JPS6232364A - Method for measuring unsaturated iron bonding power in serum - Google Patents

Method for measuring unsaturated iron bonding power in serum

Info

Publication number
JPS6232364A
JPS6232364A JP17182285A JP17182285A JPS6232364A JP S6232364 A JPS6232364 A JP S6232364A JP 17182285 A JP17182285 A JP 17182285A JP 17182285 A JP17182285 A JP 17182285A JP S6232364 A JPS6232364 A JP S6232364A
Authority
JP
Japan
Prior art keywords
iron
ascorbic acid
serum
reagent
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17182285A
Other languages
Japanese (ja)
Inventor
Yoshisumi Ueno
上野 義澄
Hajime Yoshimura
一 芳村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINOTESUTO KENKYUSHO KK
Shino Test Corp
Original Assignee
SHINOTESUTO KENKYUSHO KK
Shino Test Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINOTESUTO KENKYUSHO KK, Shino Test Corp filed Critical SHINOTESUTO KENKYUSHO KK
Priority to JP17182285A priority Critical patent/JPS6232364A/en
Publication of JPS6232364A publication Critical patent/JPS6232364A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To stabilize ascorbic acid in the co-presence with a color former by stabilizing ascorbic acid as a reducing agent in a soln. state for a long period of time. CONSTITUTION:The ascorbic acid deriv. such as ascorbic acid-2(or 3)-phosphate or ascorbic acid-2(or 3)-sulfonate is made to the reducing agent as the ascorbic acid is liberated after the decomposition by the effect of enzyme such as phosphatase or sulfatase. The long-term stabilization thereof in the co-existence state with the color former is thus made possible.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、血清中の不飽和鉄結合能の定量方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for quantifying unsaturated iron binding capacity in serum.

血清鉄は、β−グロブリンに属するトランスフェリンと
結合し、ヘモグロビン合成のため骨髄の赤芽球や鉄を必
要とする各組織へ鉄を運んでいる。
Serum iron binds to transferrin, which belongs to β-globulin, and transports iron to erythroblasts in the bone marrow and other tissues that require iron for hemoglobin synthesis.

正常人ではトランスフェリンの約1/3が鉄と結合し、
残り約2/3は未結合の形で存在する。そj  で  
  而 梼 th 6) A L  ら  ・/  フ
  7−  11   ’ノ  シ ±士 A、fTh
  叛  ス。
In normal people, about 1/3 of transferrin binds to iron,
The remaining approximately two-thirds is present in unbound form. Soj de
6) A L et al./F 7-11
Rebellion.

鉄の総量を総鉄結合能(T I BC)といい、未結合
、又は不飽和のトランスフェリンに結合しうる鉄量を不
飽和鉄結合能(U I BC)といい、この関係はT 
I BC=U I BC十血清鉄となる。
The total amount of iron is called the total iron binding capacity (T I BC), and the amount of iron that can bind to unbound or unsaturated transferrin is called the unsaturated iron binding capacity (U I BC), and this relationship is T
I BC = U I BC ten serum iron.

血清鉄、総及び不飽和鉄結合能の動向は、臨床面におい
て各種貧血の分類、肝疾患、急性及び慢性感染症など各
種の疾患と関係があり、その測定は臨床上極めて重要で
ある。
Trends in serum iron, total and unsaturated iron binding capacity are clinically related to various diseases such as the classification of various anemias, liver diseases, and acute and chronic infections, and their measurement is extremely important clinically.

