JPS6232530B2 - - Google Patents

Info

Publication number
JPS6232530B2
JPS6232530B2 JP11623681A JP11623681A JPS6232530B2 JP S6232530 B2 JPS6232530 B2 JP S6232530B2 JP 11623681 A JP11623681 A JP 11623681A JP 11623681 A JP11623681 A JP 11623681A JP S6232530 B2 JPS6232530 B2 JP S6232530B2
Authority
JP
Japan
Prior art keywords
optical system
coil
coils
bobbin
central axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11623681A
Other languages
Japanese (ja)
Other versions
JPS5819743A (en
Inventor
Katsuharu Sato
Toshihiko Kurihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PAIONIA BIDEO KK
PAIONIA KK
Original Assignee
PAIONIA BIDEO KK
PAIONIA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PAIONIA BIDEO KK, PAIONIA KK filed Critical PAIONIA BIDEO KK
Priority to JP11623681A priority Critical patent/JPS5819743A/en
Publication of JPS5819743A publication Critical patent/JPS5819743A/en
Publication of JPS6232530B2 publication Critical patent/JPS6232530B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0925Electromechanical actuators for lens positioning
    • G11B7/0935Details of the moving parts

Description

【発明の詳細な説明】 本発明は、記録情報読取装置における光学系駆
動装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical system drive device in a recorded information reading device.

光学式記録情報読取装置において、情報記録媒
体であるビデオデイスクは、その表面にビデオ信
号に応じた微細なピツト(へこみ)を渦巻状のト
ラツクとして形成することによつて当該ビデオ信
号を収録するものである。かかるビデオデイスク
を再生する場合、このデイスクを所定回転数で回
転させつつそのビデオトラツク上にスポツト光を
照射せしめてその反射光若しくは透過光の強さの
変化を電気信号に変換し、ビデオ信号として再生
するものである。
In an optical recording information reading device, a video disk, which is an information recording medium, records a video signal by forming minute pits (indentations) corresponding to the video signal as a spiral track on its surface. It is. When playing back such a video disc, the disc is rotated at a predetermined number of revolutions while a spot light is irradiated onto the video track, and changes in the intensity of the reflected light or transmitted light are converted into electrical signals, and the changes in the intensity of the reflected light or transmitted light are converted into electrical signals. It is something to be regenerated.

このビデオデイスクの再生においては、デイス
クの記録面上に照射光が正確に収束されなければ
ならないために光学系の記録面に垂直な方向すな
わちフオーカス方向における位置の制御(フオー
カスサーボ)が必要であり、また記録トラツクを
照射光が常に正確にトラツキングしなければなら
ないためにデイスクの半径方向すなわちトラツキ
ング方向への照射光の制御(トラツキングサー
ボ)が必要であり、更にはデイスクの回転むらに
よる時間軸変動を除去すべく照射光のトラツク接
続方向すなわちタンジエンシヤル方向の制御(タ
ンジエンシヤルサーボ)が必要である。そのため
に情報読取用のスポツト光をデイスクの記録面に
照射せしめる光学系をフオーカスエラー信号、ト
ラツキングエラー信号及びタンジエンシヤルエラ
ー信号に応じて駆動する光学系駆動装置が用いら
れる。かかる光学系駆動装置の光来例を第1図及
び第2図に示す。
When playing back video discs, the irradiated light must be accurately focused on the recording surface of the disc, so it is necessary to control the position of the optical system in the direction perpendicular to the recording surface, that is, in the focus direction (focus servo). In addition, since the irradiation light must always accurately track the recording track, it is necessary to control the irradiation light in the radial direction of the disk, that is, in the tracking direction (tracking servo). In order to eliminate axis fluctuations, it is necessary to control the track connection direction of the irradiation light, that is, the tangential direction (tangential servo). For this purpose, an optical system driving device is used that drives an optical system that irradiates the recording surface of the disk with spot light for reading information in accordance with a focus error signal, a tracking error signal, and a tangential error signal. A conventional example of such an optical system driving device is shown in FIGS. 1 and 2.

