JPS623273B2 - - Google Patents

Info

Publication number
JPS623273B2
JPS623273B2 JP53134065A JP13406578A JPS623273B2 JP S623273 B2 JPS623273 B2 JP S623273B2 JP 53134065 A JP53134065 A JP 53134065A JP 13406578 A JP13406578 A JP 13406578A JP S623273 B2 JPS623273 B2 JP S623273B2
Authority
JP
Japan
Prior art keywords
weft
yarn
polyester multifilament
tire
elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53134065A
Other languages
Japanese (ja)
Other versions
JPS5562236A (en
Inventor
Akiji Anahara
Tomio Kuroki
Osamu Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP13406578A priority Critical patent/JPS5562236A/en
Publication of JPS5562236A publication Critical patent/JPS5562236A/en
Publication of JPS623273B2 publication Critical patent/JPS623273B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は多数本のタイヤコードの配列を均斉に
タイヤ中に分布させるのに好適な適度の伸度を有
する緯糸ことに緯糸用コアヤーンに関する。 従来、タイヤ用補強織物としては、タイヤコー
ドを密に配列し、これに対し粗な間隔で緯糸を配
したすだれ織と呼ばれる織物が一般的に用いられ
ており、この織物が中層部へくるようにゴムと共
に加熱成形してタイヤとするのが一般的であつ
た。一方、ラジアルタイヤが普及するにつれてタ
イヤ中でのタイヤコードの分布を均斉にする要求
が高まり、これまで主力的に緯糸として用いられ
てきた綿糸では伸度が8%近辺と小さいために成
型時の大型形に追随できず、糸の長手方向の斑に
依存した弱点部をきつかけとして破断し、それに
応じてタイヤコードである経糸の分布状態も不均
斉なものとなり、ラジアルタイヤの如き高性能を
要求するタイヤには不適当となつてきた。これに
対し、最近高伸張性を有する合成繊維未延伸糸を
芯糸とし、これに綿などのステーブルフアイバー
を被覆してコアヤーンとして緯糸に用いる例(米
国特許第4024895号明細書)あるいはポリエステ
ル未延伸糸を熱処理して残留収縮(乾熱150℃)
率を±2%以下にしたものを用いる例(特開昭52
―70167号公報)、配向度13×10-3〜80×10-3の高
配向ポリエステルフイラメントを用いる例(特開
昭52―124973号公報)などが提案されている。し
かし、前2者の場合被覆した繊維が固く芯糸を被
覆拘束するために、芯糸そのものは高伸張性を有
しているにも拘らず、伸張変形を受けるとまず被
覆繊維が荷重を分担して高い伸張応力を示し、こ
れが破壊されるとその破壊点の芯糸に局部的な伸
張応力が集中し、その部分から芯糸も破断するた
めに結局充分な伸度が得られにくい傾向があり、
しかも高価であつた。又一方芯糸の伸張を妨げな
いように被覆繊維の比率を下げると被覆の不完全
な部分が発生し易く、樹脂液を付着後ベーキング
する高温処理時に芯糸である未延伸糸が熱劣化を
起して、これも所期の伸度が得られなかつた。 又、後2者の如く特殊な物性のマルチフイラメ
ントを用いても、無撚であるため取り扱いにくい
上に織物中でフイラメントが分散し易いため、樹
脂液が多量に付着し易く、ベーキング後の伸度は
大巾に低下する傾向にあつた。又、残留収縮率の
小さいマルチフイラメントに綿糸をまきつける
と、その伸張応力挙動は綿糸のそれが支配的とな
り伸張しにくいだけでなく、綿糸の切断時に高伸
度フイラメント糸にも過大の応力がかけられるた
め同時的に切断してしまう欠点があつた。 本発明者等は上記欠点のないタイヤ補強織物用
緯糸を開発するべく鋭意研究の結果、本発明の緯
糸に到達した。すなわち、本発明のタイヤ補強用
織物の緯糸は切断伸度が80%以上、200%以下の
ポリエステルマルチフイラメントであり、かつ該
繊維表面が非熱溶融性のメラミン樹脂の薄い皮膜
で覆われていることを特徴とする。 タイヤ補強用織物に供せられる緯糸は樹脂液を
含浸した後240℃以上の高温で数分間ベーキング
処理を施した後もなお60%以上の残留伸度を保持
すること、および緯糸と交錯した多数本の経糸を
所定の密度に均斉に保持することの2点が持つべ
き性能として必須である。この第1の目的のため
には先ず常温下でのベーキング前のマルチフイラ
メント糸の伸度が充分に大きいことが要求され、
しかも上述の如き高温度の苛酷な熱処理を受けた
後もその高伸張性を保持することが必要である。
かかる性質を有するフイラメントを種々検討した
結果、切断伸度60%以上、200%以下のポリエス
テル系未延伸マルチフイラメントが非熱溶融性の
耐熱高分子物質の薄い皮膜で覆われることが必要
であることが明らかとなつた。かゝる耐熱性高分
子物質としては、網目状分子構造を形成し、非熱
溶融性となるいわゆる熱硬化性樹脂が用いられる
が、細い繊維の表面を一様に均斉に被覆し、ベー
キング時の熱処理に対しては内部を保護し、タイ
ヤ成型時の大変形に対しては容易に破壊して、被
覆されているポリエステルマルチフイラメントの
高伸張性を妨げないことが重要であり、樹脂の種
類にもよるが被覆量は一般的にみて繊維重量に対
し0.5〜10重量%程度、好ましくは1.5〜8%程度
がよい効果をもつ。かゝる性質をもつ最も好まし
い樹脂の例としてはメラミン樹脂が挙げられる。
メラミン樹脂は熱に対して極めて安定であり、
300℃以下ではほとんど変化せず、また空気中で
300℃以上ではトリアジン環の分解が生じるが、
窒素気流中では400℃までは重量減少も少なく安
定しており、これをポリエステル繊維に対し重量
比で10%以下付着した糸は、後述の例にも示した
如く付着しない糸に比べて同一の熱風炉中の高温
度処理に対し格段に優れた残留伸度を有してい
る。この範囲の付着量は繊維表面に万遍なくコー
テイングされている場合、その厚みは通常10μ以
下であり、好ましくは0.1〜数μであつて、断面
の顕微鏡写真からもその様子は伺い知ることがで
きる。こゝでポリエステル未延伸マルチフイラメ
ントの切断伸度が80%未満ではベーキング処理後
の残留伸度を60%以上とすることが難しく、又
200%以上では分子配向度が小さいために放置に
よる経時変化が著しく、ポリエステル繊維自身の
耐熱性にも問題があるため使用不可能である。
こゝに用いられるポリエステル未延伸糸は、上述
の如く耐熱性物質で被覆するとは言え、繊維自身
がある程度の耐熱性を有することが必要であり、
その一つの要素は伸度200%以下に示されるある
程度以上の分子配向度であり、他の一つは構成分
子の大きさが大きいことである。通常、分子の大
きさは一定の溶媒に溶解した溶液の粘度から溶媒
量が0になつた場合の極限粘度として示される
が、一般のポリエステル繊維ではフエノール/テ
トラクロロエタン(3/2重量比)の混合溶媒中
30℃で測定した極限粘度が特殊なものを除いて
0.55〜0.60のものが用いられている。かゝる範囲
のポリエステル繊維を用いて、本発明により緯糸
を製造してもかなり良い効果を示すが、タイヤ補
強用織物のベーキング処理をする機械装置によつ
ては設定温度にバラツキを生じ易いものがあり、
時として異常な高温で処理される場合もあり、極
限粘度は高い方が好ましい。高温熱処理を受ける
と極限粘度の低い未延伸糸は激しい熱劣化を起し
て極めて低い残留伸度しか保持し得ない。しかし
極限粘度の高いポリエステル未延伸糸を用いる
と、その程度は大巾に緩和される。当然のことな
がら、耐熱性は極限粘度の高いもの程大きい傾向
にあるが、本発明においては0.55以上あればほゞ
充分にその目的を達成することができる。しかし
特に好ましい極限粘度は0.65以上である。 さて、タイヤ補強織物用緯糸に要求される第2
の性質として経糸を安定に配置することが必要で
あるが、それにはコアヤーンとして短繊維をポリ
エステル未延伸糸の周囲にまきつけるのが特に好
ましい。しかし、本発明においては芯となるポリ
エステル未延伸糸そのものが耐熱性を有するため
に、被覆する短繊維は芯糸を熱的に保護する機能
は要求されず、通常の場合よりはるかに少ない短
繊維比率でも経糸との交錯点の充分な繋留を行う
ことができる。短繊維の比率が増大する程、芯糸
の伸びを拘束する傾向にあるが、本発明の如くそ
の比率が小さいことはコアヤーンとしての伸びを
芯糸に近づけ得る特徴を発揮する。言うまでもな
くこゝで未延伸糸を被覆する短繊維に要求される
性能として重要なことは熱溶融性をもたぬことで
ある。もし熱溶融性をもつと、その耐熱特性にも
依存するが、一般的にはベーキング時に高温の熱
風に最も早く接触し、その形態を失わないまでも
溶融した一部が内部の芯糸であるポリエステル未
延伸糸を拘束し、その保持する伸張性を阻害する
からである。従つて綿、タフセルの如きセルロー
ス系の短繊維などは最も好ましい素材である。し
かし、本発明の主旨とする耐熱性高分子物質の皮
膜は、通常それ自身ポリエステル繊維よりも大き
い摩擦係数を有するから、かゝる短繊維の被覆な
しに経糸との交錯点を充分に保持し得るので、特
別の要求のない限り、耐熱性高分子物質で被覆さ
れたポリエステル未延伸糸をコアヤーンとする必
要はない。 ポリエステル未延伸糸は、通常無撚に近いため
フイラメントがばらけて取扱いにくい。又ベーキ
