JPS6232748B2 - - Google Patents

Info

Publication number
JPS6232748B2
JPS6232748B2 JP14288079A JP14288079A JPS6232748B2 JP S6232748 B2 JPS6232748 B2 JP S6232748B2 JP 14288079 A JP14288079 A JP 14288079A JP 14288079 A JP14288079 A JP 14288079A JP S6232748 B2 JPS6232748 B2 JP S6232748B2
Authority
JP
Japan
Prior art keywords
acid
formula
acid ester
reaction
apovincamic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14288079A
Other languages
Japanese (ja)
Other versions
JPS5671091A (en
Inventor
Suzantai Kusaba
Suzabo Rayosu
Karausu Gyorugii
Kureidoru Yaanosu
Fuerumeri Yoozefu
Borukusukei Hedoigu
Fuarukasu Ienone
Nemesu Andoraasu
Benkoo Bera
Torukusanyui Peeteru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIHITAA GEDEON BEGIESUZECHI GIARU AARU TEII
Original Assignee
RIHITAA GEDEON BEGIESUZECHI GIARU AARU TEII
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIHITAA GEDEON BEGIESUZECHI GIARU AARU TEII filed Critical RIHITAA GEDEON BEGIESUZECHI GIARU AARU TEII
Priority to JP14288079A priority Critical patent/JPS5671091A/en
Publication of JPS5671091A publication Critical patent/JPS5671091A/en
Publication of JPS6232748B2 publication Critical patent/JPS6232748B2/ja
Priority to US09/554,409 priority patent/US6653801B1/en
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、䞀般匏及びたたは

The present invention relates to general formula (a) and/or (
b)

