JPS623370B2 - - Google Patents

Info

Publication number
JPS623370B2
JPS623370B2 JP8610580A JP8610580A JPS623370B2 JP S623370 B2 JPS623370 B2 JP S623370B2 JP 8610580 A JP8610580 A JP 8610580A JP 8610580 A JP8610580 A JP 8610580A JP S623370 B2 JPS623370 B2 JP S623370B2
Authority
JP
Japan
Prior art keywords
counter electrode
discharge
analysis
tip
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8610580A
Other languages
Japanese (ja)
Other versions
JPS5712350A (en
Inventor
Yoshitaka Kayao
Juji Okuyama
Sakae Hamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8610580A priority Critical patent/JPS5712350A/en
Publication of JPS5712350A publication Critical patent/JPS5712350A/en
Publication of JPS623370B2 publication Critical patent/JPS623370B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • G01N21/67Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using electric arcs or discharges

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

【発明の詳細な説明】 本発明は、発光分光分析における対電極先端形
状の変化、つまり放電における蒸発物質の対電極
先端への付着による電極先端形状の変化を最少限
に抑えて対電極が多数回の放電において安定して
使用できる方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention minimizes changes in the shape of the counter electrode tip in emission spectrometry, that is, changes in the shape of the tip of the counter electrode due to adhesion of evaporated substances to the tip of the counter electrode during discharge. The present invention relates to a method that can be stably used during multiple discharges.

発光分光分析は周知の通り、試料と対電極間で
放電し、放電スペクトルを分光器にて各元素毎の
スペクトルに回折し、定量するものである。ここ
で回折について説明すれば、光は直進するもので
あるが、ある光を通さない微小物体をおきその前
に平行光源をおくとき、その背後において光を観
測するとその物体のうしろに影がうつらない現象
がみられ、あたかも光がおれ曲つてくるような現
象を回折現象といい、この現象には回折格子が利
用されている。回折格子には、波長と同じ程度の
間隔で溝を切ることによつて光はふつうの反射で
なく、回折現象をおこす。そして、再現性のよい
スペクトル強度を得るためには、放電間隙、つま
り試料と対電極の間隙と電極先端形状を一定に保
たなければならない。しかし分析回数が進むにつ
れて、対電極先端に付着物がたまつて形状が変化
し、放電間隙も変化するため、スペクトル強度の
再現性が悪化する。このため対電極の使用回数を
少なくし、交換頻度を多くすることで再現性を一
定に保つているが、作業性が悪い。
As is well known, emission spectrometry involves generating a discharge between a sample and a counter electrode, diffracting the discharge spectrum into spectra for each element using a spectrometer, and quantifying the spectrum. To explain diffraction here, light travels in a straight line, but when you place a parallel light source in front of a microscopic object that does not allow light to pass through, and observe the light behind it, a shadow appears behind the object. A phenomenon in which light does not transmit and appears as if it is distorted is called a diffraction phenomenon, and a diffraction grating is used for this phenomenon. By cutting grooves in a diffraction grating at intervals comparable to the wavelength, light undergoes a diffraction phenomenon instead of normal reflection. In order to obtain a spectral intensity with good reproducibility, the discharge gap, that is, the gap between the sample and the counter electrode, and the shape of the electrode tip must be kept constant. However, as the number of analyzes progresses, deposits accumulate on the tip of the counter electrode, causing its shape to change and the discharge gap to change as well, thereby deteriorating the reproducibility of the spectral intensity. For this reason, reproducibility is maintained constant by reducing the number of times the counter electrode is used and increasing the frequency of replacement, but workability is poor.

本発明は、発光分光分析における対電極先端の
付着物のみを取り除き、対電極先端形状の変化を
最少限に抑え、交換頻度を減少郎させるための方
法であり、以下図面により詳細に説明する。
The present invention is a method for removing only the deposits on the tip of a counter electrode in emission spectrometry, minimizing changes in the shape of the tip of the counter electrode, and reducing the frequency of replacement, and will be described in detail below with reference to the drawings.