第1図において、光学系1の周りには例えば4
個の磁気回路部2a〜2dが光学系1の光軸Zと
直交する平面内において互いに略90゜の角度をな
して設けられており、これら磁気回路部の磁気ギ
ヤツプ内には4個のコイル部3a〜3dが支持体
4を介して光学系1に取り付けられている。そし
て、各コイル部3a〜3dに同一方向の等しい電
流を供給することにより光学系1を光軸Z方向す
なわちフオーカス方向に駆動出来る。一方、コイ
ル部2aと2b,2c,2dをそれぞれ対とし、
又コイル部2aと2d,2bと2cをそれぞれ対
とし、各対に逆方向の電流を供給することにより
光学系1をトラツキング方向又はタンジエンシヤ
ル方向(図のX,Y方向)に駆動出来る構成とな
つている。なお、第1図aは支持体4を除いた平
面図、bはその断面図である。
In FIG. 1, for example, there are 4
Four magnetic circuit sections 2a to 2d are provided at an angle of approximately 90 degrees to each other in a plane orthogonal to the optical axis Z of the optical system 1, and four coils are arranged in the magnetic gaps of these magnetic circuit sections. The parts 3 a to 3 d are attached to the optical system 1 via a support 4 . The optical system 1 can be driven in the optical axis Z direction, that is, in the focus direction, by supplying equal currents in the same direction to each of the coil parts 3a to 3d. On the other hand, the coil parts 2a and 2b, 2c, and 2d are each paired,
In addition, the coil parts 2a and 2d, and 2b and 2c are arranged as pairs, and by supplying currents in opposite directions to each pair, the optical system 1 can be driven in the tracking direction or the tangential direction (X and Y directions in the figure). ing. Note that FIG. 1a is a plan view with the support body 4 removed, and FIG. 1b is a sectional view thereof.

一方、第2図においては、光学系1の光軸Zの
周りにコイル部5が位置し、又光軸Zと直交する
平面内において当該光軸Zを含んで互いに直交す
る軸X,Yの周りにコイル部6a,6b及び7
a,7bがそれぞれ位置するようにこれらコイル
部が光学系1に取り付けられ、更に各コイル部に
磁束を供給する磁気回路部8,9a,9b及び1
0a,10bが設けられている。そして、コイル
部5に電流を供給することにより光学系1をフオ
ーカス方向Zに駆動出来、又コイル部6a,6b
或いは7a,7bに電流を供給することにより光
学系1をトラツキング方向X或いはタンジエンシ
ヤル方向Yに独立に駆動出来る構成となつてい
る。なお、第2図aは平面図、bはその断面図で
ある。
On the other hand, in FIG. 2, the coil portion 5 is located around the optical axis Z of the optical system 1, and the axes X and Y, which include the optical axis Z and are orthogonal to each other, are located in a plane orthogonal to the optical axis Z. Around the coil parts 6a, 6b and 7
These coil parts are attached to the optical system 1 so that the coil parts a and 7b are located respectively, and the magnetic circuit parts 8, 9a, 9b and 1 supply magnetic flux to each coil part.
0a and 10b are provided. By supplying current to the coil portion 5, the optical system 1 can be driven in the focus direction Z, and the coil portions 6a and 6b can be driven.
Alternatively, the optical system 1 can be independently driven in the tracking direction X or the tangential direction Y by supplying current to 7a and 7b. Note that FIG. 2a is a plan view, and FIG. 2b is a sectional view thereof.

上述した従来例には次のような欠点がある。す
なわち、前者においては、フオーカス方向には光
学系1が平行移動するが、トラツキング方向及び
タンジエンシヤル方向には平行移動でなく揺動運
動であるためレンズ収差等光学的に不利である。
また、後者においては、各方向に光学系1を平行
移動出来るが、機構が大型化となる。更に、両者
とも多次元駆動のための駆動部が複数個必要であ
るためスペースフアクタ及びコストの面で不利で
ある。
The conventional example described above has the following drawbacks. That is, in the former case, the optical system 1 moves in parallel in the focus direction, but in the tracking and tangential directions, it is not a parallel movement but a swinging movement, which is optically disadvantageous, such as lens aberration.
In the latter case, the optical system 1 can be moved in parallel in each direction, but the mechanism becomes larger. Furthermore, both require a plurality of drive units for multidimensional drive, which is disadvantageous in terms of space factor and cost.

本発明は上述した点に鑑みなされたものであ
り、小型軽量化を可能とした記録情報読取装置に
おける光学系駆動装置を提供することを目的とす
る。
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide an optical system drive device in a recorded information reading device that can be made smaller and lighter.

