JPS6231877B2 - - Google Patents

Info

Publication number
JPS6231877B2
JPS6231877B2 JP10371280A JP10371280A JPS6231877B2 JP S6231877 B2 JPS6231877 B2 JP S6231877B2 JP 10371280 A JP10371280 A JP 10371280A JP 10371280 A JP10371280 A JP 10371280A JP S6231877 B2 JPS6231877 B2 JP S6231877B2
Authority
JP
Japan
Prior art keywords
diaphragm
fiber
electroacoustic transducer
core material
foamed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10371280A
Other languages
Japanese (ja)
Other versions
JPS5730496A (en
Inventor
Akira Nakamura
Takao Nakatani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Gakki Co Ltd
Original Assignee
Nippon Gakki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Gakki Co Ltd filed Critical Nippon Gakki Co Ltd
Priority to JP10371280A priority Critical patent/JPS5730496A/en
Priority to US06/283,367 priority patent/US4410768A/en
Publication of JPS5730496A publication Critical patent/JPS5730496A/en
Publication of JPS6231877B2 publication Critical patent/JPS6231877B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/04Construction, mounting, or centering of coil
    • H04R9/046Construction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/06Plane diaphragms comprising a plurality of sections or layers
    • H04R7/10Plane diaphragms comprising a plurality of sections or layers comprising superposed layers in contact
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/12Non-planar diaphragms or cones
    • H04R7/122Non-planar diaphragms or cones comprising a plurality of sections or layers
    • H04R7/125Non-planar diaphragms or cones comprising a plurality of sections or layers comprising a plurality of superposed layers in contact