ング時の熱処理に対しても集束性がないため、内
部繊維の保護効果がなく、耐熱性に乏しくなる傾
向があるため、撚係数として1000〜16000程度の
撚が加えられていることが好ましい。こゝで撚係
数K=撚数(T/M)×√総デニールで撚数は撚
をほどいた糸の長さを基準として表わすものとす
る。 本発明のタイヤ補強用の織物用緯糸を製造する
には、種々の方法が用いられるが、先ずポリエス
テル未延伸糸を得るにはポリエステル樹脂を多数
の細孔を通して溶融吐出し、冷却しながら
4000m/min以下のまきとり速度でまきとればよ
い。その際、紡糸速度がおそく配向度の低い未延
伸糸は放置による経時変化が著しく、耐熱性も乏
しくなるので、紡糸速度は1800m/min以上で複
屈折率△nが17×10-3以上となるよう高配向紡糸
することが必要である。なお複屈折率の上限は80
×10-3程度が好ましい。かゝるポリエステル未延
伸糸は下記の樹脂初期縮合物含有処理液により処
理され、通常絞つてからパツケージにまきあげた
後、繊維表面で架橋を形成するよう反応させる
か、又はまきあげる前に熱処理などの適当な手段
で反応をさせた後、更に所望により熟成処理等を
行つてもよい。本発明で用いる好適な処理液は化
学反応によつて網目状分子構造を形成し得る樹脂
初期縮合物たとえばポリメチロールメラミンもし
くはそのエーテル化物及び触媒などの反応助剤を
主体的に含む液であることが必要で、処理はたと
えばトリメトキシメチルメラミン約5重量%、第
1リン酸アンモニウム約2重量%を含みPH4〜6
に調整された水溶液をオイリングローラ形式で固
形分約4%付着させた後、まきあげて室温25℃の
部屋に24時間放置後、まきもどしつゝ水洗し乾燥
して行われる。得られた糸はすだれ織物用緯糸と
して使用したときベーキング時の劣化が少く、無
処理糸に比べて格段に優れ、残留伸度が大きい特
徴を有する。又使用したポリエステル未延伸糸の
極限粘度〔η〕が0.65以上の場合は、それ以下の
糸に比べてポリマー自身の耐熱性が向上されるた
めに、これに上述の樹脂処理を施した糸は、高温
ベーキングに対しても極めて安定した物性を保持
し、更に高い性能の糸が得られる。かゝる処理を
施した繊維の表面及び断面を顕微鏡で観察する
と、繊維の表面(側面)に一様に薄いメラミンを
主成分とする皮膜が生じている状態が明瞭に認め
られ、その厚みは、厳密には測定困難であるが通
常10μ以下であり、好ましくは0.1〜数μであ
る。この皮膜がベーキング時の熱処理から、内部
のポリエステル樹脂の劣化を防いでいるものと思
われる。又、かかる処理を施したポリエステル未
延伸糸に適当な撚を加えて集束し、緯糸としての
取り扱い易さを向上させると共に、熱処理時の内
部繊維の保護効果をもたせることも可能であり、
有効である。その際の撚数としては、撚係数とし
て1000〜16000の範囲が好適であり、これ以下で
は取扱い時の集束性が不充分で繊維がバラけ易
く、又これ以上では強撚のためにフイラメントの
伸度が阻害される傾向があり、本発明の緯糸を使
用する主旨から次第に外れることになる。かゝる
繊維表面を、耐熱性高分子物質で保護されたポリ
エステル未延伸糸を芯糸として精紡機のフロント
ローラに供給し、これに非熱溶融性の短繊維をま
きつけて撚かけしつつまきとつたいわゆるコアヤ
ーンも本発明の緯糸として好適に使用し得る。こ
の場合、短繊維としては綿、タフセルなどが好ま
しい素材であるが、切断強力の強いタフセルの場
合は伸張時に芯糸の伸張を阻害する恐れがあるの
で、被覆率を下げポリエステル未延伸糸の重量に
対し30重量%以下程度とし、更に撚係数(K2
TW′/√でN:綿番手、TW′:TRI)も下げる
ことが望ましい。 以下、実施例により本発明を説明する。なお、
実施例中の%は伸度の%を除き重量%である。 実施例 種々の重合度のポリエチレンテレフタレート樹
脂を溶融し、吐出量、まきとり速度を変えて、高
配向未延伸糸をエマルジヨンタイプのオイルを付
与しながら紡出した。目標設定デニール155、フ
イラメント数18で、条件の組みあわせによりまき
とられた未延伸糸のデニールは若干の違いが認め
られたが、本発明の目的には支障のない範囲であ
つた。次にそれらの未延伸糸を解舒し、精練剤を
混入した槽に導いて充分オイルを除去した後、ト
リメトキシメチルメラミン4.8%および第一リン
酸アンモニウム1.6%を水に溶解した加工液に浸
漬し、表―1に示す所定の付着率になるよう含ま
せてまきとつた後、パツケージの状態で20℃の室
内に約30時間、ゆつくりとした回転を与えながら
放置した。その後、パツケージから糸をまきもど
し、充分に水洗してまきとり、遠心脱水乾燥した
後、表―1に示す加工を施した。これらの糸をタ
イヤコード1000D/2を経糸とするすだれ織物の
緯糸として打ちこみ、ゴムとの接着性向上剤(フ
エノール・ホルムアルデヒド樹脂初期縮合物)を
含浸させた後、高温でベーキング処理した。次い
で織物中から緯糸をとり出して、残留伸度をテン
シロンで測定した。その結果は表―1に示すとお
りである。紡糸速度を変えたサンプルNo.1〜7の
例は何れもメラミン樹脂が約2.2%メラミン樹脂
被覆され、約400T/Mの撚がZ方向に加えられ
た後65℃で20分キヤ処理された糸であるが、紡速
が小さく伸度の高い未延伸糸(以下未延伸糸を
POYという)を用いた場合(No.7)および逆に
紡速が大きく伸度が低いPOYを用いた場合(No.
1)は、何れも残留伸度が60%を割り、性能とし
て不充分であつたが、伸度80〜200%のPOYは何
れも残留伸度も充分に大きく好ましい結果を示し
た。これらの残留伸度の値はメラミン樹脂被覆処
理しない(No.10)に比べてはるかに大きく、被覆
効果が明瞭に認められた。又No.4の例は加撚後の
湿熱処理(キヤ処理)を省いたものであり、トル
クが強く若干ビリが入り易かつたゝめ取扱い性は
やゝ悪かつたが湿熱処理をした場合に比べて特に
残留伸度への影響は見られなかつた。又、ポリマ
ーの重合度のやゝ低い従つて未延伸糸の極限粘度
の低い場合には粘度の低下と共にメラミン樹脂被
覆処理を施したPOYに加える撚数を変更した例
がNo.13―17で、撚係数にして100〜15000の範囲の
場合が残留伸度も大きく、より好ましい傾向を示
した。なお撚数0の場合は緯まき、製織時にバラ
ケやすく残留伸度のバラツキが有撚の場合に比べ
てやゝ大きかつた。メラミン樹脂被覆したPOY
を芯糸として、綿を精紡機でまきつけてコアヤー
ンとした後、65℃20分のキヤ処理をした場合の、
綿の芯糸に対する重量比を変えた例がNo.18〜22で
あり、POY重量に対し綿糸が15〜60%の範囲は
何れも特に良好な残留伸度を示した。60%を越え
ると綿が芯糸の伸張を阻害するためか伸度は低下
した。これらのサンプルの中からNo.3およびNo.20
を選びラジアルタイアの補強布として用いた所、
成型後のタイアのサイドウオールの凹凸もなく、
ラジアルフオースバリエーシヨンは夫々8.4Kg、
8.2Kgと極めて良好な結果を示した。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a weft yarn, or a core yarn for the weft yarn, having a suitable elongation for uniformly distributing the arrangement of a large number of tire cords in a tire. Traditionally, tire reinforcing fabrics have generally been fabrics called sudare-ori, in which tire cords are densely arranged and weft yarns are arranged at coarse intervals. It was common for tires to be made by heating and molding them together with rubber. On the other hand, as radial tires become more popular, there is an increasing demand for uniform distribution of tire cords in the tire, and cotton yarn, which has been mainly used as weft yarn, has a low elongation of around 8%, so Unable to keep up with the large size, the yarn breaks at weak points depending on unevenness in the longitudinal direction, and accordingly, the distribution of the warp yarns that make up the tire cord becomes asymmetrical, making it difficult to achieve high performance such as radial tires. It has become unsuitable for the required tires. On the other hand, there are recent examples in which undrawn synthetic fiber yarns with high tensile properties are used as core yarns, coated with stable fibers such as cotton, and used as core yarns as weft yarns (U.S. Pat. No. 4,024,895), or non-drawn polyester yarns. Residual shrinkage after heat treatment of drawn yarn (dry heat 150℃)