本発明による光学系駆動装置においては、環状
の磁気ギヤツプを有する磁気回路部の該ギヤツプ
内に位置するようにボビンを光学系に対して取り
付け、このボビンの中心軸に対してコイル面(巻
線の分布の中心を通る平面)が傾斜するようにボ
ビンの外周に巻装されかつ該中心軸に関し(該中
心軸の周りに)互いに略180゜ずれた第1及び第
2のコイルを含むコイル部を設け、当該コイル部
への供給電流の制御によつて光学系をボビン中心
軸と平行な方向及び当該中心軸と直交する方向に
駆動するように構成されている。
In the optical system drive device according to the present invention, the bobbin is attached to the optical system so as to be located within the gap of the magnetic circuit section having an annular magnetic gap, and the coil surface (winding a coil section including first and second coils that are wound around the outer periphery of a bobbin so that a plane passing through the center of the distribution of is provided, and is configured to drive the optical system in a direction parallel to the bobbin center axis and in a direction perpendicular to the center axis by controlling the current supplied to the coil portion.

以下、本発明の実施例を図面に基づいて詳細に
説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第3図は本発明の一実施例を示す断面図であ
る。図において、光学系11には矩形状のボビン
12が光学系11の光軸Zと中心軸が一致するよ
うに取り付けられている。ボビン12の外周に
は、第4図に示す様に、光軸Zに対してコイル面
が傾斜するように第1のコイル21が巻装され、
この第1のコイルに対して光軸Zに関し略180゜
ずれて第2のコイル22が巻装されている。これ
により、第1,第2のコイルのコイル面同士の交
線が光軸Zに対して略垂直となり、第1のコイル
21はボビン12の1つの対向する面A,A′で
ボビン底面に対し角度を有し、他の対向面B,
B′では底面に対し平行になる。また、第2のコイ
ル22は対向面A,A′で第1のコイル21と交
差し、他の対向面B,B′では底面と平行になる。
FIG. 3 is a sectional view showing one embodiment of the present invention. In the figure, a rectangular bobbin 12 is attached to the optical system 11 so that its central axis coincides with the optical axis Z of the optical system 11. As shown in FIG. 4, the first coil 21 is wound around the outer circumference of the bobbin 12 so that the coil surface is inclined with respect to the optical axis Z.
A second coil 22 is wound around the first coil at an angle of approximately 180° with respect to the optical axis Z. As a result, the line of intersection between the coil surfaces of the first and second coils is approximately perpendicular to the optical axis Z, and the first coil 21 is attached to the bottom surface of the bobbin 12 at one opposing surface A, A'. and the other facing surface B,
At B′, it becomes parallel to the bottom surface. Further, the second coil 22 intersects the first coil 21 at opposing surfaces A and A', and is parallel to the bottom surface at other opposing surfaces B and B'.

光学系11及びボビン12を含む可動部はコイ
ル部が磁気回路部25の磁気ギヤツプ内に位置す
るように図示せぬ弾性支持体により磁気回路部2
5に対して支持される。磁気回路部25はポール
ピース250と、厚み方向に着磁されてポールピ
ース250上に載置された矩形環状のマグネツト
251と、このマグネツト上に載置されてポール
ピース250の先端部との間に磁気ギヤツプ25
aを形成するプレート252とからなり、磁気ギ
ヤツプ25aに光軸Z方向(内方向)又はその反
対方向(外方向)に磁界が生ずるように構成され
ている。
The movable part including the optical system 11 and the bobbin 12 is attached to the magnetic circuit section 2 by an elastic support (not shown) so that the coil section is located within the magnetic gap of the magnetic circuit section 25.
Supported against 5. The magnetic circuit section 25 is arranged between the pole piece 250, a rectangular annular magnet 251 that is magnetized in the thickness direction and placed on the pole piece 250, and the tip of the pole piece 250 that is placed on this magnet. magnetic gap 25
The magnetic gap 25a is configured such that a magnetic field is generated in the optical axis Z direction (inward direction) or in the opposite direction (outward direction).

かかる構成において、第1及び第2のコイル2
1,22に光軸Zから見て同一方向に同じ大きさ
の電流を流すと、これらコイルと鎖交する磁束と
の相互作用によりBとB′面におけるコイル部分に
は同一方向(Z方向)に力が働き、A,A′面で
は第5図に示す様な力F1,F2が働き、この力
F1,F2の分力1x2xが互いに相殺され、B,
B′面と同一方向の分力1z2zのみが働くこと
になる。すなわち、第1及び第2のコイル21,
22に同一方向の電流を流すことによつてフオー
カス方向(光軸Z方向)への光学系11の駆動が
可能である。
In such a configuration, the first and second coils 2
1 and 22 in the same direction when viewed from the optical axis Z, the coil parts in the B and B' planes will have the same direction (Z direction) due to the interaction with the magnetic flux that interlinks with these coils. A force acts on the planes A and A′, and forces F 1 and F 2 as shown in Figure 5 act on the A and A′ planes, and this force
The component forces 1x and 2x of F 1 and F 2 cancel each other out, and B,
Only component forces 1z and 2z in the same direction as the B' plane act. That is, the first and second coils 21,
The optical system 11 can be driven in the focus direction (optical axis Z direction) by flowing currents in the same direction through the optical system 22 .

