JPS6232825Y2 - - Google Patents

Info

Publication number
JPS6232825Y2
JPS6232825Y2 JP15526282U JP15526282U JPS6232825Y2 JP S6232825 Y2 JPS6232825 Y2 JP S6232825Y2 JP 15526282 U JP15526282 U JP 15526282U JP 15526282 U JP15526282 U JP 15526282U JP S6232825 Y2 JPS6232825 Y2 JP S6232825Y2
Authority
JP
Japan
Prior art keywords
polyamide
wire
coating
iron wire
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15526282U
Other languages
Japanese (ja)
Other versions
JPS5889327U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15526282U priority Critical patent/JPS5889327U/en
Publication of JPS5889327U publication Critical patent/JPS5889327U/en
Application granted granted Critical
Publication of JPS6232825Y2 publication Critical patent/JPS6232825Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は水中特に海中において使用される金網
等に又は耐候性を必要とする用途に供すべき熱可
塑性樹脂被覆防食鉄線に関するものであり、熱可
塑性樹脂皮膜として吸水率の低いポリアミド樹脂
を用い、且つ、この皮膜を芯鉄線に接着剤によつ
て強固に接着させる事を特徴としている。 従来、金網等に使用されて来た熱可塑性樹脂被
覆防食鉄線等はその殆んどが軟質ないしは中硬質
塩化ビニル樹脂を皮膜とするものであり、一般フ
エンス類、或いはロツクネツト等の用途に広範囲
に渡つて使用されて来たが、近年我国の国情に即
して海洋開発が各地で積極的に進められるにつれ
てこの分野においてもその用途を広め例えば海中
フエンス類、或いは養殖漁業用生けす等を中心に
その需要は増大の一途をたどつている。 しかしながら、このような海中での使用に際し
ては通常の陸上使用において遭遇し得なかつた過
酷な自然条件下にさらされるものであり、例え
ば、潮流に伴う流砂による皮膜の摩耗、波浪等に
伴う線材同志のからみ或いはしごきによる皮膜の
摩耗或いは圧潰剥離、漂流物或いは船舶更にはそ
の錨等の衝突による皮膜の破壊等々が軟質ないし
は中硬質塩化ビニル被覆鉄線における問題点とし
て顕在化して来ている。 又、これら海中に浸漬後に発生する皮膜の障害
の他に線材の被覆工程後の二次加工、例えば金網
にあつては製網加工、耳加工、或いは網同志の連
結加工に際して機械的に皮膜が受ける傷も極めて
多い。 これら海中浸漬前後に受けた皮膜の傷はすべて
皮膜内への海水の浸入点となり、芯鉄線の腐食、
断線の原因となる。 特に養殖漁業においては当初から使用されてき
た亜鉛メツキ線生けすの亜鉛による養殖漁汚染又
生けす自体の延命と云う観点から軟質ないしは中
硬質塩化ビニル被覆鉄線からなる生けすが広く普
及しつつあるが上述の様な障害による断線から養
殖魚を一夜にして失うと云う事故がしばしば起つ
ており皮膜の機械強度を中心とした総合的な防食
機能改善が強く望まれている。 本考案者はこの点に注目し機械特性に優れる結
晶性エンジニアリングプラスチツクスによる鉄線
の押出し防食被覆を種々検討した結果、ホモポリ
アミド樹脂、例えばポリアミド11、ポリアミド
12、ポリアミド612或いはこれらのモノマーを用
いた多元ポリアミド共重合物例えばポリアミド6/
12、ポリアミド6/66/12或いはこれらの中相溶性
を持つ単元重合物と多元ポリアミド重合物の混合
物、例えばポリアミド12とポリアミド6/12との混
合物等のポリアミド樹脂を鉄線上に70μ以上被覆
する。更に好ましくは、ポリブタジエンゴム又は
(及び)エポキシフエノール樹脂を基材とする接
着剤或いは防食塗料等をプライマーとして用い、
ポリアミド皮膜を鉄線に強固に接着する。例え
ば、予めポリブタジエンゴムを基材とするプライ
マー(例えば昭和50年特許願第33229号に開示さ
れたジエン系化合物を重合してなる高分子化合物
と、酸化マグネシウムとを混合してなるプライマ
ー、又は昭和50年特許願第116099号に開示された
ジエン系化合物を重合してなる高分子化合物と酸
化マグネシウムと、コバルトイオンおよび/また
はマンガンイオンとを混合してなるプライマー)
を焼き付けた鉄線に耐水性の見地からポリアミド
12或いはポリアミド12及びポリアミド6/12即ちカ
プロラクタム・ラウリンラクタム共重合物の混合
物を150μ以上の肉厚で押出し成形法で被覆する
と同時に皮膜を芯鉄線に接着する。 本考案の防食鉄線は、水中特に海水中において
使用される場合に好適であり、ポリアミド樹脂
は、飽和吸水率(水温20℃)が5%以下、好まし
くは3%以下のものであり、例えばナイロン11
(1.9%)、ナイロン12(1.5%)、ナイロン6/12
(3%)等がある。又、これらのモノマーを主成
分とした共重合体及びホモポリマーとの混合物等
がある。 本考案により上述の軟質ないしは中硬質塩化ビ
ニル被覆防食鉄線の持つ多くの欠点が著しく改善
される事を見出した。尚この時芯線を形成する鉄
線を亜鉛メツキした後、上記樹脂で被覆すると、
防食の見地から更に好ましいものが得られ、この
時使用するプライマーとしてはエポキシフエノー
ル樹脂を基材とするもの(例えば昭和50年特許願
第121896号に開示されたエポキシ樹脂70〜80重量
部及びノボラツク型アルキルフエノール樹脂30〜
20重量部及び酸触媒1.25〜2.5重量部よりなるプ
ライマー)が良好な結果を与える。 本考案においてポリアミド皮膜の耐候性改善を
目的として耐候安定剤を使用する事、或いは黒等
に着色する事は本考案に対して何ら支障を生ずる
ものではない。 ここにいう芯鉄線とは、丸棒、角棒、ワイヤ状
のものは勿論のこと、帯状のもの、又はパイプや
チユーブ状のものもいう。 かかるポリアミド樹脂からなる皮膜が卓越した
防食機能を有するのはポリアミド樹脂自体の持つ
強靭な機械強度、優れた摩擦摩耗特性に加えて、
押出被覆時の水冷によつて皮膜外表面に50〜100
μ程度の厚さで結晶化度が低く弾性に富むスキン
層が形成され、皮膜全体としては結晶化度が高く
硬度に富む皮膜深層部上に外部からの衝撃に対す
る緩衝帯を設けた構造となつている事、しかも硬
度の高い深層部が芯線に強固に接着されている為
外部から荷重がかかつた際に皮膜と芯線の間にす
べりを生ずる事がなく、皮膜の剥離に対しても極
めて安全な状態となつている為である。 更に通常、軟質塩化ビニル被覆にあつても又ポ
リアミド被覆にあつても皮膜を透過する微少の水
及び酸素による芯線の皮膜内での腐食を確実に防
止する事は甚だ困難な事であつたが本考案による
被覆では芯鉄線に強固に接着しているプライマー
層が絶縁体として働き鉄のイオン化を防ぐ為皮膜
内での腐食の進行が防止され、同時に例え、皮膜
に何らかの原因で芯鉄線にまで達する傷が生じて
も皮膜と芯鉄線が接着されている為海水がさらに
芯鉄線と皮膜界面へ浸入することは確実に阻止さ
れ当該皮膜の防食機能が一段と強化される理由と
なつている。 更に本考案のポリアミド被覆において特に注目