【匏】【formula】

【匏】 匏䞭、はC2-6アルキル基を衚わすのアポビ
ンカミン酞゚ステルを補造するための改良方法に
関する。 呚知のように、アポビンカミン酞゚ステル、䞻
ずしおアポビンカミン酞゚チル゚ステルは有甚な
薬理䜜甚を有し、降圧剀及び血管拡匵剀ずしお適
甚できる。 たた、アポビンカミン酞メチル゚ステルの最も
簡易な補法はビンカミン酞メチル゚ステルを脱氎
するこずであるこずも知られおいる。埓来、脱氎
は以䞋の方法に埓぀おなされおいた (a) 220℃においお熱凊理する〔Tetrahedron
Letters1961、702−Collection Czech、
Chem.Commun.29、433−461964〕 (b) 無氎酢酞䞭で煮沞する〔Tetrahedron
Letters1961、702−同1962、1147−54
Collection Czech.Chem.Commun.29、433−46
1964ハンガリヌ特蚱明现曞第151295
号〕 (c) 蟻酞䞭で煮沞する〔Tetrahedron Letters
1962、1147−54ハンガリヌ特蚱明现曞第
151295号仏囜特蚱明现曞第2191894号〕 (d) ゞクロロメタン䞭で硫酞ず反応せしめる〔ハ
ンガリヌ特蚱明现曞第160367号〕 (e) オキシ塩化リン䞭で煮沞するか、たたは五酞
化二リンもしくはハロゲン化リンず反応せしめ
る〔ハンガリヌ特蚱明现曞第151295号〕そし
お (f) 塩酞の存圚䞋、アルコヌル䞭で煮沞する
〔Chem.Zvesti17、41−531963〕。 この最埌の方法はたた、出発物質ずしおビンカ
ミン酞メチル゚ステルの代わりにビンカミン酞を
甚いた堎合にも甚いられた。この堎合、ビンカミ
ン酞を酞の存圚䞋においおアルコヌルず共に煮沞
する時に゚ステル化ず脱氎ずが同時に進行し、そ
の結果、適甚したアルコヌルに盞圓するアポビン
カミン酞゚ステルが埗られるハンガリヌ特蚱明
现曞第163434号。この方法においお、塩酞の代
わりに硫酞及びアルキルスルホン酞等のようなそ
の他の匷い鉱酞もしくは有機酞を甚いるこずもで
きる。 前述の方法は以䞋のような欠点を有する。 ぀の方法を陀いお、これらの方法ではアポビ
ンカミン酞メチル゚ステルアポビンカミンの
みしか調敎できない。これらの方法のうち぀だ
け〔方法(c)〕がその゚チル゚ステルの調補に適甚
できる。方法(a)、(b)及び(c)は苛酷な反応条件䞋に
おいお脱氎を行なう、たずえば、出発物質を高枩
で長時間凊理するずいう共通の欠点を有する。そ
のような条件䞋では、物質は非垞にたやすく砎壊
もしくは分解される可胜性があり、反応混合物は
黒ずみ、タヌル状物質が珟われ、そしお望たしく
ない副反応がおこる可胜性がある。方法(a)は、
220℃においお成され、目的化合物をわずか61
の収率で生成する。方法(b)によれば、反応混合物
を140℃で24時間煮沞するこずにより、最終生成
物が収率75で埗られる。方法(c)では、出発物質
を蟻酞䞭で時間煮沞する堎合にのみ、収率97
が達成される。時間の煮沞埌にはこの収率はわ
ずか64である。この方法のさらに別の欠点は蟻
酞の適甚にある。蟻酞は、匷力な腐觊剀、毒薬及
び発泡剀であ぀お、その蒞気は粘膜を冒し䞔぀空
気によ぀お爆発性混合物を圢成する。埓぀お、こ
の方法を甚いる堎合には倧芏暡生産のために、い
く぀かの問題及び䞍䟿に盎面する。 方法(e)ではアポビンカミンの収率は非垞に䜎い
玄42。 方法(d)及び(f)では事態はこれらよりわずかによ
いが、これら぀の方法の共通の欠点は、前述の
方法ず同様に、脱氎が䞍完党であり、そのために
最終生成物は盞圓量の出発物質を䞍玔物ずしお含
む点にある。しかしながら、我々は、この最終生
成物の融点は䞍玔物質の存圚を反映しないこずを
芳察した。たずえば、−アポビンカミン生成
物の融点から−アポビンカミン䞭の−
ビンカミン量を抂算するこずはできない。このこ
ずは䞋蚘の第衚のデヌタから明癜である。
The present invention relates to an improved method for producing apovincamic acid ester of the formula: wherein R represents a C 2-6 alkyl group. As is well known, apovincamic acid esters, mainly apovincamic acid ethyl ester, have useful pharmacological effects and can be applied as antihypertensive agents and vasodilators. It is also known that the simplest method for producing apovincamic acid methyl ester is to dehydrate the apovincamic acid methyl ester. Traditionally, dehydration has been carried out according to the following methods: (a) Heat treatment at 220°C [Tetrahedron
Letters 1961 , 702-6; Collection Czech,
Chem.Commun. 29 , 433-46 (1964)]; (b) boiling in acetic anhydride [Tetrahedron
Letters 1961 , 702-6; Letters 1962 , 1147-54;
Collection Czech.Chem.Commun. 29 , 433−46
(1964); Hungarian Patent Specification No. 151295
(c) boiling in formic acid [Tetrahedron Letters
1962 , 1147-54; Hungarian Patent Specification No.
151295; French Patent Specification No. 2191894]; (d) reaction with sulfuric acid in dichloromethane [Hungarian Patent Specification No. 160367]; (e) boiling in phosphorus oxychloride or diphosphorous pentoxide. or (f) boiling in alcohol in the presence of hydrochloric acid [Chem. Zvesti 17 , 41-53 (1963)]. This last method was also used when vincamic acid was used instead of vincamic acid methyl ester as the starting material. In this case, when vincamic acid is boiled with alcohol in the presence of acid, esterification and dehydration proceed simultaneously, resulting in an apovincamic acid ester corresponding to the applied alcohol (Hungarian Patent Specification No. 163434) . In this process, other strong mineral or organic acids such as sulfuric acid and alkylsulfonic acids can also be used instead of hydrochloric acid. The above method has the following drawbacks. With the exception of one method, only apovincamic acid methyl ester (apovincamine) can be prepared by these methods. Only one of these methods [method (c)] is applicable for the preparation of the ethyl ester. Processes (a), (b) and (c) have a common drawback of carrying out the dehydration under harsh reaction conditions, eg treating the starting materials at high temperatures for long periods of time. Under such conditions, the materials can be destroyed or decomposed very easily, the reaction mixture can darken, tarry substances appear, and undesirable side reactions can occur. Method (a) is
Produced at 220°C with only 61% target compound content
produced in a yield of . According to method (b), the final product is obtained with a yield of 75% by boiling the reaction mixture at 140° C. for 24 hours. Method (c) gives a yield of 97% only when the starting material is boiled in formic acid for 5 hours.
is achieved. After 1 hour of boiling, this yield is only 64%. A further disadvantage of this method lies in the application of formic acid. Formic acid is a powerful caustic, poisonous and blowing agent whose vapors attack mucous membranes and form explosive mixtures in the air. Therefore, some problems and inconveniences are encountered when using this method due to large scale production. In method (e) the yield of apovincamine is very low (approximately 42%). Things are slightly better with methods (d) and (f), but the common drawback of these two methods is that, like the previous methods, the dehydration is incomplete, so that the final product is The point is that it contains starting materials as impurities. However, we observed that the melting point of this final product did not reflect the presence of impurities. For example, from the melting point of the (+)-apovincamine product to the (+)- in the (+)-apovincamine
It is not possible to estimate the amount of vincamine. This is evident from the data in Table 1 below.

【衚】 方法(c)、(d)及び(f)を開瀺しおいる匕䟋は、最終
生成物をその融点のみによ぀お限定しおいるが、
融点のみで生成物の限定を行なうのは前述のよう
に䞍適圓である。たずえば、Tetrahedron
Letters1962、1147−54〔方法(c)〕の蚘茉に埓぀
お調補された−アポビンカミンは、融点が
162〜164℃である。しかしながら、この物質の比
旋光床は〔α〕 121゜、クロロホル
ム䞭であ぀お、玔枠な−アポビンカミン
〔α〕 145゜、クロロホルム䞭