次に第1及び第2のコイル21,22に逆方向
に同じ大きさの電流を流すと、B,,B′面におい
て各コイルに働く力は互いに相殺され、A,
A′面では第6図に示す様な力F1,F2が働き、こ
の力F1,F2のフオーカス方向の分力1z2z
互いに相殺され、光軸Zに対して垂垂直方向Xの
1x2xのみが働くことになる。すなわち、
X方向をトラツキング方向に対応させ第1,第2
のコイル21,22に逆方向の電流を流すことに
よつてトラツキング方向への光学系11の駆動が
可能となる。
Next, when currents of the same magnitude are passed through the first and second coils 21 and 22 in opposite directions, the forces acting on each coil in planes B, B' cancel each other out, and
Forces F 1 and F 2 as shown in Fig. 6 act on plane A', and components 1z and 2z of these forces F 1 and F 2 in the focus direction cancel each other out, and the forces F 1 and F 2 act in the direction perpendicular to the optical axis Z. Only the forces 1x and 2x of X will work. That is,
The X direction corresponds to the tracking direction and the first and second
By passing current in opposite directions through the coils 21 and 22, the optical system 11 can be driven in the tracking direction.

このように、第1及び第2のコイル21,22
への供給電流を適当に制御することによつて互い
に直交する2軸(Z,X)方向への光学系11の
駆動が可能であり、更に第1及び第2のコイル2
1,22に対して光軸Zに関し略90゜ずらして第
3及び第4のコイルをボビン12の外周に巻装す
ることにより互いに直交する3軸(Z,X,Y)
への駆動も可能となる。
In this way, the first and second coils 21, 22
By appropriately controlling the current supplied to the first and second coils 2, it is possible to drive the optical system 11 in two axes (Z,
Three axes (Z,
It is also possible to drive the

第7図は第4図の変形例を示す正面図a及び裏
面図bである。本実施例においては、カツプ状の
ボビン12が用いられており、当該ボビンの外周
には、光軸Zに対してコイル面が傾斜するように
第1のコイル21が巻装され、この第1のコイル
21に対して光軸Zに関し略180゜ずれて第2の
コイル22が巻装され、更に第1及び第2のコイ
ル21,22に対して光軸Zに関し各々略90゜ず
れて第3及び第4のコイル23,24が巻装され
ている。これにより、第1,第2のコイルのコイ
ル面同士の交線と第3,第4のコイルのコイル面
同士の交線が略垂直となる。
7 is a front view a and a back view b showing a modification of FIG. 4. FIG. In this embodiment, a cup-shaped bobbin 12 is used, and a first coil 21 is wound around the outer periphery of the bobbin so that the coil surface is inclined with respect to the optical axis Z. A second coil 22 is wound around the coil 21 at an angle of approximately 180 degrees with respect to the optical axis Z, and a second coil 22 is wound around the first and second coils 21 and 22 at an angle of approximately 90 degrees with respect to the optical axis Z. The third and fourth coils 23 and 24 are wound. As a result, the line of intersection between the coil surfaces of the first and second coils and the line of intersection between the coil surfaces of the third and fourth coils are substantially perpendicular.

そして、第1及び第2のコイル21,22に光
軸Zから見て互いに逆方向(時計方向と反時計方
向)に電流を流すと、第8図aに示すX方向に力
が働き、第1及び第2のコイル21,22に互い
に同方向(時計方向又は反時計方向)に電流を流
すと、第8図bに示す様に光軸Zと平行な方向に
力が働く。同様に、第3及び第4のコイル23,
24への供給電流を制御することにより光軸Zと
平行な方向及び軸X,Zと直交するY方向に力が
発生することになる。
When current is applied to the first and second coils 21 and 22 in directions opposite to each other (clockwise and counterclockwise) when viewed from the optical axis Z, a force acts in the X direction shown in FIG. When current is passed through the first and second coils 21 and 22 in the same direction (clockwise or counterclockwise), a force is applied in a direction parallel to the optical axis Z, as shown in FIG. 8b. Similarly, the third and fourth coils 23,
By controlling the current supplied to the optical axis 24, force is generated in a direction parallel to the optical axis Z and in a Y direction perpendicular to the axes X and Z.

