JPS6232387B2 - - Google Patents

Info

Publication number
JPS6232387B2
JPS6232387B2 JP55109272A JP10927280A JPS6232387B2 JP S6232387 B2 JPS6232387 B2 JP S6232387B2 JP 55109272 A JP55109272 A JP 55109272A JP 10927280 A JP10927280 A JP 10927280A JP S6232387 B2 JPS6232387 B2 JP S6232387B2
Authority
JP
Japan
Prior art keywords
burners
burner
refrigerant
evaporator
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55109272A
Other languages
Japanese (ja)
Other versions
JPS5735264A (en
Inventor
Tatsuo Hayashida
Noriaki Horiuchi
Shigeru Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10927280A priority Critical patent/JPS5735264A/en
Publication of JPS5735264A publication Critical patent/JPS5735264A/en
Publication of JPS6232387B2 publication Critical patent/JPS6232387B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 本発明はフロンを冷媒とした吸収式冷凍機に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an absorption refrigerator using Freon as a refrigerant.

従来、吸収式冷凍機としては一般に水−臭化リ
チウム系およびアンモニア−水系のものが広く使
用されており、これら吸収式冷凍機は発生器、凝
縮器、蒸発器、吸収器、液熱交換器および循環水
ポンプなどから構成されている。フロンを冷媒と
する系の吸収式冷凍機も前記二者と同一構成から
なり、これらの各発生器は冷媒と吸収剤の混合液
を加熱して冷媒蒸気を発生させる作用を行う。上
記水−臭化リチウム系およびアンモニア−水系の
吸収式冷凍機において、蒸発器の負荷に応じて行
なう発生器部バーナの容量制御は、100RTクラス
で1台のガンタイプバーナを使用し燃焼用空気お
よび燃料をダンバ調節するようにしている。ま
た、10RTクラスにおいては、容量制御を全く行
なつていないのが現状である。
Traditionally, water-lithium bromide and ammonia-water systems have been widely used as absorption refrigerators, and these absorption refrigerators have generators, condensers, evaporators, absorbers, and liquid heat exchangers. It consists of a circulating water pump, etc. Absorption refrigerators that use fluorocarbon as a refrigerant also have the same configuration as the above two, and each of these generators has the function of heating a liquid mixture of refrigerant and absorbent to generate refrigerant vapor. In the above-mentioned water-lithium bromide system and ammonia-water system absorption refrigerator, capacity control of the generator burner, which is performed according to the load on the evaporator, is performed using one gun-type burner in the 100RT class. and fuel adjustment. Furthermore, in the 10RT class, there is currently no capacity control at all.

フロン吸収式冷凍機において、上記の10RTク
ラスのように蒸発器の負荷に応じ容量制御を行な
わない場合、水−臭化リチウム系およびアンモニ
ア−水系に比較し急激な成績係数の低下をもたら
す。また100RTクラスのように燃焼用空気および
燃料をダンパ調節する方法は高価で特に中小形に
おいては技術的にも困難な面が多い。
In a fluorocarbon absorption refrigerator, if the capacity is not controlled according to the evaporator load, as in the 10RT class mentioned above, the coefficient of performance will drop sharply compared to water-lithium bromide systems and ammonia-water systems. Additionally, the method of damping combustion air and fuel adjustment as in the 100RT class is expensive and technically difficult, especially for small and medium-sized engines.

本発明は上記の点に鑑みて、フロン系吸収式冷
凍機において、蒸発器の負荷に応じバーナの容量
制御を行ない、低負荷時の成績係数の低下を防止
することを目的とするものである。
In view of the above points, the present invention aims to prevent a decrease in the coefficient of performance at low loads by controlling the burner capacity according to the load on the evaporator in a fluorocarbon-based absorption refrigerator. .

本発明は上記の目的を達成するために、発生
器、分離器、凝縮器、蒸発器、吸収器、溶液ポン
プ等を配管で連結して冷凍サイクルを構成し、前
記発生器部の加熱源としてのバーナを複数台設置
したフロンを冷媒とする吸収式冷凍機において、
前記全バーナの炎口を長方形に形成し、該全バー
ナの炎口の長辺が前記発生器内を流れる濃溶液通
路全てを横切るようにバーナを配置したことを特
徴とするものである。
In order to achieve the above object, the present invention configures a refrigeration cycle by connecting a generator, a separator, a condenser, an evaporator, an absorber, a solution pump, etc. with piping, and serves as a heating source for the generator section. In an absorption refrigerator that uses CFC as a refrigerant and has multiple burners installed,
The burners are characterized in that the flame ports of all the burners are formed in a rectangular shape, and the burners are arranged so that the long sides of the flame ports of all the burners cross all the concentrated solution passages flowing within the generator.

