JPS6233537A - Molten slag pelletizer - Google Patents

Molten slag pelletizer

Info

Publication number
JPS6233537A
JPS6233537A JP17475685A JP17475685A JPS6233537A JP S6233537 A JPS6233537 A JP S6233537A JP 17475685 A JP17475685 A JP 17475685A JP 17475685 A JP17475685 A JP 17475685A JP S6233537 A JPS6233537 A JP S6233537A
Authority
JP
Japan
Prior art keywords
slag
lead angle
molten slag
stage
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17475685A
Other languages
Japanese (ja)
Inventor
Tsutomu Ueno
勉 上野
Masaki Tateno
舘野 正毅
Tsutomu Takahashi
務 高橋
Shuji Yoshida
修司 吉田
Takuya Morikawa
森川 拓也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP17475685A priority Critical patent/JPS6233537A/en
Publication of JPS6233537A publication Critical patent/JPS6233537A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve pelletization efficiency and to recover the sensible heat of slag by designing agitating vanes for transferring molten slag while agitating and cooling the same so as to have the lead angle which is stepwise or continuously increased toward the transfer direction. CONSTITUTION:The agitating vanes in the 1st stage of the melting section are constituted to have the small pitch P1 and lead angle theta1 and a large number of vanes. The molten slag is slowly transferred toward the direction of a pelletized slag discharge port 23 while the slag is kept agitated. The sensible heat of the molten slag is recovered by the cooling medium flowing inside and outside during this time. The slag expands in volume to form large lumps at the outlet of the 1st stage. The agitating vanes are constituted to have the pitch P2 and lead angle theta2 larger than the 1st stage and the smaller number of vanes in the 2nd stage of the melting - half-solidifying section so that the expanded slag is moved without being stagnated in a casing 21 and the large lumpy slag is disintegrated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶融スラグを効率よく造粒し、スラブの顕熱
を回収する溶融スラグ造粒装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a molten slag granulation device that efficiently granulates molten slag and recovers sensible heat from the slab.

〔従来の技術〕[Conventional technology]

溶融スラグを攪拌・冷却しつつ造粒する装置として、例
えば実開昭57−90735号に開示された装置がある
。この装置は第6図および第7図に示す如く半円筒ケー
シング1とケーシング1内部に溶融スラブを攪拌・冷却
しつつ、造粒する移送回転体5を備えている。半円筒ケ
ーシング1は、一端に溶融スラブ供給口2を、他端に造
粒スラグ排出口3を有し、外側に冷却媒体通路4を備え
ている。移送回転体5は、ケーシング1内の一端から他
端に延在し、外周に螺旋状に配された攪拌羽根6をもち
、内部に冷却媒体通路7を備えている。
As an apparatus for granulating molten slag while stirring and cooling it, for example, there is an apparatus disclosed in Japanese Utility Model Application Publication No. 57-90735. As shown in FIGS. 6 and 7, this apparatus is equipped with a semi-cylindrical casing 1 and a transfer rotary body 5 inside the casing 1, which granulates the molten slab while stirring and cooling the molten slab. The semi-cylindrical casing 1 has a molten slab supply port 2 at one end, a granulated slag discharge port 3 at the other end, and a cooling medium passage 4 on the outside. The transfer rotary body 5 extends from one end to the other end in the casing 1, has stirring blades 6 arranged in a spiral shape around the outer periphery, and has a cooling medium passage 7 inside.