に比范しおかなり䜎い〔Helv.Chim.Acta58(4)、
1131〜451975参照〕。 方法(d)及び(f)を我々の研究宀で再珟したずこ
ろ、出発物質を䞍玔物ずしお含む品質のよくない
生成物が埗られるこずが刀明した。たずえば、ガ
スクロマトグラフむヌの結果によれば、方法(d)の
反応では玄14のビンカミンが未反応のたた残぀
おいた。 たた、アポビンカミン酞゚ステルは、前蚘のよ
うな脱氎法の他に、アポビンカミン酞の゚ステル
化によ぀おも調補できるハンガリヌ特蚱明现曞
第163434号。しかしながら、この方法では埗ら
れる目的化合物の収率が䜎い58〜61。゚ス
テル化反応の別の欠点は、出発物質ずしお䜿甚さ
れるアポビンカミン酞自䜓が䞀般に他のアポビン
カミン酞の゚ステルの加氎分解によ぀お調補され
る点にある。 ビンカミン酞゚ステルのアポビンカミン酞゚ス
テルぞの脱氎は実質的に平衡反応である。埓぀
お、反応䞭に分離しお生じた氎が反応混合物䞭に
残぀おいるならば、反応はある皋床逆行するこず
ができ、そのために若干量のアポビンカミン酞゚
ステルはビンカミン酞゚ステルぞずもどされる。
この事実から、圢成された氎が反応混合物から連
続的に陀去される堎合には、平衡反応はアポビン
カミン酞゚ステル圢成の方向にほずんど完党にシ
フトできるこずがわか぀た。 本発明者らは、氎ず共沞混合物を圢成する氎䞍
混和溶媒䞭で、出発物質、すなわち、ビンカミン
酞゚ステル、゚ピビンカミン酞゚ステル及びそれ
らの混合物ず、匷酞ずを、高枩、奜たしくは混合
物の沞点においお反応せしめ、䞔぀反応䞭に圢成
された氎を混合物から共沞蒞留によ぀お連続的に
陀去する堎合に、前蚘出発物質が簡単にアポビン
カミン酞゚ステルに転換できるこずを芋い出し
た。氎の連続的陀去によ぀お反応の平衡の脱氎の
方向にシフトするため、反応はほずんど定量的に
進行し、そしお出発ビンカミン酞゚ステルを含た
ないアポビンカミン酞゚ステルが埗られる。この
利点は、先行方向のいずれによ぀おも達成できな
か぀たものである。本発明に係る方法の別の利点
は、公知の方法においおは長時間の煮沞〜24
時間続けられるこずが倚いが適甚されるのに察
し、短時間玄0.5時間に緩和な条件䞋で脱氎
が行なわれる点にある。本発明によれば、脱氎が
非砎壊性の酞を甚いお行なわれるため、最終生成
物が砎壊もしくは分解されず䞔぀副反応もおこら
ないずいうさらに別の利点がある。本発明に係る
方法の収率は非垞に高い95乃至98。この新
芏方法のさらに別の利点は、埓来の公知方法ずは
異なり、その䜿甚がメチル゚ステルの転化に限定
されず、これより高玚の゚ステルたずえば、゚
チル、プロピル及びブチル゚ステルにも同様に
適甚できる点にある。しかしながら、この新芏方
法の最も重芁な利点は高玔床のアポビンカミン酞
゚ステルを提䟛するこずにある。ガスクロマトグ
ラフ分析によれば、この方法によ぀お埗られた生
成物は、出発ビンカミン酞゚ステルによ぀お汚染
されおいない。 脱氎は、氎ず共沞混合物を圢成する氎䞍混和溶
媒䞭で行なうこずができる。ハロゲン眮換もしく
は未眮換のベンれン系芳銙族溶媒は、これらの芁
件を充分に満たす。ベンれン、トル゚ン、キシレ
ン、クロロベンれン等は、本発明に係る反応にお
いお溶媒ずしお有利に適甚するこずができる。反
応枩床は遞ばれた溶媒の沞点に䟝存する。 脱氎は匷酞の存圚䞋においおのみ行なえる。酞
床を瀺す酞の解離定数は玄10-2もしくはそれ以䞊
でなければならない。さらに芁件ずしお、適甚さ
れる酞は氎ずの共沞混合物を圢成しおはならず、
その蒞気圧が脱氎枩床においおはごくわずかでな
ければならず、そしお蒞留による氎の陀去を蚱容
できるものでなければならない。埓぀お、䜎玚ア
ルキルスルホン酞及び硫酞は、匷酞ではあ぀お
も、氎結合性が匷いため、このような酞の存圚䞋
では共沞蒞留によ぀お氎を完党に陀去するこずが
できないので、本発明方法には適甚できない。 本発明の脱氎法に適甚できる匷い有機酞の䟋ず
しおは、䞀環匏及び二環匏芳銙族スルホン酞た
ずえば、ベンれンスルホン酞、−トル゚ンスル
ホン酞、ナフタレンスルホン酞、スルホサリチル
酞、−暟脳スルホン酞など、ならびに有機モ
ノカルボン酞もしくはゞカルボン酞、たずえば修
酞が挙げられる。 本発明方法においお、出発物質ずしお䜿甚され
るビンカミン酞゚ステルは、ハンガリヌ特蚱明现
曞第163143号に蚘茉されおいる、倧芏暡な条件の
䞋で容易に行なえる合成法によ぀お調補するのが
奜たしい。本発明の目的の぀は、極めお玔床の
高いアポビンカミン酞゚ステルを高収率で補造す
るためのかなり倧芏暡な方法を提䟛するために、
この公知方法ず新しいステツプずを組み合わせる
こずにあ぀た。前蚘のハンガリヌ特蚱明现曞に蚘
茉の合成法では、䞀般匏 匏䞭、は前述の通りのビンカミン酞ず䞀般
匏 匏䞭、は前述の通りの゚ピビンカミン酞ず
の混合物が最終生成物ずしお埗られる。本発明の
䞻たる目的は、個々の物質もしくぱピマヌを分
離もしくは転換するのではなく、この混合物を転
換しお反応混合物䞭に盎接、各々のアポビンカミ
ン酞゚ステルを生成するこず、ならびに文献に蚘
茉の方法よりも䟿利である倧芏暡な脱氎法を考案
するこずにあ぀た。ビンカミン酞゚ステル及び゚
ピビンカミン酞゚ステルは脱氎によ぀お同䞀のア
ポビンカミン酞゚ステルを生じ、そのために、二
工皋出発物質の分離、ならびに個々の゚ピマヌ
の分離もしくは転換が省略できるため、このよ
うな方法は特に経枈的に有利である。 埓぀お、本発明の奜たしい方法では、最初に、
ハンガリヌ特蚱明现曞第163143号に蚘茉の手法を
行なう。すなわち、䞀般匏及びたたは