[従来の技術] 不飽和鉄結合能の測定方法としては、従来より鉄イオン
とそのキレート剤を使用し、錯体生成を行ない、鉄イオ
ン濃度を化学的発色により比色定量する方法が主として
行なわれている。この方法は、血清に既知過剰量の鉄を
添加したのち、結合していない残余の鉄を炭酸マグネシ
ウム、陰イオン交換樹脂で吸着除去してトランスフェリ
ン結合鉄を測定して総鉄結合能を求め、−別に測定した
血清鉄を差し引いて求めるものと、吸着剤を使用せず、
既知量の鉄を血清に添加し血清中のトランスフェリンを
飽和させた後、遊離の鉄イオンを比色定量し添加した鉄
イオン濃度から差し引くことによって不飽和鉄結合能を
測定するものとに大別される。前者の方法に比べ後者の
方法は、大量の検体を正確に、かつ迅速に処理できる自
動分析に適しているため多用されている。
[Prior Art] Conventionally, the main method for measuring unsaturated iron binding capacity has been to use iron ions and their chelating agents to form a complex, and to quantify the iron ion concentration colorimetrically by chemical coloring. ing. In this method, after adding a known excess amount of iron to serum, the remaining unbound iron is adsorbed and removed using magnesium carbonate and an anion exchange resin, and transferrin-bound iron is measured to determine the total iron-binding capacity. - Determined by subtracting serum iron measured separately, and without using an adsorbent.
The unsaturated iron binding capacity is measured by adding a known amount of iron to the serum to saturate the transferrin in the serum, then colorimetrically quantifying the free iron ion and subtracting it from the added iron ion concentration. be done. Compared to the former method, the latter method is more frequently used because it is suitable for automatic analysis that can accurately and quickly process large amounts of specimens.

鉄イオン濃度を化学的発色により比色測定するための公
知の発色剤は、その殆どが三価鉄とはキレート生成しな
いため、予め三価鉄を二価に還元する必要がある。還元
剤としてはチオグリコール酸、アスコルビン酸、塩酸ヒ
ドロキシルアミン等が広く用いられている。特に、アス
コルビン酸は鉄測定用の還元剤として最も適しているが
、その使用に当たっては安定性の面で極めて重大な問題
点を有している〔特開昭59−50364号公報〕。
Since most of the known coloring agents for colorimetrically measuring iron ion concentration do not form a chelate with trivalent iron, it is necessary to reduce trivalent iron to divalent iron in advance. As reducing agents, thioglycolic acid, ascorbic acid, hydroxylamine hydrochloride, etc. are widely used. In particular, ascorbic acid is most suitable as a reducing agent for iron measurement, but its use has extremely serious problems in terms of stability [JP-A-59-50364].

[発明が解決しようとする問題点] 従来アスコルビン酸を還元剤として用いる場合、これを
溶液状態で長期間保存するのは困難であり、更にニトロ
ソ7工7−ル誘導体等の還元されやすい官能基を有する
発色剤(す〃ンド)との共存下での安定化は極めて困難
であった。本発明は、アスコルビン酸を還元剤として、
長期間溶液状態で安定化させ、更に、このことにより還
元されやすい官能基を有する発色剤どの共存下での安定
化を目的とするものである。
[Problems to be Solved by the Invention] Conventionally, when ascorbic acid is used as a reducing agent, it is difficult to store it in a solution state for a long period of time, and furthermore, it is difficult to store it in a solution state for a long period of time. It was extremely difficult to stabilize the color former in the coexistence with a color former having a color former. The present invention uses ascorbic acid as a reducing agent,
The purpose of this is to stabilize it in a solution state for a long period of time, and further to stabilize it in the coexistence of a color former having a functional group that is easily reduced.

即ち、アスコルビン酸は、溶液状態では酸性下(pH1
,5付近)においても徐々に分解(酸化)され、特に室
温(25°C)での保存性は極めで悪い。このことは、
アスコルビン酸と還元されやすい官能基を有する発色剤
との共存を困難にするばかりでなく、測定試液の安定性
に大きく影響する。
That is, ascorbic acid is dissolved under acidic conditions (pH 1) in a solution state.
, 5), it is gradually decomposed (oxidized) and has extremely poor storage stability, especially at room temperature (25°C). This means that
This not only makes it difficult for ascorbic acid to coexist with a coloring agent having a functional group that is easily reduced, but also greatly affects the stability of the measurement reagent solution.