攪拌羽根6は、溶融スラグの攪拌・移送を専ら行うもの
で、第8図に示す如く一枚の羽根を連続して螺旋状に配
する場合と、第9図または第10図に示す如く小片の羽
根を多数植設して螺旋状に配する場合とがある。いずれ
の場合においても攪拌羽根6のピッチおよびリード角は
攪拌・冷却・移送される溶融スラグの状態、すなわち溶
融・凝固の状態の如何にかかわらず全体に亘って一定で
ある。従って溶融スラグ供給口2から供給される溶融ス
ラグは一定のピッチ、一定のリード角で攪拌・冷却され
つつ、造粒され、ケーシング1の他端に有する造粒スラ
グ排出口3に移送される。
The stirring blade 6 is used exclusively for stirring and transporting the molten slag, and there are two cases in which one blade is arranged in a continuous spiral as shown in FIG. In some cases, a large number of blades are planted and arranged in a spiral pattern. In either case, the pitch and lead angle of the stirring blades 6 are constant throughout, regardless of the state of the molten slag being stirred, cooled, and transferred, that is, the state of melting and solidification. Therefore, the molten slag supplied from the molten slag supply port 2 is granulated while being stirred and cooled at a constant pitch and at a constant lead angle, and is transferred to the granulated slag discharge port 3 provided at the other end of the casing 1.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、3,000〜5,000 m’級の高炉にお
いてはそのスラグの発生量がピーク時に数トン/ m 
1 n以上に達する。ピーク時においても、溶融スラグ
を連続的に攪拌造粒処理するには効率よく冷却し、また
搬送排出することが必要である。ところが従来の装置は
一定の処理量を越えると、冷却機能が不足するか、搬送
排出機能が不足して、それ以上処理することができない
という問題がある。
By the way, in blast furnaces of 3,000 to 5,000 m' class, the amount of slag generated is several tons/m at its peak.
Reach 1 n or more. In order to continuously stir and granulate the molten slag even at peak times, it is necessary to efficiently cool it and to transport and discharge it. However, conventional apparatuses have a problem in that when the throughput exceeds a certain level, the cooling function or the conveying/discharging function is insufficient, and the processing cannot be performed any further.

例えば、攪拌羽根をその回転半径600ffi+11、
リード角20°で配列した装置にあっては、処理量50
0kg/minが限度で、800〜1000 kg/m
inになると、凝固部でスラブの滞留が発生し、搬送機
能を失う。
For example, the rotation radius of the stirring blade is 600ffi+11,
For equipment arranged with a lead angle of 20°, the throughput is 50°.
0kg/min is the limit, 800-1000 kg/m
If it becomes in, slabs will accumulate in the coagulation section and the conveyance function will be lost.

また、800〜1000 kl、/minでは冷却機能
も不足し、満足な造粒処理も行えない。
Moreover, at 800 to 1000 kl/min, the cooling function is insufficient and a satisfactory granulation process cannot be performed.

、本発明者がその原因を究明したところ、処理量が低い
のは攪拌羽根のピッチ、リード角にあるものと判った。
When the present inventor investigated the cause, it was found that the low throughput was due to the pitch and lead angle of the stirring blade.

そこで、本発明は攪拌羽根のぎツチ、リード角をスラグ
の溶融・凝固状態にあわせて変えることにより溶融スラ
グを効率よく造粒し、スラグの顕熱を回収する溶融スラ
グ造粒装置を提供することを目的とする。
Therefore, the present invention provides a molten slag granulation device that efficiently granulates molten slag and recovers the sensible heat of the slag by changing the grip and lead angle of the stirring blade according to the melting/solidification state of the slag. The purpose is to

〔問題点を解決するだめの技術的手段〕上記目的を達成
するため、本発明は一端に溶融スラグ供給口と他端に造
粒スラグ排出口を有し、かつ外側に冷却媒体通路を有す
るケーシングと、該ケーシング内の一端から他端にかけ
て溶融スラブを攪拌・冷却しつつ、移送する攪拌羽根を
もち、かつ冷却媒体通路を有する移送回転体を備えた溶
融スラグ造粒装置において;前記攪拌羽根のIJ−ド角
を、移送方向に向けて、段階的にあるいは連続的に大き
くする構成とした。
[Technical means to solve the problem] In order to achieve the above object, the present invention provides a casing having a molten slag supply port at one end, a granulated slag discharge port at the other end, and a cooling medium passage on the outside. In a molten slag granulation device, the molten slag granulator is equipped with a stirring blade that stirs, cools, and transports the molten slab from one end of the casing to the other end, and is equipped with a transfer rotor having a cooling medium passage; The IJ angle is increased stepwise or continuously in the transport direction.