以下本発明の実施例を図面を参照して説明す
る。第1図において、1は加熱器2を加熱し、高
温濃溶液(冷媒濃度が高い状態)とするバーナ、
3は濃溶液回路13から送られた濃液を冷媒ガス
と希液(冷媒濃度が低い状態)に分離する分離
器、4は冷媒循環回路15に接続された凝縮器、
6は膨張弁5を介して凝縮器4に接続された蒸発
器、10は蒸発器6に接続された吸収器、7は希
液循環回路14に、接続された再生熱交換器、9
は再生熱交換器7で熱交換され絞り弁8により減
圧された希液と、蒸発器6で蒸発した冷媒ガスが
混合された濃溶液と溶液ポンプ11からの濃溶液
とが熱交換される吸収熱交換器である。
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, 1 is a burner that heats the heater 2 to form a high-temperature concentrated solution (high concentration of refrigerant);
3 is a separator that separates the concentrated liquid sent from the concentrated solution circuit 13 into refrigerant gas and dilute liquid (low refrigerant concentration); 4 is a condenser connected to the refrigerant circulation circuit 15;
6 is an evaporator connected to the condenser 4 via the expansion valve 5; 10 is an absorber connected to the evaporator 6; 7 is a regenerative heat exchanger connected to the dilute liquid circulation circuit 14; 9;
is an absorption process in which heat is exchanged between a dilute liquid that has been heat exchanged in the regenerative heat exchanger 7 and depressurized by the throttle valve 8, a concentrated solution that is a mixture of the refrigerant gas evaporated in the evaporator 6, and the concentrated solution from the solution pump 11. It is a heat exchanger.

第2図において、バーナ1は燃焼用空気を供給
するバーナ用送風機18と長方形の炎口20より
構成され、濃液循環回路12から高温濃液回路1
3にいたる加熱器2の流れの方向に対し、前記バ
ーナ1a,1b,1c,1d、の炎口20の長辺
が濃溶液通路全てを横切りほゞ直角になるように
配置し、そのバーナ1の燃焼排気ガス19は、加
熱器2内を流れ出るように構成されている。さら
に、第3図に示すごとく、各バーナ1a,1b,
1c,1dには、燃料系統を制御する電磁弁21
a,21b,21c,21d、ガバナ22a,2
2b,22c,22d、および手元弁23が接続
されている。
In FIG. 2, the burner 1 is composed of a burner blower 18 that supplies combustion air and a rectangular flame port 20, and is connected to a high temperature concentrated liquid circuit 1 from a concentrated liquid circulation circuit 12.
The burners 1a, 1b, 1c, 1d are arranged so that the long sides of the flame ports 20 cross all the concentrated solution passages and are substantially perpendicular to the flow direction of the heater 2 leading to the heater 2. The combustion exhaust gas 19 is configured to flow out of the heater 2 . Furthermore, as shown in FIG. 3, each burner 1a, 1b,
1c and 1d are solenoid valves 21 that control the fuel system.
a, 21b, 21c, 21d, governor 22a, 2
2b, 22c, 22d, and the hand valve 23 are connected.

次に上記のような構成からなる本実施例の作用
について説明する。
Next, the operation of this embodiment configured as described above will be explained.

発生器26で発生した冷媒ガス(フロンガス)
は、凝縮器4に流入して室外熱交換空気16と熱
交換し凝縮、液化する。この液化した冷媒は膨張
弁5により減圧、膨張された後に蒸発器6に導入
されて室内熱交換空気17と熱交換し蒸発し気化
する。この際、フロンが蒸発するときに奪う蒸発
潜熱により冷凍または冷房作用が行われる。蒸発
器6で気化したフロンガスは、吸収熱交換器9を
経て吸収器10に導入され、冷媒の濃度が低い吸
収剤溶液(以下希液と称す)に吸収されて液化す
る。このようにフロンガスを吸収して冷媒濃度の
高い溶液(以下濃液と称す)は溶液ポンプ11に
より吸引し昇圧され、吸収熱交換器9に導入され
る。吸収熱交換器9では希液が冷媒蒸気を吸収し
て発熱するので、これと吸収熱交換器9に導入さ
れた濃液は熱交換し、さらに再生熱交換器7で希
液と熱交換して予熱された後に、加熱器2に導入
され、バーナ1により加熱されるので、沸騰して
気液二相流となり分離器3内に導入されサイクル
を形成する。
Refrigerant gas (fluorocarbon gas) generated by the generator 26
The air flows into the condenser 4, exchanges heat with the outdoor heat exchange air 16, and is condensed and liquefied. The liquefied refrigerant is depressurized and expanded by the expansion valve 5, and then introduced into the evaporator 6, where it exchanges heat with the indoor heat exchange air 17 and evaporates. At this time, freezing or cooling is performed by the latent heat of vaporization taken away when the Freon evaporates. The fluorocarbon gas vaporized in the evaporator 6 is introduced into the absorber 10 via the absorption heat exchanger 9, where it is absorbed into an absorbent solution (hereinafter referred to as dilute solution) with a low concentration of refrigerant and liquefied. A solution having a high refrigerant concentration (hereinafter referred to as a concentrated solution) that absorbs fluorocarbon gas in this manner is sucked by the solution pump 11, pressurized, and introduced into the absorption heat exchanger 9. In the absorption heat exchanger 9, the dilute liquid absorbs refrigerant vapor and generates heat, so this and the concentrated liquid introduced into the absorption heat exchanger 9 exchange heat, and further heat exchange with the dilute liquid in the regenerative heat exchanger 7. After being preheated, it is introduced into the heater 2 and heated by the burner 1, so that it boils and becomes a gas-liquid two-phase flow, which is introduced into the separator 3 to form a cycle.