この様な問題に討して、アスコルビン酸と発色剤とを各
々独立させる試薬系が考えられるが、測定繰作の簡便化
のため1こは、試薬を混合して用いることが望まれてい
る。訓定試薬を2試薬系に所望する限り、試薬として使
用する三価鉄とアスコルビン酸の共存の問題がでてくる
。これは、例えば三価鉄は発色剤と共存させるとブラン
クの上昇がみられること、又アスコルビン酸と共存させ
ると二価鉄に還元されて、トランスフェリンとの反応が
遅く不完全となる。更に、これらの手段は還元剤として
のアスコルビン酸の安定化という問題に対して、本質的
な解決方法とはなり得ない。
In order to solve this problem, a reagent system in which ascorbic acid and a coloring agent are separated may be considered, but in order to simplify the measurement procedure, it is preferable to use a mixture of reagents. . As long as a two-reagent system is desired as a training reagent, the problem of coexistence of trivalent iron and ascorbic acid used as reagents arises. This is because, for example, when trivalent iron coexists with a coloring agent, an increase in the blank is observed, and when it coexists with ascorbic acid, it is reduced to divalent iron, making the reaction with transferrin slow and incomplete. Furthermore, these means cannot provide a substantial solution to the problem of stabilizing ascorbic acid as a reducing agent.

本発明者らは、かかる問題点iこつき鋭意研究を重ねた
結果、アスコルビン酸誘導体を使用すれば、それらの問
題点が克服されることを見出し、本発明を完成するに到
った。
As a result of extensive research into these problems, the present inventors have discovered that these problems can be overcome by using ascorbic acid derivatives, and have completed the present invention.

[問題点を解決するための手段] 本発明は、不飽和鉄結合能の比色測定において7スコル
ビン酸誘導体を用い、これを酵素作用でアスコルビン酸
に分解し、これを三価鉄の還元剤として使用することを
特徴とする血清中の不飽和鉄結合能の測定方法である。
[Means for Solving the Problems] The present invention uses a 7-scorbic acid derivative in the colorimetric measurement of unsaturated iron binding ability, decomposes this into ascorbic acid by enzymatic action, and converts it into ascorbic acid as a reducing agent for trivalent iron. This is a method for measuring unsaturated iron binding capacity in serum, which is characterized in that it is used as a method for measuring unsaturated iron binding capacity in serum.

本発明におけるアスコルビン酸誘導体とは、アスコルビ
ン酸−2(又は3)−リン酸エステル、アスコルビン酸
−2(又は3)−入ルホン酸エステル、アスコルビン酸
−2(又は3)−脂肪酸モノエステル、アスコルビン酸
脂肪酸ジエステルなどが挙げられる。そして、それらに
作用する酵素としては、ホスファターゼ、サルファター
ゼ、又l+11ゼゴロ千イン11バー、J/嘘か田い7
+ 鮭3俸田により生成するアスコルビン酸は三価鉄を
二価1こ還元することにより、二価鉄と発色剤との反応
が生ずる。発色剤は公知のものを用いればよいが、特に
2−ニトロソ−5−(N−プロピル−N−スルホプロピ
ルアミノ)7エ/−ル、2−ニトロソ−5−(N−エチ
ル−N−スルホプロピルアミ/)7エ/−ル9の二Fロ
ソ7工/−ル誘導体、バソ7エナンスロリン等が好まし
い。
Ascorbic acid derivatives in the present invention include ascorbic acid-2 (or 3)-phosphate ester, ascorbic acid-2 (or 3)-containing sulfonic acid ester, ascorbic acid-2 (or 3)-fatty acid monoester, ascorbic acid Examples include acid fatty acid diesters. And the enzymes that act on them include phosphatase, sulfatase, l+11zegorosenin11bar, J/Usokatai7
+ Ascorbic acid produced by salmon 3-batch reduces trivalent iron to divalent one, thereby causing a reaction between divalent iron and the coloring agent. Any known coloring agent may be used, but in particular, 2-nitroso-5-(N-propyl-N-sulfopropylamino)7-ethyl, 2-nitroso-5-(N-ethyl-N-sulfonate) Preferred are propylamine/)7er/9 diFroso7erol derivatives, basso7enanthroline, and the like.

