JPS6231983A - Surface heat generating body - Google Patents

Surface heat generating body

Info

Publication number
JPS6231983A
JPS6231983A JP17164585A JP17164585A JPS6231983A JP S6231983 A JPS6231983 A JP S6231983A JP 17164585 A JP17164585 A JP 17164585A JP 17164585 A JP17164585 A JP 17164585A JP S6231983 A JPS6231983 A JP S6231983A
Authority
JP
Japan
Prior art keywords
heat
thick film
heating element
glass
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17164585A
Other languages
Japanese (ja)
Inventor
阿部 輝男
山崎 勝弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Heating Appliances Co Ltd
Original Assignee
Hitachi Heating Appliances Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Heating Appliances Co Ltd filed Critical Hitachi Heating Appliances Co Ltd
Priority to JP17164585A priority Critical patent/JPS6231983A/en
Publication of JPS6231983A publication Critical patent/JPS6231983A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Heating Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はセラミックス製電気絶縁基盤の表面の一部に厚
膜ペーストを印刷・焼成して抵抗体を形成した採暖用の
面状発熱体に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a sheet heating element for warming, in which a resistor is formed by printing and firing a thick film paste on a part of the surface of a ceramic electrically insulating substrate. It is something.

(従来の技術) 従来から面状発熱体として使用されているものに耐熱オ
イルを熱媒体としたものや、正特性形サー P ミスタ−発熱素子を用いたパネル型ヒータ、マイカ板に
抵抗線を巻きつけたマイカヒータ、アルミナ板にタング
ステン抵抗体を印刷・焼成したアルミナセラミックヒー
タなどがある。またホーロ基盤に厚膜抵抗体を印刷・焼
成した面状発熱体(例えば実開昭60−17594号公
報)もある。
(Prior technology) Conventionally used planar heating elements include those using heat-resistant oil as a heating medium, panel-type heaters using positive temperature coefficient type thermistor heating elements, and resistance wires attached to mica plates. There are mica heaters that are wrapped around each other, and alumina ceramic heaters that have a tungsten resistor printed and fired on an alumina plate. There is also a planar heating element (for example, Japanese Utility Model Application Publication No. 17594/1983) in which a thick film resistor is printed and fired on a hollow substrate.

(発明が解決しようとする問題点) 上記構成によると、耐熱オイルを熱媒体としたものや、
正特性形サーミスタ発熱素子を用いたパネル型ヒータは
発熱プレートの表面温度が90〜120℃とかなり低い
ため、放射熱エネルギーの発生量が少なく、採暖器具と
しては能率的でない。
(Problems to be Solved by the Invention) According to the above configuration, heat-resistant oil is used as a heat medium,
A panel heater using a positive temperature coefficient thermistor heating element has a heat generating plate whose surface temperature is quite low at 90 to 120° C., so the amount of radiant heat energy generated is small, making it inefficient as a heating device.

又マイカヒータの場合は絶縁体である天然マイカの大き
さにきわめて制限があり、形状の大きなパネル型面状発
熱体とするのが困難であり、さらにマイカヒータを金属
板で挾む構造では熱伝導が悪く2局部加熱が起こり、安
全性に欠ける。アルミナセラミックヒータはアルミナの
グリーンシートにタングステン抵抗体を厚膜状に印刷し
、さらに別のグリーンシートを重ね合せて還元性雰囲気
中3 P で13oo〜1400℃の高温度で焼成して作る。その
ため所定の抵抗値に合せることが難しく、不良率が高い
ためコストが高価となる。又この焼成済アルミナ基盤を
用いる場合は基盤の平面度がとれないため、大きな基盤
ができないなどの欠点がある。
In addition, in the case of mica heaters, the size of natural mica, which is an insulator, is extremely limited, making it difficult to create a large panel-shaped sheet heating element.Furthermore, the structure in which the mica heater is sandwiched between metal plates has poor heat conduction. Unfortunately, two localized heating occurs, resulting in a lack of safety. An alumina ceramic heater is made by printing a tungsten resistor in a thick film on an alumina green sheet, overlapping another green sheet, and firing it at a high temperature of 13oo to 1400°C in a reducing atmosphere with 3P. Therefore, it is difficult to match the resistance value to a predetermined value, and the defective rate is high, resulting in high cost. Furthermore, when this fired alumina substrate is used, the flatness of the substrate cannot be ensured, so there is a drawback that a large substrate cannot be formed.