次に前記蒸発器6の負荷の低下により、蒸発器
6に設置された感熱筒24付のサーモスタツト25
の信号により、第3図に示す電磁弁21a,21
dを切つてバーナ1b,1cだけを運転する。さ
らに負荷の低下する場合バーナ1b、または1c
だけを運転するように電磁弁21a,21b,2
1d、または21a,21c,21dを切る。ま
た加熱器は、バーナ1台分の幅にするようにし、
バーナ1台運転の状態においてもバーナからの加
熱が均一になるようにすれば更に効率的である。
そして、バーナを複数台配置することにより、燃
料用電磁弁の切替えだけで容易になおかつ安価に
容量制御ができる。
Next, due to the decrease in the load on the evaporator 6, the thermostat 25 with the heat-sensitive cylinder 24 installed in the evaporator 6 is activated.
The solenoid valves 21a, 21 shown in FIG.
d is turned off and only burners 1b and 1c are operated. If the load further decreases, burner 1b or 1c
Solenoid valves 21a, 21b, 2 so as to operate only
Cut 1d, or 21a, 21c, 21d. Also, make sure that the heater is as wide as one burner.
It will be more efficient if the heating from the burner is made uniform even when one burner is in operation.
By arranging a plurality of burners, the capacity can be easily and inexpensively controlled simply by switching the fuel electromagnetic valve.

また、蒸発器の負荷の変動によりバーナの容量
制御ができるようにすることにより負荷低下時の
成績係数を向上させ、経済的であり省エネルギと
なる。
Furthermore, by making it possible to control the capacity of the burner according to changes in the load on the evaporator, the coefficient of performance when the load decreases is improved, resulting in economical and energy saving.

また、複数台のバーナを加熱器の流れの奥行方
向に順に配置したことにより、容量制御時中心部
のバーナを一部運転する場合においても加熱が均
一となる。
Further, by arranging a plurality of burners in order in the depth direction of the flow of the heater, uniform heating can be achieved even when a portion of the central burner is operated during capacity control.

また、バーナ1台分の幅に加熱器の幅を合わせ
ることにより加熱が均一となり省スペース、小形
化が可能となり、容量が大きくなつても奥行方向
にバーナを増し、加熱器を伸ばすことにより比例
設計が可能となる。
In addition, by matching the width of the heater to the width of one burner, heating becomes uniform, allowing for space saving and downsizing.Even if the capacity increases, the number of burners can be increased in the depth direction and the heater can be extended, making it proportional. Design becomes possible.