溶融スラグの真比重は約2.5、凝固造粒すると   
”嵩比重は約1.5となり、溶融・凝固造粒過程におい
て体積の増加は約1.7倍になる。従って従来の如く攪
拌羽根のリード角を一定にしておくと、体積の膨張で搬
送排出機能が低下し、この能力を上げるために移送回転
体を速く回転させると、今度は冷却機能が低下し、満足
な造粒処理が行えないので処理能力に限界が生じる。こ
の限界を打破るにはスラグの溶融・凝固過程にあわせて
移送速度を変える必要がある。スラグの体積が溶融から
凝固する過程において膨張するのであるから、攪拌羽根
のリード角をスラグの体積増加に合わせて大きくするこ
とが必要である。
The true specific gravity of molten slag is approximately 2.5, and when it is solidified and granulated,
``The bulk specific gravity is approximately 1.5, and the volume increases by approximately 1.7 times during the melting/solidification granulation process.Therefore, if the lead angle of the stirring blade is kept constant as in the past, the volume expansion causes the conveyance to increase by a factor of 1.7. If the discharge function is reduced and the transfer rotor is rotated faster to increase this capacity, the cooling function will be reduced and a satisfactory granulation process will not be possible, resulting in a limit to processing capacity. Breaking through this limit. It is necessary to change the transfer speed according to the melting and solidification process of the slag.Since the volume of the slag expands during the process of melting and solidifying, the lead angle of the stirring blade should be increased to match the increase in the volume of the slag. It is necessary.

また、処理能力を上げるときは移送回転体の回転数が高
くなり、攪拌・冷却期間が一般に短くなる。そこで冷却
期間を十分にとるためには、攪拌口 羽根のピッチを溶融スラブの供給性近くで小さく、造粒
スラグ排出口の近くに行くに従って大きくとることが望
ましい。効率が最も良くなるのは造粒スラグ排出口近く
のリード角と溶融スラグ供給口近くのリード角の比をス
ラグの体積増加率にあわせてとったときである。スラブ
の体積増加率は前述したように約1.7であるが、冷却
剤等の添加又はスラグ組成によりその値も変わるから、
約1.2〜3の範囲となる。従って上述の比は1.2〜
3とすることが望ましい。このようなピッチ、リード角
を有する攪拌羽根は一枚の板を螺旋状に巻き付けて構成
することもできるし、また小片の攪拌羽根の集合体とし
て、実質的に螺旋状に構成するかあるいは螺旋状ではな
く段状に構成することができる、後者の如く段状に構成
したときは攪拌能力が優れ、また段毎に攪拌羽根の枚数
を変えることができるので更に処理能力を上げることが
できる。
Furthermore, when increasing the processing capacity, the rotational speed of the transfer rotary body is increased, and the stirring/cooling period is generally shortened. Therefore, in order to ensure a sufficient cooling period, it is desirable to set the pitch of the stirring port blades to be small near the molten slab supply capacity and to be large near the granulated slag discharge port. The efficiency is highest when the ratio of the lead angle near the granulated slag discharge port to the lead angle near the molten slag supply port is set in accordance with the volume increase rate of the slag. As mentioned above, the volume increase rate of the slab is about 1.7, but the value changes depending on the addition of coolant etc. or the slag composition.
It ranges from about 1.2 to 3. Therefore, the above ratio is 1.2~
It is desirable to set it to 3. A stirring blade having such a pitch and lead angle can be constructed by winding a single plate in a spiral shape, or it can be constructed as an aggregate of small pieces of stirring blades in a substantially spiral shape, or by spirally winding a single plate. In the case of the latter, the stirring capacity is excellent, and since the number of stirring blades can be changed for each stage, the throughput can be further increased.

〔作用〕[Effect]

攪拌羽根のリード角がスラグの体積増加に合わせて段階
的にあるいは連続的に犬きくなっているので、溶融スラ
グ供給口近くでは溶融スラグがゆっくシ進み、攪拌冷却
後は体積膨張にあわせて造粒スラグが造粒スラグ排出口
に向けて速く進む。
Since the lead angle of the stirring blade gradually or continuously increases in accordance with the volume increase of the slag, the molten slag advances slowly near the molten slag supply port, and after being stirred and cooled, it gradually or continuously increases in accordance with the volume expansion. The granulated slag moves quickly towards the granulated slag discharge port.

又、冷却能もピッチを該リード角に合わせて大きくして
行く事によシ搬送能とバランスし、従って処理能力を上
げるために移送回転体を速く回転させても冷却能や搬送
能が極端に低下することがない。
In addition, the cooling capacity can be balanced with the conveying capacity by increasing the pitch according to the lead angle, so even if the transfer rotor is rotated quickly to increase processing capacity, the cooling capacity and conveying capacity will be extremely low. It never declines.