ホーロ基盤の場合は大形化した場合にやはり平面度が問
題となる上にピンポールが出来やすく、またフリットの
厚みが50〜100μときわめて薄いため、耐絶縁性や
耐電圧性が劣るなどの欠点があり。
In the case of hollow substrates, when the size is increased, flatness becomes a problem and pin poles are likely to form.Furthermore, the thickness of the frit is extremely thin at 50 to 100μ, so there are disadvantages such as poor insulation resistance and voltage resistance. There is.

実用化されていない。Not put into practical use.

(問題点を解決するための手段) 本発明は上記欠点を除くためになされたものであり、電
気絶縁性、耐電圧性に優れ、大形でも平面度が良く、急
冷急熱のショックにも強い耐熱ガラスを基盤としてその
表面の一部に抵抗体を厚膜状に印刷し、焼成して面状発
熱体を形成したものである。耐熱ガラスには結晶化ガラ
スと非結晶化ガラスとがあり、結晶化ガラスの方が熱膨
脹係数が小さいため、熱ショックに対して強い。厚膜抵
抗体は酸化ルテニウム、銀、ニッケル、アルミ。
(Means for Solving the Problems) The present invention has been made to eliminate the above-mentioned drawbacks, and has excellent electrical insulation and voltage resistance, good flatness even in large size, and is resistant to shocks caused by rapid cooling and rapid heating. A sheet heating element is formed by printing a thick film of resistor on a part of the surface of a strong heat-resistant glass base and firing it. There are two types of heat-resistant glass: crystallized glass and amorphous glass. Crystallized glass has a smaller coefficient of thermal expansion and is therefore more resistant to thermal shock. Thick film resistors are ruthenium oxide, silver, nickel, and aluminum.

などの微粉体をガラスフリットのバインダーとしてペー
スト状にする。そのペーストをスクリーンパターンに応
じて印刷し、焼成して抵抗体の厚膜とする。この厚膜抵
抗体の熱膨張は金属粉体吉ガラスフリットバインダーに
よって変化し、耐熱ガラス基盤との熱膨張の差の分だけ
残留応力となって剥離しやすくなる。更にこの残留応力
をできるだけ緩和するために耐熱ガラス基盤と厚膜抵抗
体の熱膨張の中間であるガラスフリソ1−の中間が、ラ
ス層を設けることによって、耐熱ガラス基盤と厚膜抵抗
体との剥離の危険性を防止する。
Fine powder such as is made into a paste as a binder for glass frit. The paste is printed according to a screen pattern and fired to form a thick resistor film. The thermal expansion of this thick film resistor is changed by the metal powder and glass frit binder, and the difference in thermal expansion between the thick film resistor and the heat-resistant glass substrate creates residual stress, making it easy to peel off. Furthermore, in order to alleviate this residual stress as much as possible, a lath layer is provided between the glass frisode 1-, which is between the thermal expansion of the heat-resistant glass base and the thick-film resistor, to prevent the peeling of the heat-resistant glass base and the thick-film resistor. prevent the risk of

(作  用) 上記により耐熱ガラス基盤に直接発熱体である厚膜抵抗
体を接合しであるため発熱体からの熱伝導が良く、基盤
全体が発熱体となる。また耐熱ガラスのうち特に結晶化
ガラスの熱膨脹係数は10X10 7°Cであり、厚膜
抵抗体の場合は70〜90X10 7℃でバインダーの
ガラスフリットが溶けた 1のち、温度の低下に伴い固
体化した温度のときの熱膨張差が常温時に最も大きな残
留応力となるが。
(Function) As described above, since the thick film resistor, which is a heating element, is directly bonded to the heat-resistant glass substrate, heat conduction from the heating element is good, and the entire substrate becomes a heating element. Among heat-resistant glasses, the coefficient of thermal expansion of crystallized glass is 10x107°C, and in the case of thick film resistors, the glass frit of the binder melts at 70 to 90x107°C, and then solidifies as the temperature decreases. However, the difference in thermal expansion at room temperature results in the largest residual stress.

 P その応力は中間ガラス層を設けたことにより緩和するこ
とができる。
P The stress can be alleviated by providing an intermediate glass layer.

