyvinyl chloride with an average degree of polymerization of 850 and 3% by weight acrylonitrile.
Blend product with styrene-butadiene copolymer. In this case, the composition ratio of each layer is outer layer: inner layer = 1:50
The average thickness of the ethylene vinyl alcohol copolymer layer (outer layer) was 9.7 μm. Next, a polyvinylidene chloride resin latex having a composition ratio of 70% by weight vinylidene chloride, 10% by weight methyl acrylate, and 20% by weight glycidyl acrylate (dispersion medium: water , solid content concentration: 64% by weight) was applied by a known spray coating method, and dried at 100° C. for 10 seconds using an air circulation oven. Furthermore, aging (heat treatment) was performed at 100°C for 15 seconds in an air constant temperature bath. A coated laminated bottle having a layer structure as shown in FIG. 2-C (the inner surface was made of the polyvinyl chloride resin and the outer surface was made of the polyvinylidene chloride resin) was obtained. The average film thickness (coat thickness) of the polyvinylidene chloride resin coated on the outer surface of the resulting bottle was 22.1 μm. In addition, the temperature of this polyvinylidene chloride resin at 20℃,
The oxygen permeability coefficient at 100%RH is 2.49×10 -14
cc·cm/cm 2 ·sec·cmHg and water vapor permeability coefficient (JIS Z-0208) are 1.76×10 −3 g·cm/m 2 ·day. Next, this coated laminated bottle was irradiated using the weatherometer described in Example 2 under the same conditions as in Example 2. The oxygen permeability ( Q O2 -D and Q O2 -W) and ultraviolet transmittance (UVT) at a wavelength of 280 mμ were measured. The results are shown in Table 4.

【表】 実施例 5 下記の3層構成を有する積層ボトル(内容積:
500ml)を公知の共押出および二軸延伸中空成形
法によつて成形した。 外層:エチレン含有量が5重量%のエチレン・
プロピレン共重合体 接着層:無水マレイン酸変性高密度ポリエチレ
ン(昭和電工社製、ER−403) 内層:エチレン含有量が45モル%、ケン化度
98.5%のエチレン・ビニルアルコール
共重合体 この場合の各層の構成比は外層:接着層:内層
=20:0.1:1であり、前記エチレン・ビニルア
ルコール共重合体層(内層)の厚さは平均25.2μ
であつた。 つぎに得られた積層ボトルの内表面に、塩化ビ
ニリデンが80重量%、メタアクリル酸メチル10重
量%、アクリル酸グリセリド10重量%の合計量
100重量部に対して塩化ビニル50重量部の組成比
を有するポリ塩化ビニリデン系樹脂ラテツクス
(分散媒:水、固形分濃度:45重量%)を公知の
スラツシユ塗布法によつて塗布し、空気循環式オ
ーブンを使用して、80℃で2分間乾燥した。さら
にその後、空気恒温槽によつて30℃で7日間エー
ジング(熱処理)をおこなつた。そして第2C図
に示されるような層構成(外表面は前記エチレン
プロピレン共重合体で、内表面は前記ポリ塩化ビ
ニリデン系樹脂)からなる塗布積層ボトルを得
た。得られたボトルの内表面に塗布された前記ポ
リ塩化ビニリデン系樹脂の平均膜厚(コート厚)
は11.3μであつた。 尚、このポリ塩化ビニリデン系樹脂の20℃、
100%RHにおける酸素透過係数は、6.80×10-14
c.c.・cm/cm2・sec・cmHg、及び水蒸気透過係数
(JIS Z−0208)は2.96×10-3g・cm/m2・dayで
ある。 得られた塗布積層ボトルおよび比較のために前
記ポリ塩化ビニリデン系樹脂が塗布されていない
前記積層ボトル基質について、本文に記載の方法
に従つて、各湿度条件下における酸素透過度(Q
O2−DおよびQO2−W)および波長が280mμに
おける紫外線透過率(UVT)の各測定をおこな
つた。結果を表5に示す。
[Table] Example 5 Laminated bottle with the following three-layer structure (inner volume:
500 ml) was molded by known coextrusion and biaxial stretching blow molding methods. Outer layer: Ethylene with an ethylene content of 5% by weight.
Propylene copolymer Adhesive layer: Maleic anhydride-modified high-density polyethylene (manufactured by Showa Denko, ER-403) Inner layer: 45 mol% ethylene content, degree of saponification
98.5% ethylene/vinyl alcohol copolymer In this case, the composition ratio of each layer is outer layer: adhesive layer: inner layer = 20:0.1:1, and the thickness of the ethylene/vinyl alcohol copolymer layer (inner layer) is the average 25.2μ
It was hot. Next, on the inner surface of the obtained laminated bottle, a total amount of 80% by weight vinylidene chloride, 10% by weight methyl methacrylate, and 10% by weight glyceride acrylate.
A polyvinylidene chloride resin latex (dispersion medium: water, solid content concentration: 45% by weight) having a composition ratio of 50 parts by weight of vinyl chloride to 100 parts by weight was applied by a known slush coating method, and air circulation was applied. It was dried at 80° C. for 2 minutes using an oven. After that, aging (heat treatment) was performed at 30°C for 7 days in an air constant temperature bath. A coated laminated bottle having a layer structure as shown in FIG. 2C (the outer surface was made of the above-mentioned ethylene propylene copolymer and the inner surface was made of the above-mentioned polyvinylidene chloride resin) was obtained. Average film thickness (coat thickness) of the polyvinylidene chloride resin applied to the inner surface of the obtained bottle
was 11.3μ. In addition, the temperature of this polyvinylidene chloride resin at 20℃,
The oxygen permeability coefficient at 100%RH is 6.80×10 -14
cc·cm/cm 2 ·sec·cmHg and water vapor permeability coefficient (JIS Z-0208) are 2.96×10 −3 g·cm/m 2 ·day. The oxygen permeability (Q
O2 -D and Q O2 -W) and ultraviolet transmittance (UVT) at a wavelength of 280 mμ were measured. The results are shown in Table 5.