〔実施例〕〔Example〕

以下、図面を参照して本発明の一実施例を説明する。第
1図〜第5図に示す実施例は本発明の最良の実施例であ
り、攪拌羽根は溶融スラグ供給口から造粒スラグ排出口
に向けて段状に構成されている。図に従って順次説明す
ると、ケーシング21は断面が半円筒形の形状をなし、
一端に溶融スラグ供給口22を、他端に造粒スラグ排出
口23を備えている。造粒スラグ排出口23はケーシン
グ21の他端を開放することによシ構成されている。ケ
ーシング21の外側は図示されていないが冷却媒体通路
が配置されている。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings. The embodiment shown in FIGS. 1 to 5 is the best embodiment of the present invention, and the stirring blades are structured in steps from the molten slag supply port to the granulated slag discharge port. To explain sequentially according to the figures, the casing 21 has a semi-cylindrical cross section,
A molten slag supply port 22 is provided at one end, and a granulated slag discharge port 23 is provided at the other end. The granulated slag discharge port 23 is constructed by opening the other end of the casing 21. Although not shown on the outside of the casing 21, a cooling medium passage is arranged.

ケーシング21内には長手方向に延在する移送回転体2
4が両端に有する軸受25により回転自在に支承されて
いる。移送回転体24の中心部は空洞で冷却媒体通路2
6となっており、外周には多数の攪拌羽根27が段状に
植設されている。攪拌羽根27はスラグの状態に合わせ
て、数段階に分けて構成されている。この実施例ではス
ラグの状態を溶融、溶融〜半凝固、および凝固造粒の3
段階に分け、それに対応させて攪拌羽根27を構成して
いる。すなわち、攪拌羽根27の構成を溶融部、溶融〜
半凝固部および凝固造粒部の3段階に分け、1段階を数
段で構成している。攪拌羽根27のピッチ、リード角は
段階毎に異にし、溶融部から凝固造粒部に至るにつれて
大きくなっている。すなわち、溶融部、溶融〜半凝固部
、凝固造粒部でのそれぞれのピッチ、リード角をPl、
θ1;P2 、θ2;P31θ3とするならばPi<P
2<P3 、θ1くθ2くθ3である。また、この実施
例では、段を構成する攪拌羽根27の枚数を段階毎に異
ならせている。1段階目の溶融部では攪拌・冷却に主力
を置いて攪拌羽根27の枚数を第2図および第3図に示
す如く6枚とし、2段階目以後では、造粒移送に主力を
置いて攪拌羽根270枚数を第4図および第5図に示す
如く5枚で構成している。
Inside the casing 21 is a transfer rotary body 2 extending in the longitudinal direction.
4 is rotatably supported by bearings 25 at both ends. The center of the transfer rotating body 24 is hollow and the cooling medium passage 2
6, and a large number of stirring blades 27 are installed in steps around the outer periphery. The stirring blade 27 is configured in several stages depending on the state of the slag. In this example, there are three states of slag: molten, molten to semi-solid, and solidified granulation.
It is divided into stages, and the stirring blades 27 are configured in accordance with the stages. That is, the structure of the stirring blade 27 is a melting part, a melting part,
It is divided into three stages: a semi-solidified part and a solidified granulation part, and each stage consists of several stages. The pitch and lead angle of the stirring blades 27 are different for each stage, and increase from the melting section to the solidification and granulation section. That is, the respective pitches and lead angles in the molten part, molten to semi-solidified part, and solidified granulation part are Pl,
If θ1;P2, θ2;P31θ3, then Pi<P
2<P3, θ1 x θ2 x θ3. Further, in this embodiment, the number of stirring blades 27 constituting each stage is made different for each stage. In the first stage melting section, the main focus is on stirring and cooling, and the number of stirring blades 27 is set to six as shown in Figures 2 and 3. From the second stage onwards, the main focus is on granulation transfer and stirring. The number of blades is 270, and the number of blades is five as shown in FIGS. 4 and 5.

なお、図示28はスプロケット、29はチェーン、30
は樋、31は溶融スラグである0次に作用について説明
する。
In addition, the illustration 28 is a sprocket, 29 is a chain, and 30
The zero-order action will be explained, where is a gutter and 31 is a molten slag.