[Table] The references disclosing processes (c), (d) and (f) limit the final product only by its melting point, but
As mentioned above, it is inappropriate to limit the product based only on the melting point. For example, Tetrahedron
Letters 1962 , 1147-54 [method (c)].
The temperature is 162-164°C. However, the specific rotation of this substance is [α] 20 D = +121° (C = 1, in chloroform), which is the same as that of pure frame (+)-apovincamine {[α] 25 D = +145° (C = 1). , in chloroform)
}
[Helv.Chim.Acta 58 (4),
1131-45 (1975)]. When methods (d) and (f) were reproduced in our laboratory, it was found that a poor quality product was obtained which contained the starting material as an impurity. For example, according to the results of gas chromatography, about 14% of vincamine remained unreacted in the reaction of method (d). In addition to the dehydration method described above, apovincamic acid ester can also be prepared by esterification of apovincamic acid (Hungarian Patent Specification No. 163434). However, this method provides a low yield of the target compound (58-61%). Another disadvantage of the esterification reaction is that the apovincamic acid used as starting material is itself generally prepared by hydrolysis of esters of other apovincamic acids. The dehydration of vincamic acid ester to apovincamic acid ester is essentially an equilibrium reaction. Therefore, if the water separated during the reaction remains in the reaction mixture, the reaction can be reversed to some extent, so that some of the apovincamic acid ester is converted back into the vincamic acid ester.
This fact shows that if the water formed is continuously removed from the reaction mixture, the equilibrium reaction can be almost completely shifted in the direction of apovincamic acid ester formation. The inventors prepared the starting materials, i.e., vincamic acid esters, epivincamic acid esters and mixtures thereof, and strong acids in a water-immiscible solvent that forms an azeotrope with water at an elevated temperature, preferably at the boiling point of the mixture. It has been found that the starting material can be easily converted into apovincamic acid ester if the reaction is carried out in a stepwise manner and the water formed during the reaction is continuously removed from the mixture by azeotropic distillation. Since the equilibrium of the reaction is shifted in the direction of dehydration by continuous removal of water, the reaction proceeds almost quantitatively and an apovincamic ester free of starting vincamic ester is obtained. This advantage could not be achieved by any of the previous directions. Another advantage of the method according to the invention is that in the known methods the long boiling time (5 to 24
dehydration is carried out under mild conditions over a short period of time (approximately 0.5 hours). According to the invention, there is a further advantage that the final product is not destroyed or decomposed and no side reactions occur since the dehydration is carried out using a non-destructive acid. The yield of the process according to the invention is very high (95-98%). A further advantage of this new process is that, unlike previously known processes, its use is not limited to the conversion of methyl esters, but is equally applicable to higher esters (e.g. ethyl, propyl and butyl esters). It is possible to do so. However, the most important advantage of this new process is that it provides apovincamic acid ester of high purity. According to gas chromatographic analysis, the product obtained by this method is not contaminated by the starting vincamic acid ester. Dehydration can be carried out in a water-immiscible solvent that forms an azeotrope with water. A halogen-substituted or unsubstituted benzene-based aromatic solvent fully satisfies these requirements. Benzene, toluene, xylene, chlorobenzene, etc. can be advantageously applied as a solvent in the reaction according to the present invention. The reaction temperature depends on the boiling point of the chosen solvent. Dehydration can only be carried out in the presence of strong acids. The dissociation constant of the acid indicating acidity should be about 10 -2 or greater. A further requirement is that the applied acid must not form an azeotrope with water;
Its vapor pressure must be negligible at the dehydration temperature and must allow removal of water by distillation. Therefore, even though lower alkyl sulfonic acids and sulfuric acids are strong acids, they have strong water binding properties, and water cannot be completely removed by azeotropic distillation in the presence of such acids. It cannot be applied to invention methods. Examples of strong organic acids applicable to the dehydration process of the present invention include monocyclic and bicyclic aromatic sulfonic acids (e.g., benzenesulfonic acid, p-toluenesulfonic acid, naphthalenesulfonic acid, sulfosalicylic acid, d-camphorsulfonic acid). acids, etc.), as well as organic monocarboxylic or dicarboxylic acids, such as oxalic acid. In the process of the invention, the vincamic acid ester used as starting material is preferably prepared by the synthetic method described in Hungarian Patent Specification No. 163143, which can be carried out easily under large-scale conditions. . One of the objects of the present invention is to provide a fairly large-scale process for producing extremely pure apovincamic acid ester in high yields.
It was decided to combine this known method with a new step. In the synthesis method described in the above-mentioned Hungarian patent specification, the general formula () Vincamic acid (wherein R is as described above) and general formula () (wherein R is as defined above) with epivincamic acid is obtained as the final product. The main object of the present invention is to convert this mixture to produce the respective apovincamic acid ester directly in the reaction mixture, rather than separating or converting the individual substances or epimers, and by methods described in the literature. I was able to devise a large-scale dehydration method that is also convenient. Such a process is preferred because vincamic acid ester and epivincamic acid ester yield the same apovincamic acid ester upon dehydration, so that two steps (separation of the starting material and separation or conversion of the individual epimers) can be omitted. It is particularly economically advantageous. Therefore, in a preferred method of the invention, first:
The procedure described in Hungarian patent specification no. 163143 is carried out. That is, general formula (a) and/or (b)