【表】 実施例 6 下記の3層構成を有する積層チユーブ(内容
積:200ml)を公知の共押出および中空成形法に
よつて成形した。 内外層:実施例1におけるエチレン・ビニルア
ルコール共重合体70重量%、密度が
0.922g/c.c.、メルトインデツクスが
0.5g/10minの低密度ポリエチレン
20重量%およびイオンタイプがNa+
アイオノマー10重量%からなるブレン
ド物 中間層:密度が0.922g/c.c.、メルトインデツ
クスが0.5g/10minの低密度ポリエ
チレン この場合の各層の構成比は内外層:中間層=
1:10であり、前記エチレン・ビニルアルコール
共重合体を主体とするブレンド層(内外層)の厚
さは合計量として平均29.6μであつた。 つぎに得られた積層チユーブの内外表面に実施
例1に記載の組成比を有するポリ塩化ビニリデン
系樹脂ラテツクス(分散媒:水、固形分濃度:47
重量%)を公知の浸漬塗布法によつて塗布し、空
気循環式オーブンを使用して、50℃で1時間乾燥
した。さらにその後空気恒温槽によつて40℃で3
日間エージング(熱処理)をおこなつた。そして
第2−D図に示されるような層構成(内外表面は
前記ポリ塩化ビニリデン系樹脂)からなる塗布積
層チユーブを得た。得られたチユーブの内外表面
に塗布された前記ポリ塩化ビニリデン系樹脂の平
均膜厚(コート厚)は外表面で3.4μ、内表面で
3.1μであつた(合計量として6.5μ)。 次にこの塗布積層チユーブに、実施例2に記載
のウエザロメーターを用いて、実施例2と同条件
で照射を行つた。 この様にして得られた塗布積層チユーブおよび
比較のために前記ポリ塩化ビニリデン系樹脂が塗
布されていない前記積層チユーブ基質について、
本文に記載の方法に従つて、各湿度条件における
酸素透過度(QO2−DおよびQO2−W)および波
長が280mμにおける紫外線透過率(UVT)の各
測定をおこなつた。結果を表6に示す。
[Table] Example 6 A laminated tube (inner volume: 200 ml) having the following three-layer structure was molded by known coextrusion and blow molding methods. Inner and outer layers: 70% by weight of the ethylene/vinyl alcohol copolymer in Example 1, with a density of
0.922g/cc, melt index
0.5g/10min low density polyethylene
A blend consisting of 20% by weight and 10% by weight of an ionomer with an ion type of Na + .Intermediate layer: Low density polyethylene with a density of 0.922g/cc and a melt index of 0.5g/10min. : Middle class =
1:10, and the average thickness of the blend layers (inner and outer layers) mainly composed of the ethylene/vinyl alcohol copolymer was 29.6 μm as a total amount. Next, a polyvinylidene chloride resin latex having the composition ratio described in Example 1 (dispersion medium: water, solid content concentration: 47
% by weight) by a known dip coating method and dried at 50° C. for 1 hour using a circulating air oven. After that, it was heated to 40℃ in an air constant temperature bath.
Aging (heat treatment) was performed for one day. A coated laminated tube having the layer structure shown in FIG. 2-D (the inner and outer surfaces were made of the polyvinylidene chloride resin) was obtained. The average film thickness (coat thickness) of the polyvinylidene chloride resin applied to the inner and outer surfaces of the obtained tube was 3.4μ on the outer surface and 3.4μ on the inner surface.
It was 3.1μ (total amount: 6.5μ). Next, this coated laminated tube was irradiated using the weatherometer described in Example 2 under the same conditions as in Example 2. Regarding the coated laminated tube thus obtained and the laminated tube substrate not coated with the polyvinylidene chloride resin for comparison,
According to the method described in the text, oxygen permeability (Q O2 -D and Q O2 -W) under each humidity condition and ultraviolet transmittance (UVT) at a wavelength of 280 mμ were measured. The results are shown in Table 6.