本発明の測定方法は、第1試薬、又は第2試薬にアスコ
ルビン酸N導体と酵素を別個に、そして三価鉄と発色剤
を第1試薬、又は第2試薬に別個に添加したものを用意
する。次に、三価鉄の入った試薬と血清とを反応させ、
この後発色剤の入った試薬を加えて反応させる。この方
法により、血清中の不飽和トランスフェリンは添加され
た鉄と結合して飽和トランスフェリンとなる。この時、
結合しなかった鉄は、酵素の作用によりアスコルビン酸
誘導体から生成したアスコルビン酸によって二価鉄に還
元され、発色剤とキレート結合して呈色する。そこで、
添加さfiだ既知過剰量の鉄から、結合しなかった残余
鉄量を差し引くことにより不飽和鉄結合能を求めること
が可能になる。
In the measurement method of the present invention, an ascorbic acid N conductor and an enzyme are separately added to a first reagent or a second reagent, and trivalent iron and a coloring agent are separately added to the first reagent or a second reagent. do. Next, a reagent containing trivalent iron is reacted with serum,
After this, a reagent containing a color former is added and reacted. By this method, unsaturated transferrin in serum combines with added iron to become saturated transferrin. At this time,
The unbound iron is reduced to divalent iron by ascorbic acid generated from an ascorbic acid derivative by the action of an enzyme, and is chelated with a coloring agent to produce color. Therefore,
It becomes possible to determine the unsaturated iron binding capacity by subtracting the amount of residual iron that is not bound from the known excess amount of iron that has been added.

〔作用〕[Effect]

本発明で用いるアスコルビン酸誘導体は、酵素の作用で
分解後アスコルビン酸が遊離して、初めて還元剤となる
ので、発色剤との共存状態で長期間安定である。又、ア
スコルビン酸と鉄を共存させる場合、鉄が二価に還元さ
れてトランスフェリンとの反応が遅く不完全であったが
、これは本発明によりM消され、鉄と還元剤との共存が
可能になる。
The ascorbic acid derivative used in the present invention becomes a reducing agent only after ascorbic acid is liberated after being decomposed by the action of an enzyme, so that it is stable for a long period of time in coexistence with a coloring agent. Furthermore, when ascorbic acid and iron coexist, iron is reduced to divalent and the reaction with transferrin is slow and incomplete, but this is eliminated by the present invention, and iron and reducing agent can coexist. become.

第1表は、従来のアスコルビン酸を還元剤に使用した場
合と本発明の還元剤の安定性を効力試験で示したもので
ある。例えば、2〜8℃保存におけるアスコルビン酸で
は60日口重約50%還元力が減少するのに対し、本発
明の還元力は殆ど変化しない。そして、この比較は25
℃では更に顕著に現われる。
Table 1 shows the stability of the reducing agent of the present invention when conventional ascorbic acid is used as a reducing agent and the stability of the reducing agent of the present invention in an efficacy test. For example, when ascorbic acid is stored at 2 to 8°C, its reducing power decreases by about 50% based on mouth weight after 60 days, whereas the reducing power of the present invention hardly changes. And this comparison is 25
It becomes even more noticeable at ℃.

