JPS6233739A - Manufacture of nitrided sintered alloy - Google Patents

Manufacture of nitrided sintered alloy

Info

Publication number
JPS6233739A
JPS6233739A JP60170813A JP17081385A JPS6233739A JP S6233739 A JPS6233739 A JP S6233739A JP 60170813 A JP60170813 A JP 60170813A JP 17081385 A JP17081385 A JP 17081385A JP S6233739 A JPS6233739 A JP S6233739A
Authority
JP
Japan
Prior art keywords
alloy
fine powder
layered
powder
nitrided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60170813A
Other languages
Japanese (ja)
Inventor
Katsusato Fujiyoshi
藤好 克聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60170813A priority Critical patent/JPS6233739A/en
Publication of JPS6233739A publication Critical patent/JPS6233739A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a nitrided sintered alloy having superior resistance, tensile strength and compressive strength by mixing fine powder of an alloy of plural metallic elements other than carbon with a prescribed amount of fine powder of a nitrogen compound to form fine powder of a lamellar and by sintering this fine powder. CONSTITUTION:An alloy obtd. by melting plural metallic elements other than carbon, e.g., an alloy consisting of, by weight, 4% Cr, 6-10% Mo, 6-12% W, 3.5-5% V, 5-12% Co and the balance Fe is pulverized. The resulting the fine alloy powder is mixed with a prescribed amount of fine powder of a nitride having a smaller particle size than the alloy powder, and they are kneaded by means of a ball mill to form fine powder of a lamellar alloy. This fine powder is sintered to obtain a sintered alloy contg. nitride.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明はマイクロパンチ等のマイクロエ貝やドツトワイ
ヤー等に使用される窒化焼結合金の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method for manufacturing a nitrided sintered alloy used for micro punches, dot wires, etc.

「従来の技術」 一般にドラ1−ワイヤーやマイクロドリル等は抗折力、
引張強度、圧縮強度が大きく、ロー付は性が良く、かつ
耐摩耗性に優れたしのが要求されている。このため、従
来、超硬ヤ)パウダーハイス等の材質を用いて形成され
ているが、これでは十分な性能が得られないという欠点
があった。
"Conventional technology" In general, drill wires, micro drills, etc. have transverse rupture strength,
There is a demand for steel that has high tensile strength and compressive strength, good brazing properties, and excellent wear resistance. For this reason, they have conventionally been formed using materials such as cemented carbide and powdered high speed steel, but this has the disadvantage that sufficient performance cannot be obtained.

「本発明の目的1 本発明は以−[のような従来の欠点に鑑み、従来の超硬
やパウダーハイス等よりbsれた抗折力、引張強度、圧
縮強度が得られるとともに、ロー付は性も良く、かつ耐
摩耗性に優れたマイクロ工具やドラ1−ワイヤー等に使
用することのできる窒化焼結合金の製造方法を1′?る
にある。
``Object of the present invention 1 In view of the conventional drawbacks as described below, the present invention provides a method that can obtain transverse rupture strength, tensile strength, and compressive strength that are higher than those of conventional carbide, powder high-speed steel, etc., and that does not require brazing. The present invention provides a method for producing a nitrided sintered alloy that has good properties and excellent wear resistance and can be used for micro tools, driver wires, etc.

[本発明の目的を)ヱ成りるための手段」本発明はカー
ボンを除く複数種の金属元素を溶解した合金を微粉末化
する合金の微粉未形成工程と、この微粉未形成工程で形
成した微粉末合金に所定間の該微粉末合金J:りも微粉
末状の窒化化合物を混合してボールミルで混練し層状合
金の微粉末を形成する微粉末層状合金形成工程と、この
微粉末層状合金形成工程で形成された微粉末層状合金を
焼結して窒化化合物を含む焼結合金を形成する焼結工程
とを含むことをを特徴としている。
[Means for achieving the object of the present invention] The present invention consists of an alloy non-fine powder forming step in which an alloy in which multiple metal elements other than carbon are dissolved is pulverized, and an alloy formed by this non-fine powder forming step. A step of forming a fine powder layered alloy in which a nitride compound in the form of a fine powder is mixed with the fine powder alloy for a predetermined period of time and kneaded in a ball mill to form a fine powder of a layered alloy, and this fine powder layered alloy. The method is characterized in that it includes a sintering step of sintering the fine powder layered alloy formed in the forming step to form a sintered alloy containing a nitride compound.