第9図は本発明の他の実施例を示す組立前の斜
視図であり、第10図には組立後の断面図a及び
平面図bが示されている。第9図及び第10図に
おいて、光学系11にはカツプ状のボビン12が
光学系11の光軸Zと中心軸が一致するように取
り付けられている。このボビン12の外周には、
まずフオーカス方向Zへの駆動用コイル13が円
周方向に巻装されている。更に、図示の様に矩形
状に平たく巻かれた例えば4個のコイル14a〜
14dがコイル13上に装着されている。これら
コイル14a〜14dは光軸Zと直交する平面内
において当該光軸Zを含んで互いに直交するトラ
ツキング方向及びタンジエンシヤル方向の軸X,
Yに関してコイル中心が略45゜の角度位置となり
かつ各コイルの光軸Zと平行な成分が近接するよ
うに設けられている。
FIG. 9 is a perspective view of another embodiment of the present invention before assembly, and FIG. 10 shows a sectional view a and a plan view b after assembly. 9 and 10, a cup-shaped bobbin 12 is attached to the optical system 11 so that the optical axis Z of the optical system 11 coincides with its central axis. On the outer periphery of this bobbin 12,
First, a coil 13 for driving in the focus direction Z is wound in the circumferential direction. Furthermore, as shown in the figure, for example, four coils 14a~ are wound flat in a rectangular shape.
14d is mounted on the coil 13. These coils 14a to 14d are arranged in a plane orthogonal to the optical axis Z, including axes X in the tracking direction and in the tangential direction, which are orthogonal to each other and include the optical axis Z.
The coils are provided so that the center of the coil is at an angular position of approximately 45° with respect to Y, and the components parallel to the optical axis Z of each coil are close to each other.

光学系11及びボビン12を含む可動部はコイ
ル14a〜14dの光軸Zと平行な成分が磁気回
路部15の磁気ギヤツプ内に位置するように弾性
支持体16a,16bにより磁気回路部15に対
して支持される。磁気回路部15はポールピース
150と、厚み方向に着磁されてポールピース1
50上に載置された円環状のマグネツト151
と、このマグネツト上に載置されてポールピース
150の先端部との間に磁気ギヤツプ15aを形
成するプレート152とからなり磁気ギヤツプ1
5aに半径方向に磁界が生ずるように構成されて
いる。
The movable part including the optical system 11 and the bobbin 12 is connected to the magnetic circuit section 15 by elastic supports 16a and 16b so that the components parallel to the optical axis Z of the coils 14a to 14d are located within the magnetic gap of the magnetic circuit section 15. It is supported by The magnetic circuit section 15 is magnetized in the thickness direction with the pole piece 150.
An annular magnet 151 placed on 50
and a plate 152 placed on this magnet to form a magnetic gap 15a between it and the tip of the pole piece 150.
5a so that a magnetic field is generated in the radial direction.

かかる構成において、フオーカス駆動用コイル
13に所定方向の電流を供給すると、このコイル
13と鎖交する磁束との相互作用によりコイル1
3には光軸Z方向すなわちフオーカス方向の力が
作用し、これにより光学系11はフオーカス方向
においてコイル電流の方向及び大きさに応じて移
動する。一方、トラツキング方向Xへの駆動に関
しては、コイル14aと14bを対としこれらに
同方向の電電流を供給し、又コイル14cと14
dを対としこれらに同方向でかつコイル14a,
14bと逆方向の電流を供給する。これらコイル
14a〜14dの電流方向を第11図に示す様に
仮定し、磁束を外方向とした場合、各コイルの光
軸Zに平行な成分には図に実線の矢印で示す様に
ボビン12の接線方向に力が作用する。この力の
うち、タンジエンシヤル方向Yの成分yは互い
に相殺されその合力は零となる。そのため各コイ
ルに作用する合力はトラツキング方向Xの成分
xのみとなり、光学系11はトラツキング方向X
に移動することになる。各コイルの電流の方向を
逆にすることにより光学系11の移動方向が逆転
することは容易に理解出来る。また、タンジエン
シヤル方向Yへの駆動に関しては、コイル14a
と14d,14bと14cを対とし、この対間に
逆方向に電流を供給することにより上述と同様の
原理によつて光学系11はタンジエンシヤル方向
Yに移動する。
In such a configuration, when a current in a predetermined direction is supplied to the focus drive coil 13, the coil 1
3 is acted upon by a force in the optical axis Z direction, that is, in the focus direction, so that the optical system 11 moves in the focus direction in accordance with the direction and magnitude of the coil current. On the other hand, for driving in the tracking direction
d as a pair and the coils 14a,
14b and supplies a current in the opposite direction. Assuming that the current direction of these coils 14a to 14d is as shown in FIG. 11, and the magnetic flux is directed outward, the component parallel to the optical axis Z of each coil is connected to the bobbin 12 as shown by the solid arrow in the figure. A force acts in the tangential direction. Of this force, the components y in the tangential direction Y cancel each other out, and the resultant force becomes zero. Therefore, the resultant force acting on each coil is the component in the tracking direction
x only, and the optical system 11 is in the tracking direction
will be moved to. It is easy to understand that by reversing the direction of the current in each coil, the direction of movement of the optical system 11 is reversed. In addition, for driving in the tangential direction Y, the coil 14a
and 14d, 14b and 14c as a pair, and by supplying current in opposite directions between the pairs, the optical system 11 moves in the tangential direction Y based on the same principle as described above.