本発明は上記の如き構成にしたから、低負荷時
の成績係数の低下を防止することができる。
Since the present invention is configured as described above, it is possible to prevent a decrease in the coefficient of performance at low loads.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例の冷凍サイクル系統
図を示す。第2図は、本発明の実施例のバーナお
よび加熱器の立体図を示す。第3図は、本発明の
実施例のバーナ燃料系統図を示す。 1…バーナ、2…加熱器、3…分離器、4…凝
縮器、5…膨脹弁、6…蒸発器、7…再生熱交換
器、8…絞り弁、9…吸収熱交換器、10…吸収
器、11…溶液ポンプ、12…濃液循環回路、1
3…高温濃液回路、14…希液循環回路、15…
冷媒循環回路、16…室外熱交換空気、17…室
内熱交換空気、18…バーナ用送風機、19…排
気ガス、20…炎口、21…電磁弁、22…ガバ
ナ、23…手元弁、24…感熱筒、25…サーモ
スタツト、26…発生器。
FIG. 1 shows a refrigeration cycle system diagram according to an embodiment of the present invention. FIG. 2 shows a three-dimensional view of the burner and heater of an embodiment of the invention. FIG. 3 shows a burner fuel system diagram of an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Burner, 2... Heater, 3... Separator, 4... Condenser, 5... Expansion valve, 6... Evaporator, 7... Regeneration heat exchanger, 8... Throttle valve, 9... Absorption heat exchanger, 10... Absorber, 11... Solution pump, 12... Concentrated liquid circulation circuit, 1
3... High temperature concentrated liquid circuit, 14... Dilute liquid circulation circuit, 15...
Refrigerant circulation circuit, 16... Outdoor heat exchange air, 17... Indoor heat exchange air, 18... Burner blower, 19... Exhaust gas, 20... Burner port, 21... Solenoid valve, 22... Governor, 23... Hand valve, 24... Heat-sensitive tube, 25... thermostat, 26... generator.

Claims (1)

【特許請求の範囲】[Claims] 1 発生器、分離器、凝縮器、蒸発器、吸収器、
溶液ポンプ等を配管で連結して冷凍サイクルを構
成し、前記発生器部の加熱源としてのバーナを複
数台設置したフロンを冷媒とする吸収式冷凍機に
おいて、前記全バーナの炎口を長方形に形成し、
該全バーナの炎口の長辺が前記発生器内を流れる
濃溶液通路全てを横切るようにバーナを配置した
ことを特徴とする吸収式冷凍機。
1 Generator, separator, condenser, evaporator, absorber,
In an absorption refrigerator using Freon as a refrigerant, in which a refrigeration cycle is configured by connecting a solution pump, etc. with piping, and a plurality of burners are installed as a heating source for the generator section, the flame openings of all the burners are rectangular. form,
An absorption refrigerator characterized in that the burners are arranged so that the long sides of the flame ports of all the burners cross all the concentrated solution passages flowing in the generator.
JP10927280A 1980-08-11 1980-08-11 Absorption type refrigerating machine Granted JPS5735264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10927280A JPS5735264A (en) 1980-08-11 1980-08-11 Absorption type refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10927280A JPS5735264A (en) 1980-08-11 1980-08-11 Absorption type refrigerating machine

Publications (2)

Publication Number Publication Date
JPS5735264A JPS5735264A (en) 1982-02-25
JPS6232387B2 true JPS6232387B2 (en) 1987-07-14

Family

ID=14505958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10927280A Granted JPS5735264A (en) 1980-08-11 1980-08-11 Absorption type refrigerating machine

Country Status (1)

Country Link
JP (1) JPS5735264A (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5075153U (en) * 1973-11-12 1975-07-01

Also Published As

Publication number Publication date
JPS5735264A (en) 1982-02-25

Similar Documents

Publication Publication Date Title
KR20020091075A (en) Integrated aqua-ammonia chiller/heater
JPH08159594A (en) Multiple effect absorption refrigerator
KR19990023967A (en) Absorption Chiller
KR100243523B1 (en) Absorption type air conditioner
JPH09159300A (en) Air cooling absorption heat pump chiller using ammonia-water absorption cycle
JPS6232387B2 (en)
KR100679982B1 (en) Low-temperature regenerator for absorption-type water heating/cooling unit
JPH11351697A (en) Heat exchanger and absorption refrigerating machine
KR100213780B1 (en) Water supply system of absortion type cooler
JP2650654B2 (en) Absorption refrigeration cycle device
KR102130336B1 (en) Absorption refrigeration system with reverse osmosis filter
JPH07151417A (en) Engine exhaust heat recovery/absorption cold/hot water supplier
KR200240134Y1 (en) Heat pump mounting auxiliary heat exchanger
JP3283780B2 (en) Absorption cooling device
JP2618193B2 (en) Absorption refrigeration cycle device
KR100428317B1 (en) High Temperature Generator of The Absorption Chiller and Heater
JPH11351698A (en) Evaporator, absorber, and absorption refrigerating machine
JP2746323B2 (en) Absorption air conditioner
JP2618192B2 (en) Absorption refrigeration cycle device
KR19990064984A (en) Gas-liquid separation device for high temperature regenerator for absorption air conditioner
KR200276965Y1 (en) Evaporative air conditioner
JP2898202B2 (en) Absorption cooling system
KR200170264Y1 (en) Multi-Tube Bubble Pump system for Diffusion Absorption Refrigerator.
JPH0446342B2 (en)
JPS6022251B2 (en) absorption refrigerator