An example of using a ratio of ±2% or less (Unexamined Japanese Patent Publication No. 52
70167) and an example using highly oriented polyester filament with an orientation degree of 13×10 -3 to 80×10 -3 (Japanese Patent Application Laid-Open No. 124973/1983). However, in the case of the first two, the covered fibers are hard and cover and constrain the core yarn, so even though the core yarn itself has high extensibility, when it undergoes stretching deformation, the load is first shared by the covered fibers. When this breaks, local elongation stress concentrates on the core yarn at the breaking point, and the core yarn also breaks from that point, making it difficult to obtain sufficient elongation. can be,
Moreover, it was expensive. On the other hand, if the ratio of coated fibers is lowered so as not to hinder the elongation of the core yarn, incomplete coverage tends to occur, and the undrawn yarn that is the core yarn is subject to thermal deterioration during high-temperature processing such as baking after applying the resin liquid. As a result, the desired degree of elongation could not be obtained. Furthermore, even if multifilaments with special physical properties such as the latter two are used, they are difficult to handle because they are not twisted, and the filaments are easily dispersed in the fabric, resulting in a large amount of resin liquid adhering to them, resulting in poor stretching after baking. There was a tendency for the level to drop significantly. Furthermore, when cotton yarn is wound around a multifilament with a low residual shrinkage rate, the tensile stress behavior of the cotton yarn becomes dominant and it is not only difficult to stretch, but also excessive stress is applied to the high elongation filament yarn when the cotton yarn is cut. The problem was that they were cut at the same time. The present inventors conducted extensive research to develop a weft for tire reinforcing fabrics that does not have the above-mentioned drawbacks, and as a result, they arrived at the weft of the present invention. That is, the weft of the tire reinforcing fabric of the present invention is a polyester multifilament with a breaking elongation of 80% or more and 200% or less, and the fiber surface is covered with a thin film of non-thermofusible melamine resin. It is characterized by The weft yarns used in tire reinforcing fabrics must retain a residual elongation of 60% or more even after being impregnated with resin liquid and subjected to baking treatment at a high temperature of 240°C or higher for several minutes, and a large number of yarns interlaced with the weft yarns must remain. The two essential qualities are maintaining the book's warp threads uniformly at a predetermined density. For this first purpose, it is first required that the elongation of the multifilament yarn is sufficiently large before baking at room temperature.
Moreover, it is necessary to maintain high elongation even after undergoing severe heat treatment at high temperatures as described above.
As a result of various studies on filaments having such properties, we found that it is necessary for polyester-based unstretched multifilaments with a breaking elongation of 60% or more and 200% or less to be covered with a thin film of a non-thermofusible heat-resistant polymer material. It became clear. As such heat-resistant polymer substances, so-called thermosetting resins that form a network molecular structure and are non-thermofusible are used. It is important to protect the interior against heat treatment, and to not easily break against large deformations during tire molding and prevent the high elongation properties of the polyester multifilament coated with the resin. Although it depends on the fiber, a coating amount of about 0.5 to 10% by weight, preferably about 1.5 to 8%, based on the weight of the fibers has a good effect. The most preferred example of a resin having such properties is melamine resin.
Melamine resin is extremely stable against heat;
There is almost no change below 300℃, and in air
At temperatures above 300°C, the triazine ring decomposes, but