【匏】【formula】

【匏】 匏䞭、は前述の通りのシス−−゚チル−
−2′−ヒドロキシ−2′−アルコキシカルボニ
ル゚チル−・・・・・・12・12b
−オクタヒドロ−むンドロ〔・−〕キノリ
ゞンをセラむト䞊で炭酞銀によ぀お酞化し、その
埌、酞化剀を陀去するこずによ぀お、䞀般匏
のビンカミン酞゚ステルず䞀般匏の
その゚ピマヌ化合物ずの混合物のトル゚ン溶液が
埗られる。次いで、本発明方法を行なう。すなわ
ち、これらの化合物の単離もしくぱピ化を行な
わずにこのトル゚ン溶液に適圓な酞を加え、そし
おこの溶液を共沞蒞留せしめる。こうしお、ビン
カミン酞゚ステル及び゚ピビンカミン酞゚ステル
は共に、短時間のうちに所望のアポビンカミン酞
゚ステルに転換される。異性化工皋及び分離工皋
の省略によ぀お、収率が増倧するばかりでなく、
装眮の凊理量の増加及び補造の所芁時間の短瞮に
よ぀お重芁な技術的利点が生ずる。この特に奜た
しい方法では、䞀般匏及び〔匏
䞭、は前述の通り〕の簡単な四環匏むンドロキ
ノリゞン誘導䜓を、぀の反応段階で五環匏アポ
ビンカミン酞゚ステルに転換できる総収率70
〜74。 本発明の方法を以䞋の実斜䟋によ぀お詳现に説
明するが、これらは本発明は限定するものではな
い。 実斜䟋  −アポビンカミン酞゚チル゚ステルの補造 −ビンカミン酞゚チル゚ステル5.0、
−トル゚ンスルホン酞5.0及びトル゚ン300mlの
混合物を0.5時間環流した。この間に反応におい
お圢成された氎を、マヌカツ゜ン・トラツプ
Marcusson trapを甚いお共沞蒞留によ぀お混
合物から陀去した。反応の進行は、薄局クロマト
グラフむヌ〔クロロホルム、゚タノヌル及びベン
れンの802040混合物を甚いおシリカゲル
Kieselgelプレヌト䞊で展開し、ペヌド蒞気で
発色させた〕で監芖した。出発物質が薄局クロマ
トグラフむヌによ぀お怜出されなくな぀た時、反
応混合物を宀枩に冷华し、炭酞ナトリりム氎
溶液200mlで掗浄し、次いで氎200mlで掗浄し、硫
酞ナトリりム䞊で也燥し、過し、そしおその
液を最終容積玄10mlたで枛圧蒞発せしめた。この
残留物に゚タノヌル80mlを加え、次いで埗られた
溶液を最終容積玄乃至mlたで枛圧濃瞮する
ず、生成物が埐々に析出し始めた。この濃瞮物を
℃に時間保持し、析出した物質を別し、゚
タノヌルmlで掗浄し、そしお最埌に也燥せしめ
た。 その結果、目的化合物4.55が埗られた。融
点148〜149℃、玔床99.7過塩玠酞で滎定
するこずによ぀お枬定、〔α〕 143.9゜