第2表は、本発明の還元剤の安定性を含量試験で従来の
アスコルビン酸と比較した結果を示したものである。ア
スコルビン酸は21日口重2〜8℃で60%、25°C
で90%の含量低下があるのに対し、本発明の還元剤は
同条件下で60日経過しても変化しない、尚、アスコル
ビン酸の定量はヨードメトリー法(日本薬局方第10改
正、参照)で行ない、調製時を100とし、溶解液のp
 l−IはpH1゜5付近にした。一方、本発明法にお
ける還元剤は液体クロマトグラフ法(カラム:4.6φ
×15cm、溶a液:0.08M酢酸緩衝液、2.8m
Mn−ヘキシルアミン、0.1mMEDTA、2%メタ
ノール、検出器:UV254n111)で測定し、調整
時を100とした。
Table 2 shows the results of a content test comparing the stability of the reducing agent of the present invention with conventional ascorbic acid. Ascorbic acid is 60% at 21 days mouth weight at 2-8℃, 25℃
In contrast, the reducing agent of the present invention does not change even after 60 days under the same conditions.Ascorbic acid was determined by iodometry method (Japanese Pharmacopoeia 10th revision, see ), the time of preparation is set as 100, and the p of the solution is
The pH of l-I was set to around 1.5. On the other hand, the reducing agent in the method of the present invention is used in the liquid chromatography method (column: 4.6φ
×15cm, solution a: 0.08M acetate buffer, 2.8m
It was measured using Mn-hexylamine, 0.1mM EDTA, 2% methanol, detector: UV254n111), and the value at the time of adjustment was set to 100.

以下余白。、−:゛・( □  1.、・ 第 1 表 〜薯以 = 〕1実 221゜ □扁■ 第2表 苓〉 い %〉 た %〉 下、実施例により本発明を説明する。Margin below. , −:゛・( □ 1. ,・ Table 1 ~Saichi = ]1 fruit 221° □Ban■ Table 2 苓〉 stomach %〉 Ta %〉 The invention will be explained below by way of examples.

寓例1 成薬 も1試薬 トリスヒドロキシルアミン            1
9.4gクエン酸ナトリウム            
      2.s、?鉄ミョウバン        
            8.64■スワ/−ルAM1
03EX             4,0gアルカリ
性ホスファターゼ          330U/f以
上を水に溶解して塩酸でpH8,6に買整し後、水で全
量1,000zfとする。
Example 1 Reagent trishydroxylamine 1
9.4g sodium citrate
2. S,? iron alum
8.64■ Swa/-ru AM1
03EX 4.0g alkaline phosphatase 330U/f or more is dissolved in water, adjusted to pH 8.6 with hydrochloric acid, and then adjusted to a total volume of 1,000zf with water.

第2試薬 トリスヒドロキシルアミン            1
9.4g2−ニトロン−5−(N−プロピル−N−スル
ホプロピルアミ/)7エ7ノール         1
,20゜アスコルビン酸すン酸エステルマグネシクム[
0,28g(商品名二二ツコールVC−100、日光ケ
ミカルX社製)以上を水に溶解して塩酸″′cpH8,
6に調整し後、水で全量1,000zj2とする。
Second reagent trishydroxylamine 1
9.4g2-nitrone-5-(N-propyl-N-sulfopropylamide/)7enol 1
, 20゜Ascorbic acid sulfate ester magnesium [
Dissolve 0.28g or more (trade name Ninitsucor VC-100, manufactured by Nikko Chemical
6, and then add water to make a total volume of 1,000zz2.

2、操作法 血清0,25zlに上記第1試薬3 xlを加え37℃
で5分間インキュベーションした後、上記第2試薬11
1を加え37°Cで20分間インキュベーションの後、
750r++++の吸光度を測定して下記の計算式によ
って不飽和鉄結合能(U IBC)値を求める。
2. Procedure: Add 3xl of the above first reagent to 0.25zl of serum and heat at 37°C.
After incubation for 5 minutes, the second reagent 11
After adding 1 and incubating at 37°C for 20 minutes,
The absorbance of 750r++++ is measured and the unsaturated iron binding capacity (UIBC) value is determined using the following formula.