すべき特徴は海水浸漬後皮膜上に付着繁殖する海
中生物の除去が軟質ないしは中硬質塩化ビニル被
覆に比べて極めて容易となる点である。 この特性は養殖漁用生けすにおいて極めて重要
なものである。 なぜならば、養殖漁用生けすの金網は常に餌の
付着によつて極めて肥沃な培地となつており、し
かも周辺の海水自体も投餌及び養殖魚の排泄物等
によつて栄養に富む状態にある。従つて金網に付
着した藻或いは貝類の生長は異常に速く極めて短
時間の中に金網は目詰り状態となる為そのまま放
置すると生けす内部が酸素欠乏に陥り養殖魚が死
滅する事になる。 この対策として皮膜内への防汚剤の添加等が検
討されたが効果が薄い上に養殖魚への汚染、薬害
が必配され実用に供された例は少なかつた。従つ
て養殖業者は定期的に例えば4〜10月の繁殖期に
あつては2〜4回/月 潜水夫を生けす周辺に潜
らせ金網に付着繁殖した生物を除去しているのが
実情であり、さらに軟質塩化ビニル皮膜の場合に
はこれらの生物の付着が極めて強固である為除去
作業に際して皮膜に傷をつける事が避けられず生
けす寿命を低下させてしまう上に低能率に伴う経
費増が養殖業者の多大なる負担となつていた。 これに対して、ポリアミド皮膜も、海中生物の
付着繁殖自体には同じく無力であるが、しかし、
その除去は軟質塩化ビニル皮膜に較べて遥かに容
易である事から、能率改善と同時に皮膜自身にま
で傷をつける様な激しい作業が不要となり、前述
の優れた皮膜の強度、防食能と相まつて生けすの
保全、延命に卓越した効果を発揮し得るものであ
る。 かかるポリアミド皮膜の海中生物に対する特徴
がポリアミド皮膜のいかなる特性に起因するもの
であるかは今の所不明であるが、ポリアミド被覆
は軟質ないしは中硬質塩化ビニル被覆に較べ遥か
に優れた皮膜表面の平滑性が得られる事、海中生
物の分泌物に対する耐性に優れている事、可塑剤
等の溶出成分がない為皮膜表面が変質する事なく
安定である事等の利点となつていると考えられ
る。 以上述べた如く、本考案によるポリアミド樹脂
接着被覆防食鉄線は従来の軟質ないしは中硬質塩
化ビニル被覆防食鉄線の防食機能を著しく改善し
海中での鉄線からなる構造物の延命に優れた効果
を発揮すると同時に保全経費軽減に大きく寄与す
るものであり、特に養漁用生けす等海中生物の付
着繁殖が問題となる用途には優先的に使用せられ
るべきものである。 本考案のポリアミド接着押出被覆ワイヤーは第
4図のような断面構造を有する。21は鉄ワイヤ
ー、22はプライマー層、23はポリアミド層で
ある。その用途としては、海底電線、鎧装鉄線、
養漁用生けす、海中フエンス(漂流物防止用、例
えば原子力発電所海水取水口付近でのクラゲ流入
防止)、ロツクネツト、各種層外使用コイル(例
えば架線ハンガー)、スプリング、ワイヤーロー
プ(平行ロープ、ツリ橋のメインロープに使用さ
れる)、フアームワイヤー、ふるい(海水或いは
真水を含む粒状物等のふるい)等が挙げられ、こ
の外、耐水(海水)性、耐摩耗性、高皮膜強度等
が要求される各種ワイヤーに応用できる。 実施例 1 線径3.2mmの軟鉄線(錆の発生していないも
の)をトリクレン洗浄により脱脂した後ポリブタ
ジエン系プライマー(ダイセル化学工業株式会社
製、商品名、F−1−D)を厚み10〜30μに塗布
し350℃電気炉で15分間焼き付けた。引き続いて
鉄線温度を200℃に保ちつつクロスヘツドダイス
の取り着けられたスクリユー径40mmの押出し機を
用いて線速30m/分でポリアミド樹脂を肉厚400
μに被覆し同時に水冷却槽にて連続的に冷却し
た。 かくして得られたポリアミド樹脂接着被覆鉄線
の皮膜強度評価試験結果を市販の同一芯線径、皮
膜肉厚を持つ中硬質塩化ビニル被覆鉄線の皮膜強
度評価試験結果と共に表−1に示した。
The present invention relates to a thermoplastic resin-coated corrosion-resistant iron wire to be used as a wire mesh used underwater, particularly in the sea, or for applications requiring weather resistance, and uses polyamide resin with low water absorption as the thermoplastic resin coating, and , is characterized by firmly adhering this coating to the core iron wire with an adhesive. Most of the thermoplastic resin-coated anti-corrosion iron wires, etc. that have traditionally been used for wire mesh, etc., are coated with soft or medium-hard vinyl chloride resin, and are widely used for general fences, lock nets, etc. It has been used for many years, but in recent years, as marine development has been actively promoted in various parts of the country in line with the national circumstances of our country, its use has expanded in this field as well, with a focus on underwater fences, cages for aquaculture, etc. The demand continues to increase. However, when used underwater, it is exposed to harsh natural conditions that cannot be encountered during normal land use, such as abrasion of the coating due to quicksand caused by tidal currents, and damage to the wire rods due to waves, etc. Abrasion or crushing peeling of the coating due to tangling or squeezing, destruction of the coating due to collision with drifting objects, ships, anchors, etc., have become evident as problems with soft to medium-hard vinyl chloride-coated iron wire. In addition to these film failures that occur after immersion in the sea, the film may be mechanically damaged during secondary processing after the wire coating process, such as wire mesh processing, selvedge processing, or connection processing between wire meshes. There are also many injuries sustained. All of these scratches on the film before and after immersion in the sea become points for seawater to enter the film, causing corrosion of the core wire and