1段階目の溶融部では、攪拌羽根のピッチP1tリード
角θ、が小さくかつ羽根の枚数が多く構成されているの
で、溶融スラグが攪拌されながら・造粒スラグ排出口2
3に向けてゆっくりと移行し、その間に溶融スラグの顕
熱が、内外を流れる冷却媒体によシ回収される。スラグ
は1段階の出口で体積膨張し、大塊となる。2段階目の
溶融〜半凝固部では、攪拌羽根のピッチP 21 ’)
−ド角θ2“が1段階目よりも大きくしかも羽根の枚数
を減少させているので膨張したスラグとケーシング21
内に滞留させることなく移行させ、大塊のスラブを破砕
する。3段階目の凝固部では更にピッチP3+’J−ド
角θ3が大きくとられており、2段階目で破砕されたス
ラグが更に冷却・破砕されながら造粒される。造粒過程
においてスラブが更に体積膨張をするが、ピッチP3.
IJ−ド角θ3が大きくとられているため、スラグがケ
ーシング内に滞留することなく、造粒スラグ排出口23
よシスムーズに排出される。また、ピッチP3 、リー
ド角θ、が前段階よりも粗く形成されているため、スラ
グの過破砕が防止される。
In the first stage melting section, the pitch P1t lead angle θ of the stirring blades is small and the number of blades is large, so that while the molten slag is being stirred,
3, during which the sensible heat of the molten slag is recovered by the cooling medium flowing inside and outside. The slag expands in volume at the exit of the first stage and becomes a large lump. In the second stage of melting to semi-solidification, the stirring blade pitch P21')
- The expanded slag and casing 21 because the angle θ2'' is larger than the first stage and the number of blades is reduced.
It transfers without being retained in the interior and crushes large slabs. In the solidification section of the third stage, the pitch P3+'J- angle θ3 is set even larger, and the slag crushed in the second stage is further cooled and crushed while being granulated. Although the slab further expands in volume during the granulation process, pitch P3.
Since the IJ angle θ3 is set large, the slag does not stay in the casing and the granulated slag discharge port 23
It is discharged smoothly. Further, since the pitch P3 and the lead angle θ are formed coarser than those in the previous stage, excessive crushing of the slag is prevented.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、攪拌羽根のピッチ、リード角を搬送方
向に向けて段階的にあるいは連続的に大きくしているの
でスラグの体積膨張に応じて搬送力が増し、スラグの滞
留がなくなるとともに冷却面積を有効に活用できる。ま
た同規模装置と比べると造粒処理能力が2〜3倍と増加
する。
According to the present invention, since the pitch and lead angle of the stirring blades are increased stepwise or continuously in the conveying direction, the conveying force increases in accordance with the volume expansion of the slag, eliminating slag retention and cooling. The area can be used effectively. Furthermore, compared to equipment of the same scale, the granulation processing capacity is increased by 2 to 3 times.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示した断面図、第2図は第
1図のA−A断面図、第3図は第1図のB−B断面図、
第4図は第1図のC−C断面図、第5図は電1図のD−
D断面図、第6図は従来装置の縦断面図、第7図は第6
図の横断面図、第8図〜第10図は従来の装置に用いら
れている移送  ゛回転体の斜視図である。 21・・・ケーシング、22・・・溶融スラグ供給口、
23・・・造粒スラグ排出口、24・・・移送回転体、
26・・・冷却媒体通路、27・・・攪拌羽根。 第6図 第10図
FIG. 1 is a sectional view showing an embodiment of the present invention, FIG. 2 is a sectional view taken along line AA in FIG. 1, and FIG. 3 is a sectional view taken along line BB in FIG. 1.
Figure 4 is a sectional view taken along line C-C in Figure 1, and Figure 5 is a cross-sectional view taken along line D-1 in Figure 1.
D sectional view, Fig. 6 is a vertical sectional view of the conventional device, and Fig. 7 is the 6th sectional view.
The cross-sectional views in the figure and FIGS. 8 to 10 are perspective views of the transfer rotating body used in the conventional apparatus. 21... Casing, 22... Molten slag supply port,
23... Granulated slag discharge port, 24... Transfer rotating body,
26... Cooling medium passage, 27... Stirring blade. Figure 6 Figure 10

Claims (2)