In a nitrogen stream, it is stable with little weight loss up to 400℃, and yarns with less than 10% weight of this attached to polyester fibers have the same weight loss compared to yarns that are not attached, as shown in the example below. It has an extremely superior residual elongation when subjected to high temperature treatment in a hot blast oven. If the fiber surface is evenly coated in this range, the thickness is usually less than 10 μm, preferably 0.1 to several μm, and the thickness can be seen from the cross-sectional micrograph. can. If the breaking elongation of undrawn polyester multifilament is less than 80%, it is difficult to increase the residual elongation after baking to 60% or more.
If it is 200% or more, the degree of molecular orientation is small, so the change over time when left standing is significant, and there are also problems with the heat resistance of the polyester fiber itself, so it cannot be used.
Although the undrawn polyester yarn used here is coated with a heat-resistant substance as described above, it is necessary that the fiber itself has a certain degree of heat resistance.
One factor is a certain degree of molecular orientation, which is shown by an elongation of 200% or less, and another is the large size of the constituent molecules. Normally, the size of a molecule is expressed as the limiting viscosity when the amount of solvent becomes 0 from the viscosity of a solution dissolved in a certain solvent, but in general polyester fibers, phenol/tetrachloroethane (3/2 weight ratio) in mixed solvent
Except for those with special intrinsic viscosity measured at 30℃
A value of 0.55 to 0.60 is used. Even if weft yarns are manufactured according to the present invention using polyester fibers in such a range, a fairly good effect is shown, but depending on the machinery used for baking tire reinforcing fabrics, the set temperature tends to vary. There is,
In some cases, processing is carried out at abnormally high temperatures, so a high intrinsic viscosity is preferable. When subjected to high-temperature heat treatment, undrawn yarns with low intrinsic viscosity undergo severe thermal deterioration and can only maintain extremely low residual elongation. However, if an undrawn polyester yarn with a high intrinsic viscosity is used, the degree of this problem can be alleviated to a large extent. Naturally, the higher the intrinsic viscosity, the higher the heat resistance tends to be, but in the present invention, if it is 0.55 or more, the objective can be almost fully achieved. However, a particularly preferred intrinsic viscosity is 0.65 or more. Now, the second requirement for weft yarns for tire reinforcing fabrics is
It is necessary to stably arrange the warp yarns, and for this purpose, it is particularly preferable to wind short fibers as core yarns around undrawn polyester yarns. However, in the present invention, since the core undrawn polyester yarn itself has heat resistance, the covering short fibers are not required to have the function of thermally protecting the core yarn, and the number of short fibers is much smaller than in the usual case. Even with this ratio, sufficient anchoring can be achieved at the intersection points with the warp threads. As the ratio of short fibers increases, the elongation of the core yarn tends to be restricted; however, as in the present invention, when the ratio is small, the elongation of the core yarn can be made closer to that of the core yarn. Needless to say, the important performance required of the short fibers covering the undrawn yarns is that they have no heat meltability. If it has heat-melting properties, it depends on its heat resistance properties, but in general, it is the inner core yarn that comes into contact with the high-temperature hot air first during baking, and the part that melts even if it does not lose its shape. This is because it restricts the undrawn polyester yarn and inhibits its retained extensibility. Therefore, cotton and short cellulose fibers such as Tuffcell are the most preferred materials. However, since the film of the heat-resistant polymer material that is the subject matter of the present invention usually has a coefficient of friction that is larger than that of polyester fibers, it is possible to sufficiently maintain the points of intersection with the warp yarns without covering with such short fibers. Therefore, it is not necessary to use an undrawn polyester yarn coated with a heat-resistant polymeric material as the core yarn unless there is a special