This may cause wire breakage. Particularly in aquaculture fisheries, cages made of soft or medium-hard vinyl chloride-coated iron wire are becoming more widespread due to concerns about contamination of aquaculture fish by zinc in galvanized wire cages that have been used since the beginning, and from the viewpoint of extending the life of the cage itself. Accidents often occur in which farmed fish are lost overnight due to breakage due to the above-mentioned failures, and there is a strong desire to improve the overall anti-corrosion function with a focus on the mechanical strength of the coating. The present inventor focused on this point, and as a result of various studies on extrusion anti-corrosion coating of iron wire with crystalline engineering plastics with excellent mechanical properties, we found that homopolyamide resins, such as polyamide 11, polyamide
12, polyamide 612 or a multi-component polyamide copolymer using these monomers, such as polyamide 6/
12. Coating the iron wire with polyamide resin such as polyamide 6/66/12 or a mixture of a monopolymer and a polyamide polymer having intermediate compatibility thereof, such as a mixture of polyamide 12 and polyamide 6/12 to a thickness of 70μ or more. . More preferably, an adhesive or anticorrosion paint based on polybutadiene rubber or (and) epoxy phenol resin is used as the primer,
Strongly adheres polyamide film to iron wire. For example, a primer made of polybutadiene rubber as a base material (for example, a primer prepared by mixing a polymer compound obtained by polymerizing a diene compound disclosed in Patent Application No. 33229 of 1975 with magnesium oxide, or a primer made of a mixture of magnesium oxide and A primer made by mixing a polymer compound obtained by polymerizing a diene compound disclosed in 1950 Patent Application No. 116099, magnesium oxide, and cobalt ions and/or manganese ions)
Polyamide is added to the baked iron wire for water resistance.
12 or a mixture of polyamide 12 and polyamide 6/12, that is, a caprolactam/laurinlactam copolymer, is coated with a thickness of 150 μm or more by extrusion molding, and at the same time, the coating is adhered to the core wire. The anticorrosive iron wire of the present invention is suitable for use underwater, particularly in seawater, and the polyamide resin has a saturated water absorption rate (water temperature of 20°C) of 5% or less, preferably 3% or less, such as nylon. 11
(1.9%), nylon 12 (1.5%), nylon 6/12
(3%) etc. There are also copolymers and mixtures with homopolymers containing these monomers as main components. It has been found that the present invention significantly improves many of the drawbacks of the above-mentioned soft to medium-hard vinyl chloride-coated corrosion-resistant iron wire. At this time, if the iron wire forming the core wire is galvanized and then coated with the above resin,
A more preferable primer is obtained from the viewpoint of corrosion prevention, and the primer used at this time is one based on epoxy phenol resin (for example, 70 to 80 parts by weight of epoxy resin and novolac resin disclosed in Patent Application No. 121896 of 1975). Type alkylphenol resin 30~