【表】 実施例 7 実施例1に記載の5種類のボトルについて、市
販の18罐入りの大豆油を満注量充填し、口部を
アルミ箔入りの積層フイルムで密封したのち、30
℃、80%RHに調整された恒温槽(以下暗所と記
す)、及び30℃、80%RHに調整され且つ1000Lux
の光源を有する恒温槽(以下明所と記す)の中に
前記5種類の充填ボトルをそれぞれ静置し、2ケ
月間保存した。その後各ボトルに充填された大豆
油を取出し、基準油脂分析試験法(日本油化学協
会)に従つて各大豆油の過酸化物価を測定し過酸
化物価の変化率(=保存後の過酸化物価/充填直
後の過酸化物価)を計算した。 結果を表7に示す。値はいずれもn=3の平均
値である。
[Table] Example 7 The five types of bottles described in Example 1 were filled with 18 cans of commercially available soybean oil, and the mouth was sealed with a laminated film containing aluminum foil.
℃, 80% RH constant temperature bath (hereinafter referred to as dark place), and 30 ℃, 80% RH adjusted and 1000 Lux
Each of the five types of filled bottles was placed in a constant temperature bath (hereinafter referred to as a light place) equipped with a light source and stored for two months. After that, the soybean oil filled in each bottle was taken out and the peroxide value of each soybean oil was measured according to the standard oil and fat analysis test method (Japan Oil Chemists Association). /peroxide value immediately after filling) was calculated. The results are shown in Table 7. All values are average values of n=3.