requirement. Undrawn polyester yarn is usually nearly untwisted, so the filaments come apart and are difficult to handle. Also, since it has no cohesiveness when subjected to heat treatment during baking, it has no protective effect on the internal fibers and tends to have poor heat resistance, so it is preferable that the twist coefficient is about 1000 to 16000. . Here, the twist coefficient K=number of twists (T/M)×√total denier, and the number of twists is expressed based on the length of the untwisted yarn. Various methods can be used to produce the weft for tire reinforcing textiles of the present invention, but first, to obtain undrawn polyester yarn, polyester resin is melted and discharged through a large number of pores, and then cooled.
It is sufficient to wind at a winding speed of 4000 m/min or less. At that time, undrawn yarn with a slow spinning speed and low degree of orientation will change significantly over time when left unused and will have poor heat resistance. It is necessary to perform highly oriented spinning to achieve this. The upper limit of birefringence is 80
About ×10 −3 is preferable. Such undrawn polyester yarn is treated with a treatment solution containing a resin initial condensate as described below, and is usually squeezed and wound up into a package, and then reacted to form crosslinks on the fiber surface, or subjected to heat treatment etc. before being wound up. After the reaction is carried out by an appropriate means, a ripening treatment or the like may be further performed as desired. The preferred treatment liquid used in the present invention is a liquid that mainly contains a resin initial condensate that can form a network molecular structure through a chemical reaction, such as polymethylolmelamine or its etherified product, and a reaction aid such as a catalyst. The treatment includes, for example, about 5% by weight of trimethoxymethylmelamine and about 2% by weight of monoammonium phosphate, with a pH of 4 to 6.
After applying an aqueous solution with a solid content of approximately 4% using an oiling roller, it is rolled up and left in a room at a room temperature of 25°C for 24 hours, then rolled again, rinsed with water, and dried. When the obtained yarn is used as a weft yarn for blind fabrics, it shows little deterioration during baking, is much superior to untreated yarn, and has a large residual elongation. Furthermore, if the intrinsic viscosity [η] of the undrawn polyester yarn used is 0.65 or more, the heat resistance of the polymer itself will be improved compared to yarns with a lower intrinsic viscosity. It maintains extremely stable physical properties even when subjected to high-temperature baking, making it possible to obtain yarn with even higher performance. When the surface and cross-section of the fibers subjected to such treatment are observed under a microscope, it is clearly seen that a uniformly thin film mainly composed of melamine is formed on the surface (side surface) of the fiber, and the thickness of the film is Although strictly speaking it is difficult to measure, it is usually 10μ or less, preferably 0.1 to several μ. It is thought that this film prevents the internal polyester resin from deteriorating from the heat treatment during baking. In addition, it is possible to add an appropriate twist to the undrawn polyester yarn that has been subjected to such treatment and bundle it to improve ease of handling as a weft yarn, as well as to provide the effect of protecting the internal fibers during heat treatment.
It is valid. The number of twists in this case is preferably in the range of 1,000 to 16,000.If the number of twists is less than this, the convergence during handling will be insufficient and the fibers will easily come apart. The elongation tends to be inhibited, which gradually deviates from the purpose of using the weft yarn of the present invention. The surface of such fibers is fed to the front roller of a spinning machine using an undrawn polyester yarn protected with a heat-resistant polymeric substance as a core yarn, and then wrapped with non-thermofusible short fibers and twisted. So-called core yarns that have been removed can also be suitably used as weft yarns in the present invention. In this case, cotton, Tuffcell, etc. are preferred materials for short fibers, but Tuffcell, which has strong cutting strength, may inhibit the elongation of the core yarn during stretching, so the coverage rate is lowered and the weight of the undrawn polyester yarn is reduced. The twist coefficient (K 2 =