【特許請求の範囲】[Claims] (1)一端に溶融スラグ供給口と他端に造粒スラグ排出
口を有し、かつ外側に冷却媒体通路を有するケーシング
と、該ケーシング内の一端から他端にかけて溶融スラグ
を攪拌・冷却しつつ、移送する攪拌羽根をもち、かつ冷
却媒体通路を有する移送回転体を備えた溶融スラグ造粒
装置において;前記攪拌羽根のリード角を、移送方向に
向けて、段階的にあるいは連続的に大きくしたことを特
徴とする溶融スラグ造粒装置。
(1) A casing that has a molten slag supply port at one end, a granulated slag discharge port at the other end, and a cooling medium passage on the outside, while stirring and cooling the molten slag from one end to the other end of the casing. , in a molten slag granulator equipped with a transfer rotor having a stirring blade for transport and a cooling medium passage; the lead angle of the stirring blade is increased stepwise or continuously in the transport direction; A molten slag granulation device characterized by:
(2)特許請求の範囲第1項において、前記リード角を
、造粒スラグ排出口近くのリード角Sと溶融スラグ供給
口近くのリード角Mとの比S/Mが1.2〜3となるよ
うなリード角とした角としたことを特徴とする溶融スラ
グの造粒装置。
(2) In claim 1, the lead angle is such that the ratio S/M of the lead angle S near the granulated slag discharge port and the lead angle M near the molten slag supply port is 1.2 to 3. A molten slag granulation device characterized by having a lead angle such that:
JP17475685A 1985-08-08 1985-08-08 Molten slag pelletizer Pending JPS6233537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17475685A JPS6233537A (en) 1985-08-08 1985-08-08 Molten slag pelletizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17475685A JPS6233537A (en) 1985-08-08 1985-08-08 Molten slag pelletizer

Publications (1)

Publication Number Publication Date
JPS6233537A true JPS6233537A (en) 1987-02-13

Family

ID=15984130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17475685A Pending JPS6233537A (en) 1985-08-08 1985-08-08 Molten slag pelletizer

Country Status (1)

Country Link
JP (1) JPS6233537A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102012172A (en) * 2010-12-31 2011-04-13 邹岳明 Converter for recycling high temperature heat energy
CN102012170A (en) * 2010-12-31 2011-04-13 邹岳明 High-temperature heat energy recycling converter
CN102012171A (en) * 2010-12-31 2011-04-13 邹岳明 Converter for recycling high temperature heat energy
CN102032800A (en) * 2010-12-31 2011-04-27 邹岳明 High-temperature heat energy recycling converter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102012172A (en) * 2010-12-31 2011-04-13 邹岳明 Converter for recycling high temperature heat energy
CN102012170A (en) * 2010-12-31 2011-04-13 邹岳明 High-temperature heat energy recycling converter
CN102012171A (en) * 2010-12-31 2011-04-13 邹岳明 Converter for recycling high temperature heat energy
CN102032800A (en) * 2010-12-31 2011-04-27 邹岳明 High-temperature heat energy recycling converter

Similar Documents

Publication Publication Date Title
JP5799102B2 (en) Dry granulation of metallurgical slag
JP4936106B2 (en) Stir dryer
EP3168560B1 (en) Method for drying terephthalic acid and horizontal rotary dryer
JPH0264046A (en) Method and apparatus for pulverizing liquid slag
JPS6233537A (en) Molten slag pelletizer
JP2001348252A (en) Facilities for treating stainless steel slag
JP2005066952A (en) Classification treatment system of plastic mixture
US4049439A (en) Method producing slag ballast
JP5611454B2 (en) Method and apparatus for producing glassy slag
CN1858262A (en) Method for treating high viscosity metallurgical smelting slag
US5148997A (en) Slag crushing device
JP6372538B2 (en) Molten slag processing apparatus and molten slag processing method
JPS59160525A (en) Granulating method of molten slag
JPS5817136B2 (en) Molten slag processing equipment
CN217910274U (en) Granulating system for stabilizing yellow phosphorus slag flow
JP2003342047A (en) Granulation method and apparatus for fused slag
KR102201227B1 (en) System for processing slag by unit solidification
JPS6214935A (en) Apparatus for granulating molten slag
JP2880669B2 (en) Dismantling method of slag for metallurgical furnace
SU1401025A1 (en) Method of treating decomposing metallurgical slag
JPS6238230A (en) Apparatus for granulating molten slag
JPS581059B2 (en) Kaishitsuko Saibarasu no Seizouhouhou
JP3541809B2 (en) Taphole structure and reactor for producing cuprous chloride using the same
JPS6230541A (en) Apparatus for granulating molten slag
SU1101432A1 (en) Apparatus for granulating molten slags