「本発明の実施例」 以下、図面に示す実施例により、本発明の詳細な説明す
る。
"Embodiments of the present invention" The present invention will be described in detail below with reference to embodiments shown in the drawings.

第1図および第2図の実施例において、1はカーボンを
除く複数種の金属元素で形成した合金2を微粉末化する
合金の微粉未形成■稈で、この合金の微粉未形成工程1
は高周波溶解炉3で、複数種の金属元素、例−えばCr
が4.0±0゛05、MOが±0,25       
 ±0.25     、    ±0,156.0 
   、Wが10.0    、Vか5.0±0,25 Coが10.0    、残量が「eの市吊パーゼント
の溶解した溶製材料4を作り、この溶解した溶製材料4
をガスあるいは水5を用いたアトマイズ装置6によって
微粉末合金7を形成するらのである。
In the examples shown in FIGS. 1 and 2, 1 is an unpulverized culm of an alloy for which an alloy 2 made of multiple types of metal elements other than carbon is pulverized;
is a high frequency melting furnace 3, in which multiple types of metal elements, for example Cr
is 4.0±0゛05, MO is ±0.25
±0.25, ±0,156.0
, W is 10.0, V is 5.0 ± 0,25 Co is 10.0, and the remaining amount is ``e''.
A fine powder alloy 7 is formed by an atomizing device 6 using gas or water 5.

8は前記微粉未形成工程1で形成した微粉末合金7に所
定間の微粉末合金7より微粉末状のカーボンナイトライ
ドC3N4等の窒素化合物9を2wt%を超えない串を
ボールミル10を用いて混練し微粉末層状合金11を形
成する微粉末層状合金形成工程で、この微粉末層状合金
形成工程8で使用するボールミル10は窒素ガス雰囲気
中で行ない、第2図に示すように微粉末合金7の略中央
部に窒素化合物9が入込んだ微粉末層状合金11を形成
する。
8 is a ball mill 10 in which a fine powder nitrogen compound 9 such as carbon nitride C3N4 is added to the fine powder alloy 7 formed in the above-mentioned fine powder non-forming step 1 in a predetermined amount using a ball mill 10. In the fine powder layered alloy forming step of kneading and forming the fine powder layered alloy 11, the ball mill 10 used in the fine powder layered alloy forming step 8 is operated in a nitrogen gas atmosphere, and the fine powder layered alloy 7 is kneaded as shown in FIG. A fine powder layered alloy 11 containing a nitrogen compound 9 is formed approximately in the center of the layered alloy.

12は前記微粉末層状合金形成工程8で形成された微粉
末層状合金11を焼結して窒化焼結合金13を形成する
焼結工程で、この焼結工程12は、微粉末層状合金11
をカプセル14に入れ、真空脱気してカブピル封入する
カプセル封入工程15と、このカプセル封入工程15で
カプセル14に封入された微粉末層状合金11を熱間等
方圧力装置(+−11P)16を用いて1000気圧以
上、1220℃〜1240℃で60分以上加熱処理する
I−1I P処理工程17とから構成されている。
12 is a sintering step in which the fine powder layered alloy 11 formed in the fine powder layered alloy forming step 8 is sintered to form a nitrided sintered alloy 13;
is placed in a capsule 14, vacuum degassed, and encapsulated in Kabupil.The fine powder layered alloy 11 encapsulated in the capsule 14 in this encapsulation step 15 is placed in a hot isostatic pressure device (+-11P) 16. The I-1 IP treatment step 17 is a heat treatment at 1,220° C. to 1,240° C. for 60 minutes or more at a pressure of 1,000 atmospheres or more and a temperature of 1,220° C. to 1,240° C.