(実 施 例) 本発明の一実施例を図面により説明すると、耐熱ガラス
基盤1の表面に厚膜抵抗体2を焼成する。
(Example) An example of the present invention will be described with reference to the drawings. A thick film resistor 2 is fired on the surface of a heat-resistant glass substrate 1.

耐熱ガラス基盤11にはネオセラム等の結晶化ガラスや
パイレックスガラス等の非結晶化ガラスを使用する。厚
膜抵抗体2には酸化ルテニウム、銀。
For the heat-resistant glass substrate 11, crystallized glass such as Neoceram or amorphous glass such as Pyrex glass is used. Thick film resistor 2 is made of ruthenium oxide and silver.

ニッケル、アルミ等の微粉末とガラスフリットの微粉末
を混合し有機質粘結剤を添加してペースト状にして調製
し、スクリーンパターンに応じて印刷する。本実施の試
作には空気中の加熱焼成に安定なものとして酸化ルテニ
ウムと銀を用いており。
A paste is prepared by mixing fine powders of nickel, aluminum, etc. and fine powders of glass frit, and adding an organic binder, and then printing according to a screen pattern. Ruthenium oxide and silver are used in this prototype as they are stable when heated and fired in air.

バインダーであるガラスフリットは5so ’C前後で
溶融するものを使用しである。ペーストを印刷後600
〜650’Cで10分間の焼成を行い厚膜抵抗体2とし
た。さらに感電防止のためにカバーコート3として低融
点ガラスフリットのペーストをコートし、5oO〜55
o′Cで焼成した。耐熱ガラス基盤1に非結晶性耐熱ガ
ラスを使用した場合は厚膜抵抗 P 体2との熱膨張差が比較的少ないが、結晶性耐熱ガラス
とでは熱膨張差が大きくなり、そのために大きな残留応
力として残る。その結果として層間剥離が起こりやすく
なるためにその防止に中間ガラス層4を設けたこの中間
ガラス層4には耐熱ガラス基盤1よりも熱膨張が大きく
厚膜抵抗体2よりも小さいホウケイ酸アルミ系のガラス
を10μ程度用い、各層の熱膨張差の緩和を行い層間剥
離を防止している。
The glass frit used as the binder melts at around 5so'C. 600 after printing paste
Thick film resistor 2 was obtained by firing at ~650'C for 10 minutes. Furthermore, in order to prevent electric shock, a low melting point glass frit paste was coated as cover coat 3.
It was fired at o'C. When amorphous heat-resistant glass is used for the heat-resistant glass substrate 1, the difference in thermal expansion with the thick film resistor P body 2 is relatively small, but with crystalline heat-resistant glass, the difference in thermal expansion becomes large, resulting in large residual stress. remains as. As a result, delamination tends to occur, so an intermediate glass layer 4 is provided to prevent this.This intermediate glass layer 4 is made of aluminum borosilicate, which has a thermal expansion larger than that of the heat-resistant glass substrate 1 and smaller than that of the thick film resistor 2. A glass of about 10 μm is used to alleviate the difference in thermal expansion between each layer and prevent delamination.

このようにして試作した面状発熱体をカバーコート3の
耐熱温度である4oQ℃に加熱しておき。
The planar heating element thus prototyped was heated to 4oQ°C, which is the heat-resistant temperature of the cover coat 3.

次に20〜30’Cの水中に浸漬して急冷を数回行った
結果2層間剥離やヘアクラック等の発生はなく。
Next, it was immersed in water at 20 to 30'C and rapidly cooled several times. As a result, no peeling between the two layers or hair cracks occurred.

また抵抗値の異常変化を認めず、良好である。また大形
パネル状の採暖器を試作し、耐熱ガラス基盤1の表面温
度を300〜350’Cに保ち、放射熱量を測定したが
従来のパネル型ヒータよりも多く発生しており、波長分
布でも5〜15μと長波長である遠赤外線の放射量も多
く、採暖器としては優れていることが判った。
In addition, no abnormal change in resistance value was observed, indicating good results. We also prototyped a large panel-shaped heater, maintained the surface temperature of the heat-resistant glass substrate 1 at 300 to 350'C, and measured the amount of radiated heat, and found that it generated more heat than conventional panel-type heaters, and the wavelength distribution also It has been found that it has a large amount of radiation of far infrared rays with a long wavelength of 5 to 15 microns, making it an excellent warming device.