トラツキング及びタンジエンシヤル方向への駆
動のためのコイルの巻装方法としては、4個のコ
イル14a〜14dを各々ボビン12の中心に関
して90゜の範囲内に位置せしめた上記実施例の方
法に限定されることなく、以下に示す方法もあ
る。すなわち、第12図aに示す様に、1対のコ
イル17a,17bを各々ボビン12の中心に関
して略180゜の範囲で巻き、更に他の1対のコイ
ル17c,17dを各々先の1対のコイル17
a,17bに対して略90゜ずらして同様に略180
゜の範囲内で巻く。各対のコイルはそれぞれトラ
ツキング方向及びタンジエンシヤル方向に対応し
ており、例えば1対のコイル17a,17bに第
12図bに示す方向の電流を供給することにより
先述した動作原理によつて光学系11をタンジエ
ンシヤル方向Xへ移動出来ることになる。なお、
1方向への駆動のためのコイルを2個にしない
で、1個のコイルを第13図に示す様にボビン1
2に直接巻装することによつても第12図aと同
様の構成となる。
The method of winding the coils for tracking and driving in the tangential direction is limited to the method of the above embodiment in which the four coils 14a to 14d are each positioned within a range of 90 degrees with respect to the center of the bobbin 12. There is also a method shown below. That is, as shown in FIG. 12a, a pair of coils 17a and 17b are each wound within a range of approximately 180 degrees about the center of the bobbin 12, and another pair of coils 17c and 17d are each wound around the center of the bobbin 12. coil 17
Shift approximately 90 degrees from a and 17b and similarly approximately 180
Wind within the range of ゜. Each pair of coils corresponds to the tracking direction and the tangential direction, and for example, by supplying current in the direction shown in FIG. 12b to the pair of coils 17a and 17b, the optical system 11 can be moved in the tangential direction X. In addition,
Instead of using two coils for driving in one direction, one coil is connected to the bobbin 1 as shown in Figure 13.
12a can also be achieved by directly winding the wire around 2.

また、第14図に示す様に、コイルを各ターン
毎にボビン12の円周方向にずらして1つのコイ
ルにつき円周の1/4に亘つて巻き、4個のコイル
を各々90゜ずらして配置する。コイル電流の方向
と光学系11の移動方向との関係は先述した動作
原理に基づく。同様の巻き方で、第15図に示す
様に、1対のコイル18a,18bをそれぞれX
軸を中心にボビン12の円周の1/2に亘つて巻
き、更にその外側に他の1対のコイル18c,1
8dをX軸と直交するY軸を中心に円周の1/2に
亘つて巻くことも出来る。かかる構成において、
1対のコイル18a,18bに互いに逆向きの電
流を供給することにより光学系11をX軸方向に
駆動出来、他の1対のコイル18c,18dに互
いに逆向きの電流を供給することによりY軸方向
に駆動出来る。
Further, as shown in Fig. 14, the coils are shifted in the circumferential direction of the bobbin 12 for each turn, and each coil is wound over 1/4 of the circumference, and each of the four coils is shifted by 90 degrees. Deploy. The relationship between the direction of the coil current and the moving direction of the optical system 11 is based on the operating principle described above. In a similar manner, as shown in FIG. 15, a pair of coils 18a and 18b are
The coils are wound around the shaft over 1/2 of the circumference of the bobbin 12, and another pair of coils 18c and 18c are wound outside of the bobbin 12.
8d can also be wound over 1/2 of the circumference around the Y axis, which is perpendicular to the X axis. In such a configuration,
The optical system 11 can be driven in the X-axis direction by supplying currents in opposite directions to one pair of coils 18a and 18b, and can be driven in the Y-axis direction by supplying currents in opposite directions to another pair of coils 18c and 18d. Can be driven in the axial direction.