【表】 前記ポリ塩化ビニリデン系樹脂の存在によつて
大豆油の過酸化物価は減少していること、光線に
よる過酸化物価の増加の傾向も抑制されているこ
とが表7から知られる。 実施例 8 実施例2に記載の2種類の積層カツプについ
て、市販の18罐入りのブドウ濃縮液を満注量充
填し、口部をアルミ箔入りの積層フイルムで密封
したのち、30℃、80%RHに調整された恒温槽
(以下暗所と記す)、及び30℃、80%RHに調整さ
れ且つ1000Luxの光源を有する恒温槽(以下明所
と記す)の中に前記2種類の充填カツプをそれぞ
れ静置し、3ケ月間保存した。その後各カツプに
充填されたブドウ濃縮液を取出し、分光光度計を
用いて波長が520mμにおける各ブドウ濃縮液の
吸光度を測定し、吸光度の変化率(=保存後の吸
光度/充填直後の吸光度)を計算した。 結果を表8に示す。値はいずれもn=3の平均
値である。
[Table] It is known from Table 7 that the presence of the polyvinylidene chloride resin reduces the peroxide value of soybean oil, and also suppresses the tendency for the peroxide value to increase due to light rays. Example 8 The two types of laminated cups described in Example 2 were filled with 18 cans of commercially available grape concentrate, and the openings were sealed with a laminated film containing aluminum foil. The above two types of filled cups were placed in a constant temperature bath adjusted to %RH (hereinafter referred to as dark place) and a constant temperature bath adjusted to 30℃, 80%RH and equipped with a 1000 Lux light source (hereinafter referred to as bright place). were left standing and stored for 3 months. After that, take out the grape concentrate filled in each cup, measure the absorbance of each grape concentrate at a wavelength of 520 mμ using a spectrophotometer, and calculate the rate of change in absorbance (= absorbance after storage / absorbance immediately after filling). I calculated it. The results are shown in Table 8. All values are average values of n=3.

【表】 実施例 9 実施例3に記載の2種類の積層カツプについ
て、市販の白味噌を満注量充填し、口部をアルミ
箔入りの積層フイルムで密封したのち、30℃、80
%RHに調整された恒温槽(以下暗所と記す)、及
び30℃、80%RHに調整され且つ1000Luxの光源
を有する恒温槽(以下明所と記す)の中に前記2
種類の充填カツプをそれぞれ静置し、4ケ月間保
存した。その後各カツプに充填された白味噌を取
出し、色差計を用いて各白味噌の明度を測定し、
明度の変化率(=保存後の明度/充填直後の明
度)を計算した。 結果を表9に示す。値はいずれもn=3の平均
値である。
[Table] Example 9 The two types of laminated cups described in Example 3 were filled with commercially available white miso, and after sealing the mouth with a laminated film containing aluminum foil, they were heated at 30°C and 80°C.
%RH (hereinafter referred to as dark place) and a constant temperature chamber adjusted to 30℃, 80%RH and equipped with a 1000 Lux light source (hereinafter referred to as bright place).
Each type of filled cup was left standing and stored for 4 months. After that, we took out the white miso filled in each cup and measured the brightness of each white miso using a color difference meter.
The rate of change in brightness (=brightness after storage/brightness immediately after filling) was calculated. The results are shown in Table 9. All values are average values of n=3.

【表】 実施例 10 実施例5に記載の2種類の積層ボトルについ
て、市販の18罐入りのピユーレを満注量充填
し、口部をアルミ箔入りの積層フイルムで密封し
たのち、30℃、80%RHに調整された恒温槽(以
下暗所と記す)、及び30℃、80%RHに調整され且
つ1000Luxの光源を有する恒温槽(以下明所と記
す)の中に前記2種類の充填ボトルをそれぞれ静
置し、6ケ月間保存した。その後各ボトルに充填
されたトマトピユーレを取出し、色差計を用いて
各ピユーレのa値を測定し、a値の変化率(=保
存後のa値/充填直後のa値)を計算した。 結果を表10に示す。値はいずれもn=3の平均
値である。
[Table] Example 10 The two types of laminated bottles described in Example 5 were filled with 18 cans of commercially available Piure, and after sealing the mouth with a laminated film containing aluminum foil, they were heated at 30°C. Fill the above two types in a constant temperature bath adjusted to 80% RH (hereinafter referred to as dark place) and a constant temperature bath adjusted to 30°C, 80% RH and equipped with a 1000 Lux light source (hereinafter referred to as bright place). Each bottle was left standing and stored for 6 months. Thereafter, the tomato puree filled in each bottle was taken out, the a value of each puree was measured using a color difference meter, and the rate of change in the a value (=a value after storage/a value immediately after filling) was calculated. The results are shown in Table 10. All values are average values of n=3.