20 parts by weight of primer and 1.25 to 2.5 parts by weight of acid catalyst) give good results. In the present invention, the use of a weathering stabilizer for the purpose of improving the weather resistance of the polyamide film, or the use of coloring it black or the like, does not pose any problem to the present invention. The core iron wire referred to herein includes not only round rod, square rod, and wire shapes, but also belt-shaped wires, pipe, and tube-shaped wires. The reason why films made of polyamide resin have excellent anti-corrosion properties is that in addition to the strong mechanical strength and excellent friction and wear properties of the polyamide resin itself,
50 to 100 on the outer surface of the film by water cooling during extrusion coating.
A skin layer with a low crystallinity and high elasticity is formed with a thickness of about μ, and the entire film has a structure in which a buffer zone against external impact is provided on the deep layer of the film, which has a high crystallinity and is rich in hardness. Moreover, because the deep layer with high hardness is firmly bonded to the core wire, there is no slippage between the coating and the core wire when external loads are applied, and the coating is extremely resistant to peeling. This is because it is in a safe condition. Furthermore, it is usually extremely difficult to reliably prevent corrosion within the core wire coating due to minute amounts of water and oxygen that permeate through the coating, whether it is soft vinyl chloride coating or polyamide coating. In the coating of this invention, the primer layer that is firmly adhered to the core wire acts as an insulator and prevents iron from ionizing, thereby preventing corrosion from progressing within the coating. Even if a scratch occurs, the coating and the core wire are bonded together, which reliably prevents seawater from further penetrating into the interface between the core wire and the coating, which is the reason why the coating's anti-corrosion function is further strengthened. Furthermore, a particularly notable feature of the polyamide coating of the present invention is that it is much easier to remove marine organisms that adhere to and propagate on the coating after immersion in seawater, compared to soft or medium-hard vinyl chloride coatings. This characteristic is extremely important in cages for aquaculture. This is because the wire mesh used for aquaculture fishing cages is constantly filled with food, making it an extremely fertile medium, and the surrounding seawater itself is also rich in nutrients due to feeding and the excrement of farmed fish. . Therefore, the growth of algae or shellfish attached to the wire mesh is abnormally fast and the wire mesh becomes clogged in a very short period of time, so if left as is, the inside of the cage will become oxygen deficient and the cultured fish will die. As a countermeasure to this problem, adding an antifouling agent to the film was considered, but it was not very effective, and it also caused contamination and chemical damage to farmed fish, so there were few examples of this being put to practical use. Therefore, the reality is that aquaculture farmers regularly have divers dive around the cages, for example 2 to 4 times a month during the breeding season from April to October, to remove organisms that have grown attached to the wire mesh. In addition, in the case of soft vinyl chloride coatings, these organisms are extremely attached, so it is inevitable to damage the coating during removal work, reducing the lifespan of the living organisms and increasing costs due to low efficiency. This increase was placing a heavy burden on fish farmers. On the other hand, polyamide films are similarly powerless against the propagation of marine organisms, but