なお、第12図乃至第15図の各図には図示さ
れていないが、光学系11をフオーカス方向(光
軸方向)に駆動するためのコイルが上記4個のコ
イルの外側或いは内側に巻装されることになる。
Although not shown in FIGS. 12 to 15, a coil for driving the optical system 11 in the focus direction (optical axis direction) may be wound outside or inside the four coils. will be done.

以上詳述した如く、本発明による光学系駆動装
置によれば、各駆動装置方向に対応した複数のコ
イルを単一のボビンに巻装した構成であるため光
学系を含む可動部を小型軽量化出来る。また、単
一の磁気回路部で全てのコイルに磁界を与えられ
るため装置全体の厚みを薄く出来、部品点数も減
るので低コスト化が可能であると共に信頼性も高
まる。更に、可動部を各駆動方向において略平行
駆動出来るため光学系の設計が楽になる。従つ
て、かかる駆動装置は光学式ピツクアツプが非常
に小型化した場合に要求される小型駆動系として
最適である。
As detailed above, according to the optical system drive device according to the present invention, the movable parts including the optical system are made smaller and lighter because the plurality of coils corresponding to each direction of the drive device are wound around a single bobbin. I can do it. Furthermore, since a magnetic field can be applied to all the coils by a single magnetic circuit section, the thickness of the entire device can be reduced, and the number of parts can be reduced, making it possible to reduce costs and improve reliability. Furthermore, since the movable parts can be driven substantially parallel in each drive direction, the design of the optical system becomes easier. Therefore, such a drive device is most suitable as a compact drive system required when optical pickups become extremely compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a及び第2図aは従来例を示す平面図、
各図bはその断面図、第3図は本発明の一実施例
を示す断面図、第4図は第3図のコイル部を示す
斜視図、第5図及び第6図は第3図の動作を説明
するための図、第7図a及びbは第4図の変形例
を示す正面図及び裏面図、第8図は第7図の動作
を説明するための図、第9図は本発明の他の実施
例を示す組立前の斜視図、第10図aは組立後の
断面図、bはその平面図、第11図は第10図の
動作を説明するための図、第12図乃至第15図
はコイルの巻装方法の各例を示す図である。 主要部分の符号の説明、11……光学系、12
……ボビン、13,14a〜14d,17a〜1
7d,18a〜18d,21〜24……コイル、
15,25……磁気回路部、16a,16b……
弾性支持体。
FIG. 1a and FIG. 2a are plan views showing a conventional example;
Each figure b is a sectional view thereof, FIG. 3 is a sectional view showing one embodiment of the present invention, FIG. 4 is a perspective view showing the coil part of FIG. 3, and FIGS. Figures 7a and 7b are front and back views showing a modification of Figure 4, Figure 8 is a diagram to explain the operation of Figure 7, Figure 9 is a diagram of the book. 10A is a sectional view after assembly, FIG. 11 is a plan view thereof, FIG. 11 is a diagram for explaining the operation of FIG. 10, FIG. 15 to 15 are diagrams showing examples of coil winding methods. Explanation of symbols of main parts, 11...Optical system, 12
...Bobbin, 13, 14a-14d, 17a-1
7d, 18a-18d, 21-24...Coil,
15, 25...Magnetic circuit section, 16a, 16b...
Elastic support.

Claims (1)