It is also desirable to lower N (cotton count, TW': TRI) in TW'/√. The present invention will be explained below with reference to Examples. In addition,
The percentages in the examples are percentages by weight, except for the percentage of elongation. Examples Polyethylene terephthalate resins with various degrees of polymerization were melted, and highly oriented undrawn yarns were spun while applying emulsion type oil by varying the discharge amount and winding speed. The target denier was 155 and the number of filaments was 18, and although some differences in the denier of the undrawn yarns were observed depending on the combination of conditions, this was within a range that did not impede the purpose of the present invention. Next, these undrawn yarns are unwound and introduced into a tank containing a scouring agent to thoroughly remove oil, and then added to a processing liquid containing 4.8% trimethoxymethylmelamine and 1.6% monoammonium phosphate dissolved in water. After immersing the material and spreading it to a predetermined adhesion rate as shown in Table 1, it was left in a packaged room at 20°C for about 30 hours with gentle rotation. Thereafter, the yarn was unwound from the package, thoroughly washed with water, wound up, centrifugally dehydrated and dried, and then processed as shown in Table 1. These yarns were inserted as the wefts of a blind fabric with tire cord 1000D/2 as the warp, impregnated with a rubber adhesion improver (phenol-formaldehyde resin initial condensate), and then baked at a high temperature. Next, the weft yarn was taken out from the fabric and its residual elongation was measured using a Tensilon. The results are shown in Table-1. Samples Nos. 1 to 7 with different spinning speeds were coated with about 2.2% melamine resin, twisted at about 400 T/M in the Z direction, and then subjected to a 20-minute kneading process at 65°C. Although it is a yarn, undrawn yarn with low spinning speed and high elongation (hereinafter referred to as undrawn yarn)
(No. 7) and conversely, when using POY with a high spinning speed and low elongation (No. 7).
1), the residual elongation was less than 60% and the performance was unsatisfactory, but all the POYs with an elongation of 80 to 200% had a sufficiently large residual elongation and showed favorable results. These residual elongation values were much larger than those of the sample without melamine resin coating (No. 10), and the coating effect was clearly recognized. In addition, the example No. 4 does not require moist heat treatment (kier treatment) after twisting, and the torque is strong and it is a little easy to crack, so the handleability is rather poor, but when moist heat treatment is applied. No particular effect on residual elongation was observed compared to the above. In addition, in cases where the degree of polymerization of the polymer is rather low, and therefore the intrinsic viscosity of the undrawn yarn is low, the number of twists applied to the POY coated with melamine resin is changed as the viscosity decreases, as shown in Nos. 13-17. When the twist coefficient was in the range of 100 to 15,000, the residual elongation was large and showed a more favorable tendency. In addition, when the number of twists is 0, it tends to fall apart during weft winding and weaving, and the variation in residual elongation is much larger than when the yarn is twisted. POY coated with melamine resin
After winding cotton with a spinning machine as a core yarn to make a core yarn, the core yarn is processed at 65℃ for 20 minutes.
Examples in which the weight ratio of cotton to the core yarn was changed are Nos. 18 to 22, and all cases in which the weight ratio of cotton yarn to the core yarn was changed from 15 to 60% showed particularly good residual elongation. When it exceeded 60%, the elongation decreased, probably because the cotton inhibited the elongation of the core yarn. No.3 and No.20 from these samples
was selected and used as a reinforcing cloth for radial tires,
There are no unevenness on the sidewall of the tire after molding.
Each radial force variation weighs 8.4Kg,
The weight was 8.2Kg, which was an extremely good result. 【table】