、クロロホルム䞭。 実斜䟋 乃至11 アポビンカミン酞゚チル゚ステルの補造 第衚に挙げた組成の混合物を甚いお、実斜䟋
に蚘茉の手法を繰り返した。生成物の収率及び
確認詊隓デヌタを第衚に瀺した。 実斜䟋乃至11に埓぀お調補された生成物の
IR及びUVスペクトルは、目的ずする化合物の信
憑性のあるサンプルのIR及びUVスペクトルず䞀
臎しおいた。吞着剀ずしおキヌれルゲル、メルク
銘柄Kieselgel Merck、gradeのシリカゲル
プレヌトを甚い䞔぀溶媒ずしおクロロホルム、゚
タノヌル及びベンれンの802040混合物を甚い
お、クロマトグラフむヌを行な぀た。クロマトグ
ラムを、硫酞セリりムアンモニりムのリン酞
溶液で凊理し、360nのUV光線䞭で評䟡した。
たずえば、生成物100mgをプレヌト䞊に適甚した
堎合、このような条件䞋においお、−アポビ
ンカミン酞゚チル゚ステルの斑点f玄
0.48以倖にはほんのわずかな斑点しか芳察され
なか぀た。
[Formula] (wherein R is as described above) cis-1-ethyl-
1-(2'-hydroxy-2'-alkoxycarbonylethyl)-1, 2, 3, 4, 6, 7, 12, 12b
-Octahydro-indolo[2.3-a]quinolidine is oxidized with silver carbonate on Celite and then the vincamic acid ester of general formula () and the general formula () are A toluene solution of the mixture with the epimeric compound is obtained. Then, the method of the present invention is carried out. That is, a suitable acid is added to this toluene solution without isolation or epimerization of these compounds, and this solution is subjected to azeotropic distillation. Thus, both vincamic acid ester and epivincamic acid ester are converted into the desired apovincamic acid ester within a short time. Omitting the isomerization and separation steps not only increases the yield, but also
Significant technical advantages result from increased equipment throughput and reduced manufacturing times. In this particularly preferred process, simple tetracyclic indoquinolidine derivatives of general formulas (a) and (b), in which R is as previously described, are converted into pentacyclic apovincamic acid esters in three reaction steps. Can be converted (total yield: 70
~74%). The method of the invention will be explained in detail by the following examples, but the invention is not limited thereto. Example 1 Production of (+)-apovincamic acid ethyl ester (+)-vincamic acid ethyl ester 5.0 g, p
- A mixture of 5.0 g of toluenesulfonic acid and 300 ml of toluene was refluxed for 0.5 hour. During this time the water formed in the reaction was removed from the mixture by azeotropic distillation using a Marcusson trap. The progress of the reaction was monitored by thin layer chromatography (developed on silica gel (Kieselgel) plates with an 80:20:40 mixture of chloroform, ethanol and benzene and developed with iodine vapor). When the starting material could no longer be detected by thin layer chromatography, the reaction mixture was cooled to room temperature, washed with 200 ml of 5% aqueous sodium carbonate solution, then washed with 200 ml of water, dried over sodium sulfate, and the liquid was evaporated under reduced pressure to a final volume of approximately 10 ml. To this residue was added 80 ml of ethanol and the resulting solution was then concentrated under reduced pressure to a final volume of about 6-8 ml, and the product gradually began to precipitate out. The concentrate was kept at 0° C. for 1 hour, the precipitated material was separated off, washed with 5 ml of ethanol and finally dried. As a result, 4.55 g of the target compound was obtained. Melting point: 148-149°C, purity: 99.7% (measured by titration with perchloric acid), [α] 20 D +143.9° (C
=
1 in chloroform). Examples 2 to 11 Preparation of apovincamic acid ethyl ester The procedure described in Example 1 was repeated using mixtures with the compositions listed in Table 2. Product yield and confirmatory test data are shown in Table 2. Products prepared according to Examples 2 to 11
The IR and UV spectra were consistent with those of authentic samples of the compound of interest. Chromatography was carried out using silica gel plates of Kieselgel Merck, grade as the adsorbent and an 80:20:40 mixture of chloroform, ethanol and benzene as the solvent. The chromatograms were treated with a 1% solution of cerium ammonium sulfate in phosphoric acid and evaluated in UV light at 360 nm.
For example, if 100 mg of the product is applied on a plate, under these conditions spots of (+)-apovincamic acid ethyl ester (R f : approx.
Only a few spots were observed other than 0.48).