【表】 実施例 11 実施例6に記載の2種類の積層チユーブについ
て、市販の18罐入りの大豆油を満注量充填し、
口部をアルミ箔入りの積層フイルムで密封したの
ち、30℃、80%RHに調整された恒温槽(以下暗
所と記す)、及び30℃、80%RHに調整され且つ
1000Luxの光源を有する恒温槽(以下明所と記
す)の中に前記2種類の充填チユーブをそれぞれ
静置し、3ケ月間保存した。その後各チユーブに
充填された大豆油を取出し、分光光度計を用いて
各大豆油の波長が470mμにおける吸光度を測定
し、吸光度の変化率(=保存後の吸光合/開罐直
後の吸光度)を計算した。 結果を表11に示す。値はいずれもn=3の平均
値である。
[Table] Example 11 The two types of laminated tubes described in Example 6 were filled with 18 cans of commercially available soybean oil, and
After sealing the mouth with a laminated film containing aluminum foil, it was placed in a constant temperature bath (hereinafter referred to as a dark place) adjusted to 30°C and 80% RH, and in a thermostatic chamber adjusted to 30°C and 80% RH.
The two types of filled tubes were placed in a constant temperature bath (hereinafter referred to as a light place) equipped with a 1000 Lux light source and stored for 3 months. After that, take out the soybean oil filled in each tube, measure the absorbance of each soybean oil at a wavelength of 470 mμ using a spectrophotometer, and calculate the rate of change in absorbance (= absorbance combination after storage / absorbance immediately after opening the can). I calculated it. The results are shown in Table 11. All values are average values of n=3.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のプラスチツク容器を一部断
面で示す側面図、第2−A図、第2−B図、第2
−C図及び第2−D図は、第1図の容器の器壁の
断面構造の数例を示す拡大断面図、第3図は、エ
チレンビニルアルコール共重合体を主体とする樹
脂層と塩化ビニリデン系樹脂層との合計厚み(t
CA+tEV)当たりの塩化ビニリデン系樹脂層の厚
み(tCA)比と、酸素透過度(測定温度27℃、関
係湿度:容器内0%RH、容器外15%RH、tCA
EVは15μに換算して示す)との関係を示す線図
で、曲線Aは実測値、曲線Bは調和平均理論値、
第4図は、tCA/(tCA+tEV)と高湿条件での
酸素透過度(測定温度27℃、関係湿度;容器内
100%RH、容器外93%RH、tCA+tEVは15μに
換算して示す)との関係を示す線図で、曲線
A′は実測値、曲線B′は調和平均理論値、第5図
は、プラスチツク容器における波長と透過率との
関係を示す線図で、曲線Aはポリオレフイン/エ
チレンビニルアルコール共重合体から成る容器壁
の透過率、曲線BはAの容器壁に塩化ビニリデ
ン/アクリル(メタクリル)共重合体の被覆を設
けたものの透過率、曲線C及びDは、Bの容器壁
を紫外線曝露に賦したものの透過率を夫々示す。 引照数字1はびん全体、2はびん周壁部、3は
びん口部、4はびん底部、5,5′はエチレン・
ビニルアルコール共重合体樹脂表面、6はプラス
チツク容器基質、7,7′は塩化ビニリデン・ア
クリル(メタクリル)共重合体の被覆層、8は耐
湿性熱可塑性樹脂。
FIG. 1 is a side view showing a plastic container of the present invention in partial cross section, FIG. 2-A, FIG. 2-B, and FIG.
Figures -C and 2-D are enlarged cross-sectional views showing several examples of the cross-sectional structure of the container wall of the container shown in Figure 1, and Figure 3 shows a resin layer mainly composed of ethylene vinyl alcohol copolymer and a chloride layer. Total thickness with vinylidene resin layer (t
The thickness (t CA ) of the vinylidene chloride resin layer per CA + t EV ) and the oxygen permeability (measurement temperature 27°C, relative humidity: 0% RH inside the container, 15% RH outside the container, t CA +
t EV is a diagram showing the relationship between the actual value and the value of 15μ, where curve A is the measured value, curve B is the harmonic mean theoretical value,
Figure 4 shows t CA / (t CA + t EV ) and oxygen permeability under high humidity conditions (measured temperature 27°C, relative humidity; inside the container).
100% RH, 93% RH outside the container, t CA + t EV is shown converted to 15μ).
A' is an actual measured value, curve B' is a harmonic average theoretical value, and Figure 5 is a diagram showing the relationship between wavelength and transmittance in plastic containers.Curve A is a container made of polyolefin/ethylene vinyl alcohol copolymer. Wall transmittance; curve B is the transmittance of container wall A with a coating of vinylidene chloride/acrylic (methacrylic) copolymer; curves C and D are transmittance of container wall B exposed to ultraviolet light; The rates are shown respectively. The reference number 1 is the entire bottle, 2 is the peripheral wall of the bottle, 3 is the mouth of the bottle, 4 is the bottom of the bottle, and 5 and 5' are the ethylene.
A vinyl alcohol copolymer resin surface, 6 a plastic container substrate, 7 and 7' a coating layer of vinylidene chloride/acrylic (methacrylic) copolymer, and 8 a moisture-resistant thermoplastic resin.