Since its removal is much easier than with soft vinyl chloride coatings, it improves efficiency and eliminates the need for strenuous work that would damage the coating itself. It can be extremely effective in preserving the living space and prolonging its life. It is currently unclear what properties of the polyamide film are responsible for the characteristics of the polyamide film against marine life, but the polyamide coating has a smooth surface that is far superior to that of soft or medium-hard vinyl chloride coatings. It is thought that the advantages include that it has excellent resistance to secretions from sea creatures, and that the film surface is stable without deterioration because there are no eluted components such as plasticizers. As described above, the polyamide resin adhesive coated anti-corrosion steel wire according to the present invention significantly improves the anti-corrosion function of the conventional soft or medium-hard vinyl chloride coated anti-corrosion steel wire, and has an excellent effect on extending the life of structures made of steel wire underwater. At the same time, it greatly contributes to the reduction of conservation costs, and should be used preferentially especially in applications where the propagation of marine organisms is a problem, such as cages for fish farming. The polyamide adhesive extrusion coated wire of the present invention has a cross-sectional structure as shown in FIG. 21 is an iron wire, 22 is a primer layer, and 23 is a polyamide layer. Its uses include submarine cables, armored iron cables,
Fishing cages, underwater fences (for preventing floating objects, e.g. to prevent jellyfish from entering near seawater intakes at nuclear power plants), rock nets, various coils for use outside the layer (e.g. catenary hangers), springs, wire ropes (parallel ropes, etc.) (used for the main rope of tree bridges), form wire, and sieves (sieves for granular materials containing seawater or fresh water). Can be applied to various required wires. Example 1 A soft iron wire with a wire diameter of 3.2 mm (no rust) was degreased by washing with trichlene, and then a polybutadiene primer (manufactured by Daicel Chemical Industries, Ltd., trade name, F-1-D) was applied to a thickness of 10 to 10 mm. It was applied to 30μ and baked in an electric furnace at 350°C for 15 minutes. Subsequently, while maintaining the iron wire temperature at 200℃, polyamide resin was extruded to a thickness of 400℃ at a wire speed of 30m/min using an extruder with a screw diameter of 40mm equipped with a crosshead die.
μ was coated and simultaneously cooled continuously in a water cooling bath. The results of the film strength evaluation test of the polyamide resin adhesive coated iron wire thus obtained are shown in Table 1 together with the film strength evaluation test results of the commercially available medium hard vinyl chloride coated iron wire having the same core wire diameter and film thickness.