【衚】【table】

【衚】 実斜䟋 12 −アポビンカミン酞゚チル゚ステルの補造 也燥炭酞銀セラむト詊薬60、無氎トル゚ン
600ml及び−−シス−−゚チル−−2′−
ヒドロキシ−2′−゚トキシカルボニル゚チル−
・・・・・・12・12b−オクタヒド
ロ−むンドロ〔・−〕キノリゞン15の混
合物をアルゎン雰囲気䞋で時間煮沞した。反応
の進行を実斜䟋ず同様にしお薄局クロマトグラ
フむヌで監芖した。反応が終了し、そしお出発物
質が怜出されなくな぀た時、反応混合物は
−ビンカミン酞゚ステル及び−−゚ピビンカ
ミン酞゚チル゚ステルのみを含んでいた。この段
階で、炭酞銀セラむト詊薬を80℃においお別
し、そしおトル゚ンで掗浄した。掗液及び母液を
合わせ、このトル゚ン溶液に−トル゚ンスルホ
ン酞−氎和物を加え、そしおこの混合物を0.5時
間煮沞した。この間に反応においお圢成された氎
を、マヌカツ゜ン・トラツプを甚いお共沞蒞留に
よ぀おこの混合物から陀去した。反応の進行を実
斜䟋ず同様にしお薄局クロマトグラフむヌで監
芖した。 脱氎終了埌、トル゚ン溶液を宀枩たで冷华し、
炭酞ナトリりム氎溶液450mlで掗浄し、次い
で、0.25N塩酞氎溶液を450mlず぀甚いお回抜
出した。氎性−酞性抜出物を合わせ、濃アンモニ
ア氎を甚いお溶液のPHをに調敎し、そしお埗ら
れた溶液を炭玠1.5を甚いお脱色した。この脱
色した溶液のPHを濃アンモニア氎を甚いおに調
敎し、そしお埗られたアルカリ性溶液をゞクロロ
メタンを180mlず぀甚いお回抜出した。このゞ
クロロメタン溶液を合わせ、硫酞ナトリりム䞊で
也燥し、過し、そしおこの液を最終溶積玄20
乃至30mlに濃瞮した。この濃瞮物に96゚タノヌ
ル120mlに加え、そしお埗られた溶液を最終容積
箄20乃至30mlに枛圧濃瞮した。この濃瞮物を時
間℃に保持し、次いで、析出した物質を別
し、そしお96゚タノヌル10mlで掗浄した。 その結果、目的化合物9.667.6が埗ら
れた。融点145〜147℃、玔床99.8過塩玠
酞で滎定するこずによ぀お枬定、〔α〕 
148.2゜、クロロホルム䞭。 実斜䟋 13 −アポビンカミン酞゚チル゚ステルの補造 也燥炭酞銀セラむト詊薬60、無氎トル゚ン
600ml及び−−シス−α−゚チル−−
2′−ヒドロキシ−2′−゚トキシカルボニル−
・・・・・・12・12bα−オクタヒ
ドロ−むンドロ〔・−〕キノリゞン15の
混合物をアルゎン雰囲気䞋で時間煮沞した。反
応の進行は、実斜䟋ず同様にしお薄局クロマト
グラフむヌで監芖した。反応終了時に、炭酞銀
セラむト詊薬を別し、そしおトル゚ン90mlで掗
浄した。この母液及び掗液を合わせ、このトル゚
ン溶液に−トル゚ンスルホン酞䞀氎和物15を
加え、そしお反応混合物を0.5時間煮沞した。こ
の間に反応においお圢成された氎を、マヌカツ゜
ン・トラツプを甚いお共沞蒞留によ぀お混合物か
ら陀去した。反応の進行は、実斜䟋ず同様にし
お薄局クロマトグラフむヌによ぀お監芖した。 反応終了埌、トル゚ン溶液を宀枩に冷华し、
炭酞ナトリりム氎溶液450mlで掗浄し、次いで
æ°Ž450mlで掗浄し、硫酞ナトリりム䞊で也燥し、
過し、そしおその液を枛圧䞋においお蒞発也
固せしめた。この残留物に96゚タノヌルを120
ml加え、そしおこの溶液を最終容積玄20乃至30ml
たで枛圧濃瞮した。この濃瞮物を時間℃に保
持し、次いで析出した結晶を別し、そしお゚タ
ノヌル10mlで掗浄した。 その結果、目的化合物が10.473.5埗ら
れた。融点145〜147℃、玔床98.6過塩玠
酞で滎定するこずによ぀お枬定、〔α〕 14
2
゜、クロロホルム䞭。
[Table] Example 12 Production of (+)-apovincamic acid ethyl ester Dry silver carbonate/Celite reagent 60g, anhydrous toluene
600 ml and (-)-cis-1-ethyl-1-(2'-
Hydroxy-2'-ethoxycarbonylethyl)-
A mixture of 15 g of 1,2,3,4,6,7,12,12b-octahydro-indolo[2,3-a]quinolidine was boiled for 5 hours under an argon atmosphere. The progress of the reaction was monitored by thin layer chromatography as in Example 1. When the reaction is complete and no starting material is detected, the reaction mixture is (+)
-vincamic acid ester and (-)-epivincamic acid ethyl ester. At this stage, the silver carbonate/celite reagent was separated at 80°C and washed with toluene. The wash liquor and mother liquor were combined, p-toluenesulfonic acid-hydrate was added to the toluene solution, and the mixture was boiled for 0.5 hour. The water formed in the reaction during this time was removed from the mixture by azeotropic distillation using a Marcusson trap. The progress of the reaction was monitored by thin layer chromatography as in Example 1. After dehydration, cool the toluene solution to room temperature,
It was washed with 450 ml of a 5% aqueous sodium carbonate solution, and then extracted three times with 450 ml each of 0.25N aqueous hydrochloric acid. The aqueous-acidic extracts were combined, the pH of the solution was adjusted to 3 using concentrated aqueous ammonia, and the resulting solution was decolorized using 1.5 g of carbon. The pH of this decolorized solution was adjusted to 9 using concentrated aqueous ammonia, and the resulting alkaline solution was extracted three times with 180 ml of dichloromethane each time. The dichloromethane solutions were combined, dried over sodium sulfate, filtered, and the solution was reduced to a final solution of approximately 20
It was concentrated to 30 ml. To this concentrate was added 120 ml of 96% ethanol and the resulting solution was concentrated under reduced pressure to a final volume of approximately 20-30 ml. The concentrate was kept at 0° C. for 1 hour, then the precipitated material was separated and washed with 10 ml of 96% ethanol. As a result, 9.6 g (67.6%) of the target compound was obtained. Melting point: 145-147°C, purity: 99.8% (measured by titration with perchloric acid), [α] 20 D = +
148.2° (C=1, in chloroform). Example 13 Production of (+)-apovincamic acid ethyl ester 60 g of dry silver carbonate/Celite reagent, anhydrous toluene
600ml and (-)-cis-1α-ethyl-1-
(2'-hydroxy-2'-ethoxycarbonyl)-
A mixture of 15 g of 1.2.3.4.6.7.12.12bα-octahydro-indolo[2.3-a]quinolidine was boiled for 5 hours under an argon atmosphere. The progress of the reaction was monitored by thin layer chromatography in the same manner as in Example 1. At the end of the reaction, silver carbonate/
The Celite reagent was separated and washed with 90 ml of toluene. The mother liquor and wash liquor were combined, 15 g of p-toluenesulfonic acid monohydrate was added to the toluene solution, and the reaction mixture was boiled for 0.5 hour. During this time the water formed in the reaction was removed from the mixture by azeotropic distillation using a Marcusson trap. The progress of the reaction was monitored by thin layer chromatography as in Example 1. After the reaction, the toluene solution was cooled to room temperature and
% aqueous sodium carbonate solution, then 450 ml of water, dried over sodium sulfate,
and the liquid was evaporated to dryness under reduced pressure. Add 96% ethanol to this residue at 120%
ml and bring this solution to a final volume of approximately 20-30ml.
It was concentrated under reduced pressure. The concentrate was kept at 0° C. for 1 hour, then the precipitated crystals were separated and washed with 10 ml of ethanol. As a result, 10.4g (73.5%) of the target compound was obtained. Melting point: 145-147°C, purity: 98.6% (measured by titration with perchloric acid), [α] 20 D = +14
2
° (C=1, in chloroform).