第1図は、発光分光分析装置に対電極クリーニ
ング回路を付加した装置構成例を示したものであ
る。
FIG. 1 shows an example of an apparatus configuration in which a counter electrode cleaning circuit is added to an emission spectrometer.

発光装置1とスタンド5、分光器測光装置6を
接続し、発光装置1のスタート釦を押すことによ
り発光装置1が動作しあらかじめ設定された分析
時間だけスタンド5の試料と対電極間で放電を行
ない、そこで得られた光を分光器測光装置6に導
き分析する。分析終了後、ただちにコントローラ
2により発光装置1とスタンド5を切はなし、対
電極クリーニング回路3をスタンド5に接続し、
クリーニング用放電タイマー4で決められた時間
だけ放電し、対電極先端の付着物を取りのぞく。
付着物が除去されたあと、コントローラ2により
対電極クリーニング回路3を切りはなし発光装置
1を接続しなおす。なお対電極クリーニング回路
3の回路図を第2図に示す。
By connecting the light emitting device 1, the stand 5, and the spectrometer photometer 6, and pressing the start button of the light emitting device 1, the light emitting device 1 operates and discharges between the sample on the stand 5 and the counter electrode for a preset analysis time. The light obtained there is guided to a spectrometer photometer 6 and analyzed. After the analysis is completed, the controller 2 immediately disconnects the light emitting device 1 and the stand 5, connects the counter electrode cleaning circuit 3 to the stand 5,
Discharge is performed for a period determined by a cleaning discharge timer 4 to remove deposits on the tip of the counter electrode.
After the deposits are removed, the controller 2 disconnects the counter electrode cleaning circuit 3 and reconnects the light emitting device 1. A circuit diagram of the counter electrode cleaning circuit 3 is shown in FIG.

コンデンサー7と自己誘導8を図のように配置
にした放電回路でそれぞれ3000pF以下、50μH
以下の容量にし、二次電圧をトランス9で7KVp
以上に昇圧させ、振動放電条件、つまり分析時に
比べて弱い高圧スパーク放電にさせ、試料10と
対電極11の間で放電させることにより、分析用
放電で対電極につもつた付着物のみを除去する放
電回路である。
A discharge circuit with capacitor 7 and self-induction 8 arranged as shown in the figure, each with 3000pF or less and 50μH
The capacity is as follows, and the secondary voltage is 7KVp with transformer 9.
By raising the pressure above the oscillating discharge condition, that is, a high-pressure spark discharge weaker than that during analysis, and discharging it between the sample 10 and the counter electrode 11, only the deposits stuck to the counter electrode are removed by the analytical discharge. This is a discharge circuit.