7 P (発明の効果) 以上のように本発明による面状発熱体はかなり大形のパ
ネル状の採暖器として提供出来るものであり、電気絶縁
性や耐電圧も優れている。また従来のパネル形ヒークと
比較した場合は表面温度を300〜3tso’c:と高
い温度を保持できるため、遠赤外線の放射量も多く採暖
効率も良くなる。さらに構造体のパネル板が直接加熱さ
れるため、温度上昇も速いなどの利点がある。
7 P (Effects of the Invention) As described above, the planar heating element according to the present invention can be provided as a fairly large panel-shaped heating device, and has excellent electrical insulation and withstand voltage. In addition, when compared with conventional panel-type heaters, the surface temperature can be maintained at a high temperature of 300 to 3 tso'c:, so the amount of far-infrared rays radiated is large, and the heating efficiency is also improved. Furthermore, since the panel plates of the structure are directly heated, the temperature rises quickly.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る面状発熱体の断面図である。 1・・・耐熱ガラス基盤、2・・・厚膜抵抗体、3・・
・カバーコート、4・・・中間ガラス層。
The drawing is a sectional view of a planar heating element according to the present invention. 1... Heat-resistant glass substrate, 2... Thick film resistor, 3...
- Cover coat, 4... intermediate glass layer.

Claims (2)

【特許請求の範囲】[Claims] (1)セラミックス製電気絶縁基盤の表面に厚膜ペース
トを印刷・焼成して厚膜抵抗体を形成してなる面状発熱
体において、前記電気絶縁基盤に耐熱ガラス基盤(1)
を用いたことを特徴とする面状発熱体。
(1) In a planar heating element formed by printing and firing a thick film paste on the surface of a ceramic electrical insulating base to form a thick film resistor, the electrical insulating base is provided with a heat-resistant glass base (1).
A planar heating element characterized by using.
(2)耐熱ガラス基盤(1)と厚膜抵抗体(2)の間に
熱膨脹係数が10×10^−^7/℃より大きく、70
×10^−^7℃よりも小さい中間ガラス層(4)を設
けたことを特徴とする面状発熱体。
(2) The thermal expansion coefficient between the heat-resistant glass substrate (1) and the thick film resistor (2) is greater than 10 x 10^-^7/℃, and 70
A planar heating element characterized in that an intermediate glass layer (4) whose temperature is smaller than ×10^-^7°C is provided.
JP17164585A 1985-08-03 1985-08-03 Surface heat generating body Pending JPS6231983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17164585A JPS6231983A (en) 1985-08-03 1985-08-03 Surface heat generating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17164585A JPS6231983A (en) 1985-08-03 1985-08-03 Surface heat generating body

Publications (1)

Publication Number Publication Date
JPS6231983A true JPS6231983A (en) 1987-02-10

Family

ID=15927048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17164585A Pending JPS6231983A (en) 1985-08-03 1985-08-03 Surface heat generating body

Country Status (1)

Country Link
JP (1) JPS6231983A (en)

Similar Documents

Publication Publication Date Title
US3478191A (en) Thermal print head
JPS6344792A (en) Electric parts and manufacture of the same
US20180317283A1 (en) Thick film element with high heat conductivity on two sides thereof
JPS6325465B2 (en)
JPS6231983A (en) Surface heat generating body
JPH0745357A (en) Ceramic heater
CN101563657B (en) Fixing heater and method for manufacturing the same
JP2961466B2 (en) heater
JPS6217976A (en) Far infrared radiating body
JP3072303B2 (en) heater
KR200360205Y1 (en) Ceramic heater
JP2001319761A (en) Far infrared radiation heater substrate
JPS5979988A (en) Panel heater
KR950009661Y1 (en) Infrared rays seramic eouission
JPS60112283A (en) Heater
JPS60227387A (en) Panel heater
JPS6259421B2 (en)
JPS59201384A (en) Panel heater
JPS62110290A (en) Surface heating unit
JPH0682559B2 (en) Surface heater manufacturing method
JPS6239594Y2 (en)
JPS62143386A (en) Panel heater
JPH0232757B2 (en)
KR20050092275A (en) Ceramic heater and manufacturing method therefor
JPS648911B2 (en)