18は前記焼結工程12を経た窒化焼結合金13を所定
の製品に加工する加エエ稈で、この加工工V118は前
記焼結工程12を経たものを皮むきする皮むぎ工程19
と、この皮むぎ工程19を経たものを鍛造して母材を形
成する鍛造工程20と、この鍛造工程20で目的寸法の
為に形成した母材をスラブ、ビレットあるいはブルーム
等を製品母材に形成する製品母材形成工程21と、この
製品母材形成工程21を経たものをドツトワイヤーやマ
イクロ工具等を形成する場合に所定のバー材や線材に形
成する引抜き工程22とから構成されている。
18 is a processing machine that processes the nitrided sintered alloy 13 that has undergone the sintering process 12 into a predetermined product, and this processing machine V118 is a peeling process 19 that peels the product that has undergone the sintering process 12.
Then, there is a forging process 20 in which the material that has gone through this peeling process 19 is forged to form a base material, and the base material formed to the desired size in this forging process 20 is converted into a product base material such as a slab, billet, or bloom. It consists of a product base material forming step 21, and a drawing step 22, in which the product that has passed through the product base material forming step 21 is formed into a predetermined bar material or wire rod when forming dot wires, micro tools, etc. .

上記方法により製造された窒化焼結合金13は、同一金
属成分で形成された従来の焼結合金と比べ耐摩耗性が非
常に優れ、抗折力、引張強度、圧縮強度が高く、耐摩耗
性に優れており、5ミリ丸×1501の試験片で真空度
10−4の真空炉中で焼入れ温度1180℃X3分、1
210’Cx 3分で不活性ガスで急空冷、焼戻し54
0℃×60分を3回行ったが、待にHv硬度で1250
を超えHRC硬度では4ポイント硬度が増し74に達し
、今までの鉄基合金では不可能とされていた高硬度が得
られた。
The nitrided sintered alloy 13 manufactured by the above method has extremely superior wear resistance compared to conventional sintered alloys made of the same metal components, and has high transverse rupture strength, high tensile strength, and compressive strength, and has high wear resistance. A test piece of 5mm round x 1501mm was quenched at 1180℃ for 3 minutes in a vacuum furnace with a degree of vacuum of 10-4.
210'Cx Rapid air cooling with inert gas for 3 minutes, tempering 54
I performed 0℃ x 60 minutes three times, but the Hv hardness was 1250.
The HRC hardness increased by 4 points to 74, achieving a high hardness that was previously thought to be impossible with iron-based alloys.

「本発明の効果」 以上の説明から明らかなように、本発明にあっては次に
列挙する効果がある。
"Effects of the Present Invention" As is clear from the above description, the present invention has the following effects.

(1)カーボンを除く複数種の金属元素で形成した合金
を微粉末状にしたものに所定量の微粉末状の窒素化合物
を混合してボールミルで混練し微粉末の層状合金を形成
した後、焼結工程を行なって窒化焼結合金を形成してい
るので、従来と同じ成分の金属材を用いた焼結金属に比
較して、冷間仕上、伸線工程でも断面減少率は15%以
上で刊(移し、生産性もよく仕上げ伸線後の面粗ざは従
来は0.6s台だったが上記方法では0.3s台であっ
た。窒素化合物中の硬化機能を製品たりではなく製造工
程中で6リダクシヨンの問題も発生しにクク寸べりつす
く、大きく発揮することができる。したがって、従来の
同一金属成分で形成した場合の焼結合金と比べ、抗折力
、引張強度、圧縮強度が高く、耐摩耗性に優れている。
(1) A predetermined amount of a finely powdered nitrogen compound is mixed with a finely powdered alloy formed of multiple types of metal elements excluding carbon, and the mixture is kneaded in a ball mill to form a finely powdered layered alloy. Since the nitrided sintered alloy is formed through a sintering process, the cross-sectional area reduction rate is over 15% during cold finishing and wire drawing processes, compared to conventional sintered metals using metal materials with the same components. (transfer, productivity is good and the surface roughness after finishing wire drawing was in the 0.6s range conventionally, but with the above method it was in the 0.3s range.The hardening function in nitrogen compounds was used in manufacturing rather than products) The problem of 6-reduction does not occur during the process, and it can exhibit greater strength and strength than conventional sintered alloys made of the same metal components. High strength and excellent wear resistance.