Claims (1)

【特許請求の範囲】 1 少なくとも一方の表面がエチレン−ビニルア
ルコール共重合体を主体とする樹脂から成るプラ
スチツク容器基質に、該エチレン−ビニルアルコ
ール共重合体を主体とする樹脂表面と隣接する位
置関係で、(a)99乃至70重量%の塩化ビニリデン、
及び(b)1乃至30重量%の下記式 式中、R1は水素原子或いはメチル基を表わ
し、Xはニトリル基或いは式、 (式中、Yはアルキルオキシ基、ヒドロキシア
ルキルオキシ基又はグリシジルオキシ基である)
で表わされる基である、 で表わされる単量体の少なくとも1種及び(c)前記
単量体(a)及び(b)の合計量100重量部当り50重量部
迄の塩化ビニリデン以外の塩素含有エチレン系不
飽和単量体の少なくとも1種から成る共重合体で
あつて、20℃、100%RHにおける酸素透過係数が
9×10-14c.c.・cm/cm2・sec・cmHg以下及び水蒸
気透過係数(JIS Z−0208)が3×10-3g・cm/
m2・day以下であるものの被覆層を設けたことを
特徴とする酸素バリヤー性の改善されたプラスチ
ツク容器。
[Scope of Claims] 1. A plastic container substrate in which at least one surface is made of a resin mainly composed of an ethylene-vinyl alcohol copolymer, and a positional relationship in which it is adjacent to the resin surface mainly composed of the ethylene-vinyl alcohol copolymer. (a) 99 to 70% by weight vinylidene chloride;
and (b) 1 to 30% by weight of the following formula: In the formula, R 1 represents a hydrogen atom or a methyl group, and X represents a nitrile group or a formula, (In the formula, Y is an alkyloxy group, a hydroxyalkyloxy group, or a glycidyloxy group)
A group represented by at least one monomer represented by and (c) containing up to 50 parts by weight of chlorine other than vinylidene chloride per 100 parts by weight of the total amount of the monomers (a) and (b). A copolymer consisting of at least one ethylenically unsaturated monomer, which has an oxygen permeability coefficient of 9×10 -14 cc・cm/cm 2・sec・cmHg or less at 20°C and 100%RH and water vapor permeability. Coefficient (JIS Z-0208) is 3×10 -3 g・cm/
A plastic container with improved oxygen barrier properties characterized by having a coating layer of less than m 2 ·day.
JP8427881A 1981-06-03 1981-06-03 Plastic vessel, oxygen barrier property thereof is improved Granted JPS57199657A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP8427881A JPS57199657A (en) 1981-06-03 1981-06-03 Plastic vessel, oxygen barrier property thereof is improved
AU84416/82A AU553648B2 (en) 1981-06-03 1982-06-02 Ethylene vinyl alcohol vessel
CA000404421A CA1201395A (en) 1981-06-03 1982-06-02 Plastic vessel excellent in storability
DE8282302875T DE3275926D1 (en) 1981-06-03 1982-06-03 Plastic vessel excellent in storability
EP82302875A EP0071330B1 (en) 1981-06-03 1982-06-03 Plastic vessel excellent in storability
GB08216214A GB2106471B (en) 1981-06-03 1982-06-03 Coated plastics vessels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8427881A JPS57199657A (en) 1981-06-03 1981-06-03 Plastic vessel, oxygen barrier property thereof is improved