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Laminated Bodies (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はスピーカやマイクロホン等の電気音
響変換器に用いられる振動板に関する。 一般に、スピーカ等に用いられる振動板の材質
としては、主として良好な周波数特性が得られる
ように、軽量で且つ大きな比弾性率E/ρ、曲げ
剛性E・I(但し:Eはヤング率、ρは密度、I
は断面2次モーメント)および内部損失tanδを
備えていることが要求される。すなわち、比弾性
率E/ρが大きい程共振周波数が高くなつてピス
トン運動領域が拡大するため、スピーカの周波数
帯域を広くし、また曲げ剛性E・Iは大きい程歪
を低減し、内部損失tanδが大きい程振動板の分
割共振のQ値が減少して特性の平坦化(再生音に
色付けが無い)を計ることができる。 そのため、材料の選択が大きな課題とされるわ
けであるが、従来は、紙のほかヤング率の大きい
軽金属、例えばアルミニユーム(Al)、ホウ素
(B)、ベリリウム(Be)、マグネシウム(Mg)、チ
タン(Ti)あるいはアルミナ(Al2O3)等のセラ
ミツクスからなる箔膜が用いられていた。 しかし、前記紙にあつては比弾性率E/ρが小
さいという大きな欠点を有している。 これに対して軽金属は比較的大きなE/ρを有
するものの、内部損失tanδがいずれも0.01以下
で非常に小さく、このため振動板全体の内部損失
が小となり、周波数特性においてピーク・デイツ
プが生じ良好な周波数特性を得ることができず、
しかも音質的に色付けが生じるという欠点があつ
た。一方、セラミツクスはE/ρが大きく、且つ
安価であるという大きな特徴を有している反面、
脆いため加工性、取扱いに問題がある。このよう
に、いずれの材料を用いても一長一短があり、未
だ満足のいく振動板を得ることができなかつた。 この発明は上記事情に鑑みてなされたもので、
振動板全体の比弾性率および内部損失を向上さ
せ、再生音に色付けが無い良好な周波数特性を得
ることができるようにした電気音響変換器用振動
板を提供するものであり、その特徴とするところ
は、コア材と、このコア材の少なくとも一面に被
着されるスキン材を、強化用繊維と、互いに独立
した非連続の気泡を有する独立発泡樹脂マトリツ
クスとで構成される複合材で形成したことにあ
る。 以下、この発明を図面に示す実施例に基ずいて
詳細に説明する。 第1図はこの発明に係る振動板を備えたスピー
カの一実施例を示す縦断面である。同図におい
て、スピーカ1は、ポールピース2、マグネツト
3およびトツプヨーク4とからなる磁気回路組立
体と、振動板6、ボイスコイルボビン7、ボイス
コイル8等からなる振動系組立体と、フレーム5
とで構成されている。前記ポールピース2は一端
部外周縁に一体に設けられた環状のボトムヨーク
9を備え、このボトムヨーク9上に前記マグネツ
ト3およびトツプヨーク4が同軸状に順次積層配
置され、且つ接着剤によつて一体的に結合されて
いる。 前記振動板6は後述する素材によつてハニカム
構造体を形成し、その周縁部がエツジ10を介し
てフレーム5の上側開口端縁に固定されている。
なお、11はガスケツトである。一方、ボイスコ
イルボビン7は一端が振動板6の裏面に接着さ
れ、他端がポールピース2とトツプヨーク4との
間に形成された磁気空隙12に挿入され、この他
端部外周面にはボイスコイル8が巻回されてい
る。したがつて、ボイスコイル8に信号電流を流
すと、ボイスコイルボビン7は駆動されて振動板
6を振動させる。 上記実施例において振動板6は、蜂の巣状の
室、すなわち多数の小さな六角形の室(セル)が
形成されたアルミニユーム箔からなるハニカムコ
ア(コア材)13と、このハニカムコア13の表
裏面に夫々図示しない接着剤(接着フイルム等)
を介して接着されたスキン材14とでハニカム構
造体を形成しており、前記スキン材14としては
第2図に示すように、強化用繊維16に対して、
互いに独立した非連続の気泡を有する独立発泡樹
脂15をマトリツクスとして付与させた繊維強化
プラスチツク(FRP)からなる複合材が用いら
れる。なお、ここでマトリツクスとは、強化用繊
維間を結合する母材のことをいう。 発泡樹脂はエポキシ樹脂、不飽和ポリエステル
樹脂、フエノール樹脂、ポリイミド樹脂などの熱
硬化性樹脂や、ポリアミド樹脂、ポリエスチレン
樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、
ポリ塩化ビニル樹脂、アクリルニトリル、ブタジ
エン・スチレン樹脂などの熱可塑性樹脂が用いら
れる。そして、これらの樹脂をスキン材14の成
形時に発泡剤を用いて発泡させ、互いに独立した
非連続の気泡を有する独立発泡樹脂15とする。
例えば、エポキシ樹脂には発泡剤としてアゾジカ
ルボンアミド、ジニトロリベンタメチレンテトラ
ミンが適している。 一方、独立発泡樹脂15の強化用繊維16は炭
素繊維、ガラス繊維、シリコンカーバイト繊維、
ボロン繊維、グラフアイト繊維、有機高弾性繊維
(例えば芳香族ポリアミド繊維)などの高強度、
高弾性繊維が用いられ、なかでも炭素繊維が好ま
しく用いられる。そして、これらの繊維は通常数
ミクロンから十数ミクロンの直径を有するが、か
ならずしも織布に限らず不織布であつてもよい。 次に、この発明によるスキン材と従来のスキン
材の物性を表にして示す。
The present invention relates to a diaphragm used in electroacoustic transducers such as speakers and microphones. In general, the material of the diaphragm used for speakers etc. is lightweight, has a large specific modulus of elasticity E/ρ, and bending rigidity E/I (where E is Young's modulus, ρ is the density, I
(second moment of area) and internal loss tanδ. In other words, the larger the specific elastic modulus E/ρ, the higher the resonance frequency and the larger the piston motion range, which widens the frequency band of the speaker.The larger the bending stiffness E/I, the lower the distortion and the internal loss tanδ. The larger the value, the lower the Q value of the divided resonance of the diaphragm, which makes it possible to flatten the characteristics (no coloration in the reproduced sound). Therefore, the selection of materials is a major issue, but conventionally, in addition to paper, light metals with high Young's modulus, such as aluminum (Al) and boron, have been used.
Foil films made of ceramics such as (B), beryllium (Be), magnesium (Mg), titanium (Ti), or alumina (Al 2 O 3 ) have been used. However, the paper has a major drawback in that the specific elastic modulus E/ρ is small. On the other hand, although light metals have a relatively large E/ρ, their internal loss tan δ is very small, less than 0.01. Therefore, the internal loss of the entire diaphragm is small, resulting in a peak and dip in the frequency response, which is good. It is not possible to obtain suitable frequency characteristics,
Moreover, it had the disadvantage of causing coloration in the sound quality. On the other hand, although ceramics have the major characteristics of having a large E/ρ and being inexpensive,