Claims (1)

【特蚱請求の範囲】  䞀般匏及びもしくは 【匏】 【匏】 〔匏䞭、はC2-6アルキル基である〕のビンカミ
ン酞゚ステルならびにたたは䞀般匏及
びもしくは 【匏】 【匏】 〔匏䞭、は前述の通り〕の゚ピビンカミン酞゚
ステルを脱氎するこずによ぀お䞀般匏及
びたたは 【匏】 【匏】 〔匏䞭、は前述の通り〕のアポビンカミン酞゚
ステルを補造する方法であ぀お、氎ずの共沞混合
物を圢成できず䞔぀脱氎枩床においお䜎い蒞気圧
を有する解離定数が玄10-2もしくはそれ以䞊の匷
い有機酞の存圚䞋においお、氎ず共沞化合物を圢
成する氎䞍混和溶媒䞭で脱氎を行ない、そしお反
応䞭に圢成された氎を共沞蒞留によ぀お連続的に
陀去するこずを特城ずする補造方法。  前蚘溶媒ずしお、ハロゲン化されたたたは未
眮換のベンれン系芳銙族炭化氎玠を甚いる特蚱請
求の範囲第項蚘茉の補造方法。  前蚘匷酞ずしお芳銙族スルホン酞たたはカル
ボン酞を甚いる特蚱請求の範囲第項蚘茉の補造
方法。
[Scope of Claims] 1 Vincamic acid ester of general formula (a) and/or (b) [Formula] [Formula] [wherein R is a C 2-6 alkyl group] and/or vincamic acid ester of general formula (a) ) and/or (b) [Formula] [Formula] [In the formula, R is as described above] by dehydrating the epivincamic acid ester of the general formula (a) and/or (b) [Formula] [Formula] ] A method for producing an apovincamic acid ester [wherein R is as described above], wherein the apovincamic acid ester has a dissociation constant of about 10 -2 or Carry out dehydration in a water-immiscible solvent that forms an azeotrope with water in the presence of a stronger organic acid and continuously remove the water formed during the reaction by azeotropic distillation. A manufacturing method characterized by: 2. The manufacturing method according to claim 1, wherein a halogenated or unsubstituted benzene-based aromatic hydrocarbon is used as the solvent. 3. The manufacturing method according to claim 1, wherein the strong acid is an aromatic sulfonic acid or a carboxylic acid.
JP14288079A 1979-11-06 1979-11-06 Manufacture of apovincaminic ester Granted JPS5671091A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14288079A JPS5671091A (en) 1979-11-06 1979-11-06 Manufacture of apovincaminic ester
US09/554,409 US6653801B1 (en) 1979-11-06 1999-09-10 Mercury-free metal-halide lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14288079A JPS5671091A (en) 1979-11-06 1979-11-06 Manufacture of apovincaminic ester

Publications (2)

Publication Number Publication Date
JPS5671091A JPS5671091A (en) 1981-06-13
JPS6232748B2 true JPS6232748B2 (en) 1987-07-16

Family

ID=15325734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14288079A Granted JPS5671091A (en) 1979-11-06 1979-11-06 Manufacture of apovincaminic ester

Country Status (1)

Country Link
JP (1) JPS5671091A (en)

Also Published As

Publication number Publication date
JPS5671091A (en) 1981-06-13

Similar Documents

Publication Publication Date Title
US2530416A (en) Process for recovering vitamin b12
Tarlton et al. Uroporphyrin 31
US2883384A (en) Production of reserpine and analogs thereof
Zinnes et al. Yohimbane Derivatives. III. The Oxidative Rearrangement of Indole Alkaloids to Their Spirooxindole Analogs1
SU884572A3 (en) Method of preparing lysergol derivatives
JPS6232748B2 (en)
Dolle et al. Improved preparation of (3. beta., 5. alpha., 14. alpha.)-3-hydroxy-14-methylcholest-7-en-15-one. Synthesis of ergostenone and 20. alpha.-(hydroxymethyl) pregnenone analogs
US3133940A (en) Process for the separation of delta-1, 4-3-keto steroid compounds from mixtures thereof with other 3-keto steroids
US4097522A (en) Synthesis of m-benzoyl-hydratropic acid
MacDonald et al. The synthesis of opsopyrrole-dicarboxylic acid
Manske The alkaloids of fumariaceous plants. LII. A new alkaloid, cularicine, and its structure
SU576951A3 (en) Method of preparing leurosine derivatives or salts thereof
SU673174A3 (en) Method of producing 4-dezacetooxyvincristine or salts thereof
US4198344A (en) Process for the preparation of polyhydroxylated steroids, lysergol and ergolinic alkaloids
US4379935A (en) Process for the synthesis of vincamine and related indole alkaloids
US4692463A (en) Antiinflammatory 2,3-didemethylcolchicine and additional derivatives
US3472885A (en) Novel process for preparation of optically active keto steroids
GB2062619A (en) Preparation of apovincaminic acid esters
HU186974B (en) Process for the preparation of 3a,7a-trans-4-bracket-7,7-ethylendioxy-3-oxo-octyl-bracket closed-7abeta-methyl-perhydro-indan-1,5-dione
FR2468605A1 (en) Prepn. of apovincaminic acid ester(s) - by azeotropic dehydration of vincamic or epi-vincaminic acid ester(s); useful at hypotensives and vasodilators
US4008270A (en) Process for preparing 2-(substituted phenyl)propionic acids
SU434079A1 (en) METHOD OF OBTAINING DIACETATE OF SKLAREOL OR MANETOL ACETATE
Fleming et al. A product from the reaction of pyridine with acetic anhydride
SU857138A1 (en) Method of preparing 2,4-di-(alpha-alkoxyethyl)-6,7-di-(2-carbalkoxyethyl)-1,3,5,8-tetramethylporphirones
US3101354A (en) Process for the preparation of 19-nortestosterone and compounds used in this process