【特許請求の範囲】 1 記録媒体の記録面に情報読取用のスポツト光
を照射せしめる光学系を駆動する光学系駆動装置
であつて、環状の磁気ギヤツプを有する磁気回路
部と、前記磁気回路部のギヤツプ内に位置するよ
うに前記光学系に対して取り付けられたボビン
と、前記ボビンの中心軸に対して双方のコイル面
が傾斜しかつコイル面同士の交線が該中心軸に対
して略垂直となるように前記ボビンの外周に巻装
された第1及び第2のコイルを含むコイル部とを
備え、前記コイル部への供給電流の制御によつて
前記光学系を該中心軸と平行な方向及び該中心軸
と直交する方向に駆動するようになされたことを
特徴とする記録情報読取装置における光学系駆動
装置。 2 前記コイル部は、前記ボビンの中心軸に対し
て双方のコイル面が傾斜しかつコイル面同士の交
線が前記第1及び第2のコイルのコイル面の交線
及び該中心軸に対し略垂直となるように前記ボビ
ンの外周に巻装された第3及び第4のコイルを有
することを特徴とする特許請求の範囲第1項記載
の記録情報読取装置における光学系駆動装置。
[Scope of Claims] 1. An optical system driving device for driving an optical system for irradiating a spot light for reading information onto a recording surface of a recording medium, which comprises: a magnetic circuit section having an annular magnetic gap; and the magnetic circuit section. A bobbin is attached to the optical system so as to be located within a gap of a coil section including first and second coils wound vertically around the outer periphery of the bobbin, and the optical system is arranged parallel to the central axis by controlling the current supplied to the coil section. 1. An optical system driving device in a recorded information reading device, characterized in that the optical system driving device is configured to drive in a direction perpendicular to the central axis and a direction perpendicular to the central axis. 2. In the coil portion, both coil surfaces are inclined with respect to the central axis of the bobbin, and the intersection line between the coil surfaces is substantially parallel to the intersection line between the coil surfaces of the first and second coils and the central axis. 2. The optical system drive device in a recorded information reading device according to claim 1, further comprising third and fourth coils wound vertically around the outer periphery of the bobbin.
JP11623681A 1981-07-24 1981-07-24 Optical system driver for recorded information reader Granted JPS5819743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11623681A JPS5819743A (en) 1981-07-24 1981-07-24 Optical system driver for recorded information reader

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11623681A JPS5819743A (en) 1981-07-24 1981-07-24 Optical system driver for recorded information reader

Publications (2)

Publication Number Publication Date
JPS5819743A JPS5819743A (en) 1983-02-04
JPS6232530B2 true JPS6232530B2 (en) 1987-07-15

Family

ID=14682178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11623681A Granted JPS5819743A (en) 1981-07-24 1981-07-24 Optical system driver for recorded information reader

Country Status (1)

Country Link
JP (1) JPS5819743A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3302918A1 (en) * 1982-01-28 1983-08-04 Ricoh Co., Ltd., Tokyo OPTICAL RECORDING AND / OR READING DEVICE
JPS58182138A (en) * 1982-04-16 1983-10-25 Matsushita Electric Ind Co Ltd Objective lens driving device
JPS58182139A (en) * 1982-04-16 1983-10-25 Matsushita Electric Ind Co Ltd Objective lens driving device
JPS6428521U (en) * 1987-08-06 1989-02-20
JP2539611Y2 (en) * 1989-09-20 1997-06-25 株式会社荏原製作所 Self-priming pump
KR970076542A (en) * 1996-05-22 1997-12-12 김광호 A coil winding method capable of increasing high frequency sensitivity
DE19704144A1 (en) * 1997-02-04 1998-08-06 Emitec Emissionstechnologie Extruded honeycomb body, in particular catalyst carrier body, with reinforced wall structure
JP2002292225A (en) 2001-03-30 2002-10-08 Ngk Insulators Ltd Honeycomb structure and its assembly
EP3727773B1 (en) 2017-12-22 2022-07-13 Corning Incorporated Extrusion die

Also Published As

Publication number Publication date
JPS5819743A (en) 1983-02-04

Similar Documents

Publication Publication Date Title
JPH0514334B2 (en)
JPS6030017B2 (en) disc playback device
JPS6232530B2 (en)
JP2004110971A (en) Objective lens drive device, optical pickup device, and optical disk device
JPH0416861B2 (en)
JP3023214B2 (en) Optical information recording / reproducing device
JP2000020988A (en) Optical pickup actuator
JP2749614B2 (en) Objective lens drive
JP2534976Y2 (en) Objective lens actuator
JP2556855B2 (en) Optical head device
JPS6346889B2 (en)
JPH02260136A (en) Optical head
JP2733349B2 (en) Optical disk drive
JPS6278731A (en) Optical recording and reproducing device
JPS63102044A (en) Optical head
JPS59231749A (en) Optical disk recording and reproducing device
JPS6214331A (en) Optical head
JPH0320819B2 (en)
JPH01251432A (en) Optical head driving device
JPS6022744A (en) Pickup device
JPH02110834A (en) Actuator for optical disk
JPS60254426A (en) Objective lens driving device used for optical information reader
JPH01204232A (en) Lens actuator
JPH01273233A (en) Object lens drive device
JPS6332735A (en) Disk reproducing device