Because it is brittle, there are problems with workability and handling. Thus, no matter which material is used, there are advantages and disadvantages, and it has not yet been possible to obtain a satisfactory diaphragm. This invention was made in view of the above circumstances,
The present invention provides a diaphragm for an electroacoustic transducer that improves the specific elastic modulus and internal loss of the entire diaphragm and makes it possible to obtain good frequency characteristics without coloring the reproduced sound. The core material and the skin material attached to at least one surface of the core material are formed of a composite material composed of reinforcing fibers and a closed foam resin matrix having mutually independent and discontinuous cells. It is in. Hereinafter, the present invention will be explained in detail based on embodiments shown in the drawings. FIG. 1 is a longitudinal section showing an embodiment of a speaker equipped with a diaphragm according to the present invention. In the figure, a speaker 1 includes a magnetic circuit assembly consisting of a pole piece 2, a magnet 3, and a top yoke 4, a vibration system assembly consisting of a diaphragm 6, a voice coil bobbin 7, a voice coil 8, etc., and a frame 5.
It is made up of. The pole piece 2 is provided with an annular bottom yoke 9 integrally provided on the outer periphery of one end, and the magnet 3 and top yoke 4 are sequentially stacked coaxially on the bottom yoke 9, and are bonded with adhesive. are integrally connected. The diaphragm 6 has a honeycomb structure made of a material to be described later, and its peripheral portion is fixed to the upper opening edge of the frame 5 via an edge 10.
Note that 11 is a gasket. On the other hand, the voice coil bobbin 7 has one end glued to the back surface of the diaphragm 6, the other end inserted into the magnetic gap 12 formed between the pole piece 2 and the top yoke 4, and the voice coil bobbin 7 on the outer peripheral surface of the other end. 8 is wound. Therefore, when a signal current is applied to the voice coil 8, the voice coil bobbin 7 is driven to vibrate the diaphragm 6. In the above embodiment, the diaphragm 6 includes a honeycomb core (core material) 13 made of aluminum foil in which honeycomb-shaped chambers, that is, many small hexagonal chambers (cells) are formed, and a honeycomb core (core material) 13 made of aluminum foil, and Adhesives not shown (adhesive film, etc.)
A honeycomb structure is formed by bonding the skin material 14 through the reinforcing fibers 16, as shown in FIG.
A composite material made of fiber reinforced plastic (FRP) to which a closed foam resin 15 having mutually independent and discontinuous cells is provided as a matrix is used. Note that the matrix here refers to a base material that bonds reinforcing fibers. Foamed resins include thermosetting resins such as epoxy resins, unsaturated polyester resins, phenolic resins, and polyimide resins, as well as polyamide resins, polyester resins, polypropylene resins, polystyrene resins,
Thermoplastic resins such as polyvinyl chloride resin, acrylonitrile, butadiene/styrene resin are used. Then, when molding the skin material 14, these resins are foamed using a foaming agent to form a closed foam resin 15 having mutually independent and discontinuous cells.
For example, azodicarbonamide and dinitrolibentamethylenetetramine are suitable as blowing agents for epoxy resins. On the other hand, the reinforcing fibers 16 of the closed foam resin 15 include carbon fiber, glass fiber, silicon carbide fiber,
High strength materials such as boron fibers, graphite fibers, organic high modulus fibers (e.g. aromatic polyamide fibers),
High modulus fibers are used, and carbon fibers are particularly preferred. These fibers usually have a diameter of several microns to more than ten microns, but are not necessarily limited to woven fabrics and may be non-woven fabrics. Next, the physical properties of the skin material according to the present invention and the conventional skin material are shown in a table.