く計算式〉 ER8:サンプルに水を用いた時の吸光度Es :サン
プルに検体(血清)を用いた時の吸光度1200μg/
dNは第1試薬中の鉄の濃度3、結果 上記により求めた不飽和鉄結合能値を従来法で求めた値
と比較したものが第3表である。この結果、従来法との
開に有意の差は認められなlvl。
Calculation formula> ER8: Absorbance when using water as the sample Es: Absorbance when using the specimen (serum) as the sample 1200μg/
dN is the concentration of iron in the first reagent of 3. Results Table 3 shows a comparison of the unsaturated iron binding capacity values determined above with the values determined by the conventional method. As a result, no significant difference was observed between the conventional method and the lvl.

尚、従来法の除蛋白法は血清鉄を松原法、総鉄結合能は
Ram5ay法(Medical Technolog
y t Vol、 11 +No、10= p、999
 (1983)参照〕で行ない、イオン交換樹脂法は血
清鉄をFeネオ”シフテスト″、総鉄結合能はTIBC
ネオ゛シフテスト′(共にシフテスト研究所製品)で行
ない、U I BC=TIBC−血清鉄により値を求め
た。又、アスコルビン酸法は本発明と同様の原理で測定
し、余剰の鉄(Fe”″)を7スコルビン酸で還元する
方法で求めた6 57.  、 以下余白お・′Jゝ tjS3  表 ■ w PSAP法:2−二トロン−5−(N−プロピル−
N−スルホプロピルアミノ)7エ/−ル バ ン 法:バソ7エナンスロリンスルホン酸ナトリウ
ム実施例2 1、試薬 第1試薬 実施例1の第1試薬と同様。
Conventional protein removal methods include Matsubara method for serum iron and Ram5ay method (Medical Technology) for total iron binding capacity.
y t Vol, 11 +No, 10=p, 999
(1983)], the ion exchange resin method was used to measure serum iron using the Fe Neo "Siftest", and the total iron binding capacity was determined by TIBC.
The test was carried out using Neo-Schiftest' (both manufactured by Schiftest Institute), and the value was determined using UIBC=TIBC-serum iron. In addition, the ascorbic acid method was used for measurement based on the same principle as the present invention, and was determined by reducing excess iron (Fe"") with 7scorbic acid657. , Please use the blank space below. Table ■ w PSAP method: 2-nitron-5-(N-propyl-
N-sulfopropylamino)7e/-ruban Method: Baso7enanthroline sulfonate sodium Example 2 1. Reagent 1st Reagent Same as the 1st reagent in Example 1.

第2試薬 実施例1の第2試薬と、2−ニトロン−5−(N−プロ
ピル−N−スルホプロピルアミ7)フェノールをバソ7
エナンスロリンスルホン酸ナトリウムに変えるほか、同
様。
Second Reagent The second reagent of Example 1 and 2-nitrone-5-(N-propyl-N-sulfopropylamine 7)phenol were mixed in batho7
Same thing except change to enanthrolin sodium sulfonate.

2、操作法 実施例1の操作法と同様。2. How to operate Same procedure as in Example 1.

3、結果 上記により求めた不飽和鉄結合能値を実施例1と同様に
第3表に示す、この結果、従来法との間に有意の差は認
められない。
3. Results The unsaturated iron binding capacity values determined above are shown in Table 3 in the same manner as in Example 1. As a result, no significant difference was observed between them and the conventional method.