Claims (1)

【特許請求の範囲】 1 切断伸度が80%以上、200%以下のポリエス
テルマルチフイラメントであつて、該繊維表面が
非熱溶融性のメラミン樹脂の薄い皮膜で覆われて
いることを特徴とするタイヤ補強用織物の緯糸。 2 ポリエステルマルチフイラメントが極限粘度
0.65以上である特許請求の範囲第1項または第2
項記載のタイヤ補強用織物の緯糸。 3 ポリエステルマルチフイラメントが撚係数
1000〜16000の撚をもつ特許請求の範囲第1項、
第2項または第3項記載のタイヤ補強用織物の緯
糸。 4 ポリエステルマルチフイラメントが該フイラ
メントの重量の60重量%以下の非熱溶融性短繊維
で被覆されたコアヤーンの芯糸として用いられて
いる特許請求の範囲第1項、第2項、第3項また
は第4項記載のタイヤ補強用織物の緯糸。 5 切断伸度80%以上、200%以下のポリエステ
ルマルチフイラメントに、非熱溶融性の耐熱性高
分子皮膜を形成し得る熱硬化性メラミン樹脂初期
縮合物を0.5〜10重量%付着させた後、硬化させ
ることを特徴とするタイヤ補強用織物の緯糸の製
造方法。 6 極限粘度が0.65以上のポリエステルマルチフ
イラメントを使用する特許請求の範囲第6項また
は第7項記載のタイヤ補強用織物の緯糸の製造方
法。 7 撚係数1000〜16000の撚をもつポリエステル
マルチフイラメントを使用する特許請求の範囲第
6項、第7項または第8項記載のタイヤ補強織物
緯糸の製造方法。 8 ポリエステルマルチフイラメントの60重量%
以下の非熱溶融性短繊維によつて被覆されたポリ
エステルマルチフイラメントコアヤーンを用いる
特許請求の範囲第6項、第7項、第8項または第
9項記載のタイヤコード補強用織物の緯糸。
[Claims] 1. A polyester multifilament having a breaking elongation of 80% or more and 200% or less, characterized in that the fiber surface is covered with a thin film of non-thermofusible melamine resin. Weft yarn of tire reinforcement fabric. 2 Polyester multifilament has intrinsic viscosity
Claim 1 or 2 which is 0.65 or more
The weft yarn of the tire reinforcing fabric described in Section 1. 3 Polyester multifilament twist coefficient
Claim 1 having a twist of 1000 to 16000;
The weft of the tire reinforcing fabric according to item 2 or 3. 4. Claims 1, 2, 3, or 4, in which polyester multifilament is used as the core yarn of a core yarn coated with non-heat-fusible short fibers of 60% by weight or less of the weight of the filament. The weft of the tire reinforcing fabric according to item 4. 5. After attaching 0.5 to 10% by weight of a thermosetting melamine resin initial condensate capable of forming a non-thermofusible heat-resistant polymer film to a polyester multifilament with a cutting elongation of 80% or more and 200% or less, A method for producing weft yarns of a tire reinforcing fabric, which comprises curing the weft yarns. 6. A method for producing a weft for a tire reinforcing fabric according to claim 6 or 7, which uses a polyester multifilament having an intrinsic viscosity of 0.65 or more. 7. A method for producing a tire reinforcing fabric weft according to claim 6, 7 or 8, which uses a polyester multifilament with a twist coefficient of 1,000 to 16,000. 8 60% by weight of polyester multifilament
The weft of the tire cord reinforcing fabric according to claim 6, 7, 8 or 9, which uses a polyester multifilament core yarn coated with the following non-thermofusible short fibers.
JP13406578A 1978-10-31 1978-10-31 Weft yarn for tire reinforcing fabric and production Granted JPS5562236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13406578A JPS5562236A (en) 1978-10-31 1978-10-31 Weft yarn for tire reinforcing fabric and production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13406578A JPS5562236A (en) 1978-10-31 1978-10-31 Weft yarn for tire reinforcing fabric and production