(2)カーボンを除く合金は鉄を主体に形成されている
ので、ロー付は性も良好である。
(2) Since the alloy excluding carbon is mainly made of iron, brazing properties are good.

21:製品は相形成工程、22:引扱き工程。21: Product undergoes phase formation process, 22: Handling process.

(3)カーボンを除く微粉末合金に所定ωの微粉末状の
窒素化合物を混合してボールミルで混練し微粉末層状合
金を形成1′れば良いので、比較的簡単に製jΔするこ
とができる。
(3) All that is required is to mix a finely powdered nitrogen compound of a predetermined ω with a finely powdered alloy excluding carbon and knead it in a ball mill to form a finely powdered layered alloy 1′, so it is relatively easy to manufacture jΔ. .

(4)前記(1)によって、特殊な製造設備を必要とし
ないので、容易に製造することができる。
(4) According to the above (1), no special manufacturing equipment is required, so manufacturing can be performed easily.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すI稈図、第2図は微粉
末層状合金の拡大断面図である。 1:合金の微粉未形成工程、 2:合金、      3:高周波溶解炉、4:溶製材
料、    5:ガスあるいは水、6:アトマイズ装胃
、 7:微わ)未合金、8:微粉末層状合金形成工程、
FIG. 1 is an I-culm diagram showing one embodiment of the present invention, and FIG. 2 is an enlarged sectional view of a fine powder layered alloy. 1: Alloy fine powder non-formation process, 2: Alloy, 3: High frequency melting furnace, 4: Molten material, 5: Gas or water, 6: Atomized gastric filling, 7: Slight) unalloyed, 8: Fine powder layered alloy forming process,

Claims (1)

【特許請求の範囲】 1)カーボンを除く複数種の金属元素を溶解した合金を
微粉末化する合金の微粉未形成工程と、この微粉未形成
工程で形成した微粉末合金に所定間の該微粉末合金より
も微粉末状の窒化化合物を混合してボールミルで混練し
層状合金の微粉末を形成する微粉末層状合金形成工程と
、この微粉末層状合金形成工程で形成された微粉末層状
合金を焼結して窒化化合物を含む焼結合金を形成する焼
結工程とを含むことを特徴とする窒化焼結合金の製造方
法。 2)合金はCrが4.0、Moが6〜10、Wが6〜1
2、Vが3.5〜5、Coが5〜12、残量がFeの重
量パーセントを含む溶製材料として作られたものである
ことを特徴とする特許請求の範囲第1項記載の窒化焼結
合金の製造方法。 3)微粉未形成工程は溶製材料として作られた合金をガ
スあるいは水を用いたアトマイズ装置を用いて微粉末に
することを特徴とする特許請求の範囲第1項または第2
項記載の窒化焼結合金の製造方法。 4)層状合金粉未形成工程はN_2ガス雰囲気のボール
ミルで行なうことを特徴とする特許請求の範囲第1項な
いし第3項いずれかに記載の窒化焼結合金の製造方法。 5)焼結工程は層状合金をカプセルに入れ、真空脱気す
るカプセル封入工程と、このカプセル封入工程を経たも
のを熱間等方圧力装置(HIP)を用いて炉内を真空脱
気後不活性ガスを充填して1000気圧以上、1220
℃〜1240℃で60分位加熱処理するHIP処理工程
とからなることを特徴とする特許請求の範囲第1項ない
し第4項いずれかに記載の窒化焼結合金の製造方法。
[Claims] 1) An alloy non-fine powder formation step in which an alloy in which multiple types of metal elements other than carbon are dissolved is pulverized, and the fine powder alloy formed in this non-fine powder formation step is subjected to the micronization process for a predetermined period of time. A fine powder layered alloy formation process in which a nitride compound in a finer powder form than the powder alloy is mixed and kneaded in a ball mill to form a fine powder of a layered alloy, and a fine powder layered alloy formed in this fine powder layered alloy formation process. 1. A method for producing a nitrided sintered alloy, the method comprising: sintering to form a sintered alloy containing a nitrided compound. 2) The alloy has 4.0 Cr, 6-10 Mo, and 6-1 W
2. The nitriding material according to claim 1, wherein the nitriding material is produced as a melted material containing 3.5 to 5 V, 5 to 12 Co, and a balance of Fe in the weight percent. Method for producing sintered alloy. 3) The non-fine powder forming step is characterized in that the alloy made as a melted material is made into a fine powder using an atomizing device using gas or water.
A method for producing a nitrided sintered alloy as described in . 4) The method for producing a nitrided sintered alloy according to any one of claims 1 to 3, wherein the step of not forming layered alloy powder is carried out in a ball mill in an N_2 gas atmosphere. 5) The sintering process includes an encapsulation process in which the layered alloy is placed in a capsule and vacuum degassed, and the material that has passed through this encapsulation process is vacuum degassed in a furnace using a hot isostatic pressure device (HIP) and then evacuated. More than 1000 atmospheres when filled with active gas, 1220
5. The method for producing a nitrided sintered alloy according to any one of claims 1 to 4, which comprises a HIP treatment step of heat-treating at a temperature of 1240°C to 1240°C for about 60 minutes.
JP60170813A 1985-08-02 1985-08-02 Manufacture of nitrided sintered alloy Pending JPS6233739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60170813A JPS6233739A (en) 1985-08-02 1985-08-02 Manufacture of nitrided sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60170813A JPS6233739A (en) 1985-08-02 1985-08-02 Manufacture of nitrided sintered alloy