【表】【table】

【表】 実施例 2 実施例1と同様にして製造したポリアミド被覆
鉄線及び同一芯線径、皮膜肉厚を持つ市販の中硬
質塩化ビニル被覆鉄線の耐水性評価試験結果を表
−2に示した。
[Table] Example 2 Table 2 shows the results of a water resistance evaluation test of a polyamide-coated iron wire manufactured in the same manner as in Example 1 and a commercially available medium-hard vinyl chloride-coated iron wire having the same core wire diameter and coating thickness.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図は本考案の被覆防食鉄
線の試験方法を示す図、第4図は本考案の被覆防
食鉄線の断面図である。 21……鉄ワイヤー、22……プライマー層、
23……ポリアミド層。
FIGS. 1, 2, and 3 are diagrams showing a test method for the coated anti-corrosion iron wire of the present invention, and FIG. 4 is a sectional view of the coated anti-corrosion iron wire of the present invention. 21... Iron wire, 22... Primer layer,
23...Polyamide layer.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 芯鉄線に、ポリブタジエンゴム又は(及び)エ
ポキシフエノール樹脂を基材とするプライマー層
を介在してポリアミド11、ポリアミド12、ポリア
ミド612、或いは、これらを主成分とした共重合
体又は混合物からなるポリアミド樹脂を押出成形
して、被覆接着させてなるポリアミド樹脂被覆防
食鉄線。
A polyamide resin made of polyamide 11, polyamide 12, polyamide 612, or a copolymer or mixture containing these as main components is interposed on the core iron wire with a primer layer based on polybutadiene rubber or (and) epoxy phenol resin. A polyamide resin-coated corrosion-resistant iron wire made by extrusion molding and bonding the coating.
JP15526282U 1982-10-14 1982-10-14 Polyamide resin coated anti-corrosion iron wire Granted JPS5889327U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15526282U JPS5889327U (en) 1982-10-14 1982-10-14 Polyamide resin coated anti-corrosion iron wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15526282U JPS5889327U (en) 1982-10-14 1982-10-14 Polyamide resin coated anti-corrosion iron wire

Publications (2)

Publication Number Publication Date
JPS5889327U JPS5889327U (en) 1983-06-17
JPS6232825Y2 true JPS6232825Y2 (en) 1987-08-22

Family

ID=29947838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15526282U Granted JPS5889327U (en) 1982-10-14 1982-10-14 Polyamide resin coated anti-corrosion iron wire

Country Status (1)

Country Link
JP (1) JPS5889327U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0416997Y2 (en) * 1988-02-23 1992-04-16
WO2011021671A1 (en) * 2009-08-19 2011-02-24 三井化学株式会社 Molded product and production method thereof

Also Published As

Publication number Publication date
JPS5889327U (en) 1983-06-17

Similar Documents

Publication Publication Date Title
Robertson et al. Fast sinking (integrated weight) longlines reduce mortality of white-chinned petrels (Procellaria aequinoctialis) and sooty shearwaters (Puffinus griseus) in demersal longline fisheries
US20110114028A1 (en) Aquaculture net with high-tensile steel wires
PL108012B1 (en) ANTI-OVERGROWTH AGENT ANTI-GROWTH AGENT
US20110277692A1 (en) Aquaculture cage screen
He Gillnets: gear design, fishing performance and conservation challenges
US3554154A (en) Structure with antifouling surface
JPS6232825Y2 (en)
CN108094284B (en) Elastic tying and fixedly connecting type shallow sea aquaculture purse seine
JPS5941365B2 (en) Aquaculture fish cage
EP3181350B1 (en) Organism-repellent multilayer resin-coated metal wire and fishing net comprising same
JP2977207B2 (en) Antifouling molding
JPS6094046A (en) Material for preventing fouling of aquatic organism
KR101638774B1 (en) Composition for manufacturing of anti-fauling marine structure and method of preparing the anti-fauling marine structure using the same
Driscoll et al. Evaluating material type and configuration of plastic attractors on fish use in a Texas reservoir
JPH0320209B2 (en)
CN214962091U (en) Antirust anti-drop high-carbon steel fishhook
CN205443746U (en) Novel boats and ships hawser
JPS604912B2 (en) Seawater corrosion protection method for structures
CN210470680U (en) High strength environmental protection marine culture system is with floating pipe
CN214257638U (en) Sea shrimp seedling industrialized breeding and breeding fixing frame with good corrosion resistance
CN217012328U (en) Novel artifical sea grass bed
CN220493860U (en) Inshore ecological restoration reef crowd
Slater Leopard seal entanglement in Tasmania, Australia.
CN112961555A (en) Special anticorrosive and anti-parasitic material and method for deep-sea net cage
JPH0117507B2 (en)