Publications (2)

Publication Number Publication Date
JPS5562236A JPS5562236A (en) 1980-05-10
JPS623273B2 true JPS623273B2 (en) 1987-01-23

Family

ID=15119541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13406578A Granted JPS5562236A (en) 1978-10-31 1978-10-31 Weft yarn for tire reinforcing fabric and production

Country Status (1)

Country Link
JP (1) JPS5562236A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6201369B2 (en) * 2013-03-28 2017-09-27 セイコーエプソン株式会社 Detection device and electronic device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49133648A (en) * 1972-11-10 1974-12-23

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49133648A (en) * 1972-11-10 1974-12-23

Also Published As

Publication number Publication date
JPS5562236A (en) 1980-05-10

Similar Documents

Publication Publication Date Title
JP3595846B2 (en) Polyketone fiber and method for producing the same
US4475330A (en) High twist polyester multifilament yarn and fabric made therefrom
US4297412A (en) Two-component mixed acrylic fibres wherein acrylic components have different amounts of non-ionizable plasticizing comonomer
JP2004218189A (en) Polyketone processed cord and method for producing the same
US4525384A (en) Process for producing wholly aromatic polyamide filaments heat-treated under tension
US4098864A (en) Steam drawing of polyester monofilament to improve loop strength and resistance to fibrillation
US5023035A (en) Cyclic tensioning of never-dried yarns
JP3704015B2 (en) Polyketone fiber and method for producing the same
JPH0268325A (en) Monofilamet embedded in rubber
US4416935A (en) Bulked extensible weft yarn suitable for use as tire cords
JPH02133605A (en) Polyvinyl alcohol-based fiber, tire cord therefrom and production thereof
JP2003527497A (en) Manufacture of poly (trimethylene) terephthalate woven staples
US3849976A (en) High modulus tire cord
JPS623273B2 (en)
CA2336245C (en) Polyparaphenylene terephthalamide fiber and method for producing the same
JPH0192408A (en) Production of aromatic polyester fiber
US5693275A (en) Method of making an improved pre-adherized polyester filament yarn
EP0095537B1 (en) High twist polyester multi-filament yarn and fabric made therefrom
US5547755A (en) Pre-adherized polyester filament yarn for tire cord
JP2571526B2 (en) Power transmission belt core wire and power transmission belt using the same
JPS61113852A (en) Fabric for reinforcing tire
JP3863051B2 (en) Polyester spotted yarn
JPS6035449B2 (en) Reinforcement fabric
JPS6052623A (en) Surface treatment of heat-meltable yarn
KR100302244B1 (en) Weft for tire cord and tire cord cloth produced from the same