【表】【table】

【表】 但し、発泡炭素繊維(発泡CFRP)とは、強化
用炭素繊維に前述の発泡樹脂を含浸させ、これを
発泡剤を用いて発泡して成形したものである。 第3図は発泡CFRPの繊維体積含有率Vfおよび
マトリツクス樹脂体積比率Vmと曲げヤング率E
との関係を示したもので、図中●印はE≧6(×
1013dyn/cm2)の分布を、○印は5(×1013dyn/
cm2)≦E<6(×1013dyn/cm2)の分布を、そして
○×印はE<5(×1013dyn/cm2)の分布状態を示
す。また、第4図は発泡CFRPの繊維体積含有率
Vfと曲げヤング率Eの関係を示したものであ
る。 上記表からも明らかなように、スキン材14を
発泡炭素繊維(発泡CFRP)等の複合材で形成す
ると、アルミニユーム(Al)に比べて密度ρお
よびヤング率Eが幾分低下するものの、比弾性率
E/ρは2.5倍程度大きいので、振動板として良
好な再生周波帯域を得ることができる。また、こ
の複合材は内部損失tanδが大きいので、振動板
6の分割振動のQ値が減少し、周波数特性におい
てピーク・デイツプの小さい周波数特性を得るこ
とができる。それ故、周波数特性は平坦化し、再
生音に色付けが無くなる。しかも、構造が簡単で
安価に製作することができ、またコア材、スキン
材各個に材質を選択することもでき、設計上の自
曲度も大きく、振動板として好適である。また、
ハニカム構造体からなる振動板6は軽くて曲げ剛
性が強く、振動時においてそれ自体が変形を起さ
ないという大きな利点を有している。 第5図はこの発明の他の実施例を示す縦断面図
である。この実施例は発泡スチロール等の発泡樹
脂でコア材13′を形成し、このコア材13′の表
示面に前述した素材からなるスキン材14を夫々
接着して振動板6′をサンドイツチ構造にした点
が上記実施例と異なり、他は、全て同一に形成さ
れているため同一構成部材に対しては同一符号を
以つて示しその説明を省略する。 以上説明したようにこの発明に係る電気音響変
換器用振動板によれば、ハニカムコアもしくは発
泡樹脂からなるコア材の少なくとも一面に被着さ
れるスキン材を、強化用繊維と、互いに独立した
非連続の気泡を有する独立発泡樹脂マトリツクス
とで構成される複合材で形成したので、振動板自
体の比弾性率および内部損失を向上させることが
できる。そのため、周波数帯域が拡大し、しかも
再生音に色付けが無い良好な周波数特性を得るこ
とができその効果は非常に大であり、また構造が
簡単で安価に製作することができ、材質の選択自
由度も大きいなど種々の効果を有する。
[Table] However, foamed carbon fiber (foamed CFRP) is made by impregnating reinforcing carbon fiber with the above-mentioned foamed resin, and foaming and molding this using a foaming agent. Figure 3 shows the fiber volume content Vf, matrix resin volume ratio Vm, and bending Young's modulus E of foamed CFRP.
The symbol ● in the figure indicates E≧6(×
The distribution of 10 13 dyn/cm 2 ) is 5 (×10 13 dyn/cm 2 ).
cm 2 )≦E<6 (×10 13 dyn/cm 2 ), and the ○× marks indicate the distribution state of E<5 (×10 13 dyn/cm 2 ). In addition, Figure 4 shows the fiber volume content of foamed CFRP.
This figure shows the relationship between Vf and Young's modulus of bending E. As is clear from the above table, when the skin material 14 is made of a composite material such as foamed carbon fiber (foamed CFRP), although the density ρ and Young's modulus E are somewhat lower than that of aluminum (Al), the specific elasticity Since the ratio E/ρ is about 2.5 times larger, a good reproduction frequency band can be obtained as a diaphragm. Further, since this composite material has a large internal loss tan δ, the Q value of the divided vibration of the diaphragm 6 is reduced, and a frequency characteristic with a small peak and dip can be obtained. Therefore, the frequency characteristics are flattened, and the reproduced sound is no longer colored. Moreover, the structure is simple and can be manufactured at low cost, the materials can be selected for the core material and the skin material, and the design has a large degree of bending, making it suitable as a diaphragm. Also,
The diaphragm 6 made of a honeycomb structure is light and has strong bending rigidity, and has the great advantage that it does not deform itself during vibration. FIG. 5 is a longitudinal sectional view showing another embodiment of the invention. In this embodiment, a core material 13' is formed of a foamed resin such as styrene foam, and skin materials 14 made of the above-mentioned material are adhered to the display surface of this core material 13', so that the diaphragm 6' has a sandwich structure. This embodiment is different from the above-mentioned embodiment, and all other components are the same, so the same reference numerals are used to indicate the same constituent members and the explanation thereof will be omitted. As explained above, according to the diaphragm for an electroacoustic transducer according to the present invention, the skin material attached to at least one surface of the core material made of a honeycomb core or a foamed resin is combined with reinforcing fibers in a discontinuous manner independent of each other. Since the diaphragm is made of a composite material composed of a closed foam resin matrix having cells of 1 to 1, the specific modulus of elasticity and internal loss of the diaphragm itself can be improved. As a result, the frequency band is expanded, and the reproduced sound has good frequency characteristics with no coloration.The effect is very large.In addition, the structure is simple and can be manufactured at low cost, and the material can be freely selected. It has various effects such as high power.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る電気音響変換器用振動
板を用いたスピーカの一実施例を示す縦断面図、
第2図はスキン材の要部拡大斜視図、第3図は発
泡CFRPの繊維体積含有率Vfおよびマトリツクス
樹脂体積比率Vmと曲げヤング率Eの関係を示す
図、第4図は発泡CFRPの繊維体積含有率Vfと曲
げヤング率Eの関係を示す図、第5図はこの発明
の他の実施例を示すスピーカの縦断面図である。 6,6′……振動板、13……ハニカムコア
(コア材)、13′……コア材(発泡樹脂)、14…
…スキン材、15……独立発泡樹脂、16……強
化用繊維。
FIG. 1 is a longitudinal sectional view showing an embodiment of a speaker using a diaphragm for an electroacoustic transducer according to the present invention;
Figure 2 is an enlarged perspective view of the main parts of the skin material, Figure 3 is a diagram showing the relationship between the fiber volume content Vf of foamed CFRP, the matrix resin volume ratio Vm, and the bending Young's modulus E, and Figure 4 is the fiber of foamed CFRP. FIG. 5, which is a diagram showing the relationship between the volume content Vf and the bending Young's modulus E, is a longitudinal sectional view of a speaker showing another embodiment of the present invention. 6, 6'... Vibration plate, 13... Honeycomb core (core material), 13'... Core material (foamed resin), 14...
...Skin material, 15...Closed foam resin, 16...Reinforcing fiber.