Publications (2)

Publication Number Publication Date
JPS57199657A JPS57199657A (en) 1982-12-07
JPS6233947B2 true JPS6233947B2 (en) 1987-07-23

Family

ID=13825979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8427881A Granted JPS57199657A (en) 1981-06-03 1981-06-03 Plastic vessel, oxygen barrier property thereof is improved

Country Status (1)

Country Link
JP (1) JPS57199657A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01213137A (en) * 1988-02-17 1989-08-25 Sumitomo Bakelite Co Ltd Container with low absorption property
FR2653756B1 (en) * 1989-10-31 1992-05-15 Ono MULTILAYER STRUCTURE FOR PACKAGING OXYGEN SENSITIVE PRODUCTS.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324368A (en) * 1976-08-19 1978-03-07 Nippon Synthetic Chem Ind Method of treatment of film * sheet or vessel of polyvinyl alcohol
JPS541756A (en) * 1977-05-12 1979-01-08 Ai Teii W Ateko Gmbh Fastener
JPS5684277A (en) * 1979-12-07 1981-07-09 Obayashi Gumi Kk Underground crude oil storage facility

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324368A (en) * 1976-08-19 1978-03-07 Nippon Synthetic Chem Ind Method of treatment of film * sheet or vessel of polyvinyl alcohol
JPS541756A (en) * 1977-05-12 1979-01-08 Ai Teii W Ateko Gmbh Fastener
JPS5684277A (en) * 1979-12-07 1981-07-09 Obayashi Gumi Kk Underground crude oil storage facility

Also Published As

Publication number Publication date
JPS57199657A (en) 1982-12-07

Similar Documents

Publication Publication Date Title
US4551366A (en) Composite vessel excellent in preservability and process for preparation thereof
EP0071330B1 (en) Plastic vessel excellent in storability
US4079850A (en) Multi-layer blow molded container and process for preparation thereof
EP0039626B2 (en) Plastic bottles and process for preparation thereof
US3932692A (en) Resinious laminates having improved gas permeation and delamination resistance
US5622780A (en) Microwaveable multilayer films with metal-like appearance
US11167534B2 (en) Polymer barrier liminate tube for container
JPS633745B2 (en)
JPH04270654A (en) Plastic container with mat-like appearance
NZ235390A (en) Resin composition comprising a mixture of ethylene-vinyl acetate copolymers and its use in a layered product
JPH03203641A (en) Heat-sealable opaque multi-layer oriented film
JP3702503B2 (en) Oily food container
JPS6233947B2 (en)
JPS649191B2 (en)
CA1272436A (en) Laminate substrate and article therefrom incorporating fluorinated polyethylene
JPS6235396B2 (en)
US4693396A (en) Laminate substrate and article therefrom incorporating fluorinated polyethylene
JPS60122148A (en) Laminate
JPH0134152B2 (en)
JPH0156671B2 (en)
JPS6229300B2 (en)
JPS5993646A (en) Plastic vessel with label
JPS58154755A (en) Composite container having excellent preservability and production thereof
JP2001150605A (en) Multilayered structure
JPS62784B2 (en)