以下に本発明の適用例を示す。定量分析用放電
条件は、L(自己誘導)=0.5μH,C=5μF,
R=2Ω、二次電圧=400Vpで放電時間は予備放
電時間4秒、積分時間5秒とした。対電極クリー
ニング用放電条件は定量分析用放電のトリガーで
あるイグナイター回路に自己誘導Lを挿入し、時
定数を小さくした振動放電条件でL=10μH,C
=500pF,R=Residual、二次電圧=10KVpで対
電極クリーニング用放電時間0.4秒とした。これ
らの条件で、鋼、ステンレス鋼を分析したところ
第3図〔Aは従来法、Bは本発明法による〕に示
すように、ステンレス鋼の〔Cr〕分析値は従来
法では放電回数が増すと徐々に上がる傾向が見ら
れ、かつ100回放電での分析値の最大と最小の差
rは0.50%(at Cr=19.10%)となつているが、
本発明法では300回放電でr=0.19%(at Cr=
19.10%)と半分以下になつている。また、第4
図に示す鋼の〔C〕分析値は、従来法では放電回
数が増すと徐々に下がる傾向が見られ、かつ、
100回放電でr=0.36%(at C=1.09%)となつ
ているが、本発明法では300回放電でr=0.22%
(at C=1.09%)と半分程度になつている。この
ことは本発明により対電極先端形状および放電間
隙が一定になつていることを示している。また、
本発明法で連続300回分析し、くり返し精度σを
もとめてみると、ステンレス鋼の〔Cr〕分析値
はσ=0.034%(CV=0.18%)、鋼の〔C〕分析
値はσ=0.0049%(CV=0.45%)と非常に良好
な結果が得られた。
Application examples of the present invention are shown below. The discharge conditions for quantitative analysis are L (self-induction) = 0.5 μH, C = 5 μF,
R=2Ω, secondary voltage=400Vp, and the discharge time was a preliminary discharge time of 4 seconds and an integration time of 5 seconds. The discharge conditions for cleaning the counter electrode were a self-induction L inserted into the igniter circuit that triggers the discharge for quantitative analysis, and an oscillating discharge condition with a small time constant, L = 10 μH, C.
= 500 pF, R = Residual, secondary voltage = 10 KVp, and discharge time for cleaning the counter electrode was 0.4 seconds. When steel and stainless steel were analyzed under these conditions, as shown in Figure 3 [A is the conventional method, B is the method of the present invention], the analysis value of [Cr] of stainless steel was that the number of discharges increased with the conventional method. There is a tendency to gradually increase, and the difference r between the maximum and minimum analysis values after 100 discharges is 0.50% (at Cr = 19.10%),
In the method of the present invention, r = 0.19% (at Cr =
19.10%), which is less than half. Also, the fourth
In the conventional method, the [C] analysis value of the steel shown in the figure tends to gradually decrease as the number of discharges increases, and
After 100 discharges, r = 0.36% (at C = 1.09%), but with the method of the present invention, r = 0.22% after 300 discharges.
(at C=1.09%), which is about half that. This shows that the shape of the tip of the counter electrode and the discharge gap are made constant according to the present invention. Also,
When analyzing continuously 300 times using the method of the present invention and determining the repeatability σ, the [Cr] analysis value of stainless steel is σ = 0.034% (CV = 0.18%), and the [C] analysis value of steel is σ = 0.0049. % (CV=0.45%), very good results were obtained.

以上のように、本発明は、製鋼工程管理分析に
適用している発光分光分析装置の対電極が多数回
の放電において安定して使用でき、かつ良好な分
析精度を得ることにある。
As described above, the object of the present invention is to enable the counter electrode of an optical emission spectrometer applied to steel manufacturing process control analysis to be stably used during multiple discharges, and to obtain good analysis accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するための対電極クリー
ニング回路を付加した発光分光分析装置の装置構
成図、第2図は本発明の対電極クリーニング回路
図、第3図A,B、第4図A,Bは夫々ステンレ
ス鋼〔Cr〕と鋼〔C〕の連続分析結果を示す図
でAは従来法、Bは本発明法によるものである。 1:発光装置、2:コントローラ、3:対電極
クリーニング回路、4:対電極クリーニング用放
電タイマー、5:発光スタンド、6:分光器と測
光装置、7:コンデンサー、8:自己誘導、9:
トランス、10:試料、11:対電極。
Fig. 1 is a device configuration diagram of an emission spectrometer equipped with a counter electrode cleaning circuit for carrying out the present invention, Fig. 2 is a counter electrode cleaning circuit diagram of the present invention, Figs. 3 A, B, and 4. A and B are diagrams showing the results of continuous analysis of stainless steel [Cr] and steel [C], respectively, where A is the conventional method and B is the method of the present invention. 1: Light emitting device, 2: Controller, 3: Counter electrode cleaning circuit, 4: Discharge timer for counter electrode cleaning, 5: Light emitting stand, 6: Spectrometer and photometer, 7: Capacitor, 8: Self-induction, 9:
Transformer, 10: sample, 11: counter electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 発光分光分析機器の発光装置に対電極クリー
ニング回路を付加し、常用の試料分析後対電極ク
リーニング回路に切替え一定時間分析時に比べて
弱い高圧スパーク放電を行い対電極先端の付着物
を除去することを特徴とする発光分光分析におけ
る対電極クリーニング方法。
1. Adding a counter electrode cleaning circuit to the light emitting device of the emission spectrometer, and switching to the counter electrode cleaning circuit after regular sample analysis to generate a weaker high-pressure spark discharge than during analysis for a certain period of time to remove deposits on the tip of the counter electrode. A method for cleaning a counter electrode in emission spectrometry, characterized by:
JP8610580A 1980-06-25 1980-06-25 Method for cleaning counter electrode in emission spectrochemical analysis Granted JPS5712350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8610580A JPS5712350A (en) 1980-06-25 1980-06-25 Method for cleaning counter electrode in emission spectrochemical analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8610580A JPS5712350A (en) 1980-06-25 1980-06-25 Method for cleaning counter electrode in emission spectrochemical analysis