Claims (1)

【特許請求の範囲】[Claims] 不飽和鉄結合能の比色測定において、アスコルビン酸誘
導体を用い、これを酵素作用でアスコルビン酸に分解し
、これを三価鉄の還元剤として使用することを特徴とす
る血清中の不飽和鉄結合能の測定方法。
In the colorimetric measurement of unsaturated iron binding ability, an ascorbic acid derivative is used, which is decomposed into ascorbic acid by enzymatic action, and this is used as a reducing agent for trivalent iron.Unsaturated iron in serum How to measure binding capacity.
JP17182285A 1985-08-06 1985-08-06 Method for measuring unsaturated iron bonding power in serum Pending JPS6232364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17182285A JPS6232364A (en) 1985-08-06 1985-08-06 Method for measuring unsaturated iron bonding power in serum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17182285A JPS6232364A (en) 1985-08-06 1985-08-06 Method for measuring unsaturated iron bonding power in serum

Publications (1)

Publication Number Publication Date
JPS6232364A true JPS6232364A (en) 1987-02-12

Family

ID=15930381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17182285A Pending JPS6232364A (en) 1985-08-06 1985-08-06 Method for measuring unsaturated iron bonding power in serum

Country Status (1)

Country Link
JP (1) JPS6232364A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265131A (en) * 1993-03-12 1994-09-20 Toosetsu Kk Exhaust top
WO1995013544A1 (en) * 1992-09-30 1995-05-18 Daiichi Pure Chemicals Co., Ltd. Reagent for determining unsaturated iron-binding capacity
US6753499B1 (en) 2000-03-28 2004-06-22 Japan Science And Technology Corporation Method and apparatus for detecting anomalous discharge in plasma processing equipment using weakly-ionized thermal non-equilibrium plasma

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995013544A1 (en) * 1992-09-30 1995-05-18 Daiichi Pure Chemicals Co., Ltd. Reagent for determining unsaturated iron-binding capacity
JPH06265131A (en) * 1993-03-12 1994-09-20 Toosetsu Kk Exhaust top
US6753499B1 (en) 2000-03-28 2004-06-22 Japan Science And Technology Corporation Method and apparatus for detecting anomalous discharge in plasma processing equipment using weakly-ionized thermal non-equilibrium plasma

Similar Documents

Publication Publication Date Title
Masato An improved method for determination of L-ascorbic acid and L-dehydroascorbic acid in blood plasma
Kushner et al. The role of iron in the pathogenesis of porphyria cutanea tarda: an in vitro model
US3791931A (en) Reagent and method for determination of lactate dehydrogenase
US4588695A (en) Determination of unsaturated iron-binding capacity
US4116774A (en) Method for the determination of enzyme activities
JPS6232364A (en) Method for measuring unsaturated iron bonding power in serum
Ehrenberg et al. Magnetic measurements on crystallized Fetransferrin isolated from the blood plasma of swine
JPH05505243A (en) Reagents and methods for serum iron assays
EP0477402A1 (en) Agent for determining manganese and method relating thereto
JP2005292110A (en) Method of restraining nonspecific coloring
Cherroret et al. Effects of aluminum chloride on normal and uremic adult male rats: Tissue distribution, brain choline acetyltransferase activity, and some biological variables
JP2694004B2 (en) Method for measuring fructosamine in serum or plasma
JP2632989B2 (en) Method for measuring unsaturated iron binding ability
JPH06247855A (en) Method for stabilizing solution containing ascorbic acid and/or its salt
JP4123181B2 (en) Calcium measuring method and measuring reagent
JP4558119B2 (en) Liquid reagent for creatine kinase detection
JPS6349081A (en) Stabilization of ascorbic acid oxidase
JP3170066B2 (en) Unsaturated iron binding ability measurement reagent
JP2652564B2 (en) Method for measuring unsaturated iron binding ability in serum
JP3057183B2 (en) Stabilization of fluorescent substrate solution
JPH0772158A (en) Reagent for measurement of uibc
JP3095887B2 (en) Assay method and reagent for the determination of unsaturated iron binding capacity
US5112769A (en) Stable single liquid reagent for determination of direct bilirubin in sera and method of forming same
JPS6231912B2 (en)
JP2797102B2 (en) Acid phosphatase activity reagent