Publications (1)

Publication Number Publication Date
JPS6233739A true JPS6233739A (en) 1987-02-13

Family

ID=15911809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60170813A Pending JPS6233739A (en) 1985-08-02 1985-08-02 Manufacture of nitrided sintered alloy

Country Status (1)

Country Link
JP (1) JPS6233739A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0539501A (en) * 1991-05-27 1993-02-19 Daido Steel Co Ltd Hard particle dispersed alloy powder and production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0539501A (en) * 1991-05-27 1993-02-19 Daido Steel Co Ltd Hard particle dispersed alloy powder and production thereof

Similar Documents

Publication Publication Date Title
EP2376248B1 (en) Method for the manufacture of a metal part
US20020106297A1 (en) Co-base target and method of producing the same
US4253874A (en) Alloys steel powders
WO1994005822A1 (en) Powder metal alloy process
JPS61250123A (en) Compressed article prepared from heat-treated amorphous lumpy parts
US6468468B1 (en) Method for preparation of sintered parts from an aluminum sinter mixture
EP0311369A1 (en) Method for the production of a composite metal powder and the powder produced thereby
JP2002504188A (en) Manufacturing method for high density high carbon sintered metal powder steel parts
US20120148440A1 (en) Copper brazing filler metal
US6019937A (en) Press and sinter process for high density components
JPS63297502A (en) High-strength alloy steel powder for powder metallurgy and its production
EP0202886B1 (en) Canless method for hot working gas atomized powders
JPS6233739A (en) Manufacture of nitrided sintered alloy
JPH03285040A (en) Manufacture of powder high speed steel
US11085109B2 (en) Method of manufacturing a crystalline aluminum-iron-silicon alloy
JPS5983701A (en) Preparation of high carbon alloyed steel powder having excellent sintering property
JPS62188735A (en) Manufacture of tini alloy wire or plate
US20230151471A1 (en) Fe-BASED ALLOY FOR MELT-SOLIDIFICATION-SHAPING AND METAL POWDER
JPH0254760A (en) Manufacture of target
JPH0421730A (en) Manufacture of powder-sintered titanium and powder-sintered titanium base alloy
JPS6119756A (en) Preparation of sintered high speed steel
EP3950174A1 (en) Iron-based mixed powder for powder metallurgy, and iron-base sintered body
JPH1046208A (en) Production of ti-ni base alloy sintered body
JP2684477B2 (en) High carbon steel manufacturing method
JPH03193848A (en) Wear resistant roll and its production