Publications (2)

Publication Number Publication Date
JPS5712350A JPS5712350A (en) 1982-01-22
JPS623370B2 true JPS623370B2 (en) 1987-01-24

Family

ID=13877417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8610580A Granted JPS5712350A (en) 1980-06-25 1980-06-25 Method for cleaning counter electrode in emission spectrochemical analysis

Country Status (1)

Country Link
JP (1) JPS5712350A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3147642C2 (en) * 1981-12-02 1984-12-13 Klöckner-Werke AG, 4100 Duisburg Method and device for the emission spectrometric analysis of metallic samples
US4641968A (en) * 1984-12-17 1987-02-10 Baird Corporation Mobile spectrometric apparatus
JPH0830682B2 (en) * 1990-03-19 1996-03-27 川崎製鉄株式会社 Method and apparatus for glow discharge emission spectroscopy
JP2765303B2 (en) * 1991-10-23 1998-06-11 住友金属工業株式会社 Emission spectroscopy method and apparatus
JP7019505B2 (en) * 2018-04-26 2022-02-15 アークレイ株式会社 Plasma spectroscopic analysis method

Also Published As

Publication number Publication date
JPS5712350A (en) 1982-01-22

Similar Documents

Publication Publication Date Title
Gray et al. System optimisation and the effect on polyatomic, oxide and doubly charged ion response of a commercial inductively coupled plasma mass spectrometry instrument
Lewis et al. The measurement of short‐lived fluorescence decay using the single photon counting method
US4255051A (en) Apparatus for emission spectrochemical analysis
US7826061B2 (en) High-speed spectrographic sensor for internal combustion engines
US20150062577A1 (en) Background correction in emission spectra
JPH0546095B2 (en)
JPS623370B2 (en)
DE19505104A1 (en) Method and arrangement for determining the purity and / or pressure of gases for electric lamps
US20200132606A1 (en) Systems and methods for rapid elemental analysis of airborne particles using atmospheric glow discharge optical emission spectroscopy
JPH04127039A (en) Identification of material by fluorescent spectrum
Pérez et al. Effect of operation parameters on the sputtering and emission processes in radiofrequency glow discharge. A comparison with the direct-current mode
CA2326626A1 (en) Method and apparatus for analysis of gas compositions
Trassy et al. Software for automatic qualitative analysis and determination of elements by atomic emission spectroscopy with recognition of spectral interferences
Haas et al. Preliminary studies in the determination of the alkali metals by microwave induced plasma (MIP) spectrometry
Seelig et al. Use of a capacitively coupled microwave plasma (CMP) with Ar, N2 and air as working gases for atomic spectrometric elemental determinations in aqueous solutions and oils
JPH10294305A (en) Production of semiconductor and semiconductor device
Perez et al. The influence of operational modes on sputtering rates and emission processes for different sample matrices in rf-GD-OES
Kitagawa et al. A simultaneous multielement atomic absorption spectrometer with an inverse polychromator and fast fourier transformation
EP0430774B1 (en) Device and method for detecting a chemical substance of known mass M, and known dissociation fragments in a gas to be analysed
JPS6017054B2 (en) Emission spectroscopy with high-energy pretreatment
DE19544506C2 (en) Device and method for analyzing liquid compositions using direct glow discharge
Borer et al. Inductively coupled plasma–microwave induced plasma tandem source for atomic emission spectrometry
JPS57122351A (en) Method of spectrochemical analysis wherein continuous light emission is utilized
JPH11160239A (en) Quantitative determination method for very small inclusion in iron and steel
JPH0716992Y2 (en) Emission spectroscopy analyzer