Claims (1)

【特許請求の範囲】 1 コア材と、このコア材の少なくとも一面に被
着されたスキン材とからなる電気音響変換器用振
動板において、前記スキン材が、強化用繊維と、
互いに独立した非連続の気泡を有する独立発泡樹
脂マトリツクスとで構成された複合材であること
を特徴とする電気音響変換器用振動板。 2 前記強化用繊維が、炭素繊維、ガラス繊維、
グラフアイト繊維、シリコンカーバイト繊維、ボ
ロン繊維、有機高弾性繊維のうちのいずれか1つ
であることを特徴とする特許請求の範囲第1項記
載の電気音響変換器用振動板。 3 前記コア材が、ハニカムコアであることを特
徴とする特許請求の範囲第1項記載の電気音響変
換器用振動板。 4 前記コア材が、互いに独立した非連続の気泡
あるいは連続した気泡を有する発泡樹脂であるこ
とを特徴とする特許請求の範囲第1項記載の電気
音響変換器用振動板。
[Scope of Claims] 1. A diaphragm for an electroacoustic transducer comprising a core material and a skin material coated on at least one surface of the core material, wherein the skin material comprises reinforcing fibers,
A diaphragm for an electroacoustic transducer, characterized in that it is a composite material composed of a closed foam resin matrix having mutually independent and discontinuous cells. 2 The reinforcing fiber is carbon fiber, glass fiber,
The diaphragm for an electroacoustic transducer according to claim 1, wherein the diaphragm is made of any one of graphite fiber, silicon carbide fiber, boron fiber, and organic high modulus fiber. 3. The diaphragm for an electroacoustic transducer according to claim 1, wherein the core material is a honeycomb core. 4. The diaphragm for an electroacoustic transducer according to claim 1, wherein the core material is a foamed resin having mutually independent discontinuous cells or continuous cells.
JP10371280A 1980-07-23 1980-07-30 Diaphragm for electroacoustic transducer Granted JPS5730496A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10371280A JPS5730496A (en) 1980-07-30 1980-07-30 Diaphragm for electroacoustic transducer
US06/283,367 US4410768A (en) 1980-07-23 1981-07-15 Electro-acoustic transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10371280A JPS5730496A (en) 1980-07-30 1980-07-30 Diaphragm for electroacoustic transducer

Publications (2)

Publication Number Publication Date
JPS5730496A JPS5730496A (en) 1982-02-18
JPS6231877B2 true JPS6231877B2 (en) 1987-07-10

Family

ID=14361325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10371280A Granted JPS5730496A (en) 1980-07-23 1980-07-30 Diaphragm for electroacoustic transducer

Country Status (1)

Country Link
JP (1) JPS5730496A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5701359A (en) * 1995-04-06 1997-12-23 Precision Power Flat-panel speaker
US6097829A (en) * 1995-04-06 2000-08-01 Precision Power, Inc. Fiber-honeycomb-fiber sandwich speaker diaphragm and method
KR100744843B1 (en) * 2005-10-14 2007-08-06 (주)케이에이치 케미컬 Acoustic Diaphragm And Speaker Having The Same
KR100767260B1 (en) * 2005-10-31 2007-10-17 (주)케이에이치 케미컬 Acoustic Diaphragm And Speaker Having The Same
CN101864642B (en) * 2010-04-29 2011-08-10 惠州市海韵电子有限公司 Green glass fiber and preparation method thereof

Also Published As

Publication number Publication date
JPS5730496A (en) 1982-02-18

Similar Documents

Publication Publication Date Title
US4410768A (en) Electro-acoustic transducer
US4291205A (en) Laminated loudspeaker diaphragm with honeycomb core and damping layers
US6097829A (en) Fiber-honeycomb-fiber sandwich speaker diaphragm and method
JP3542136B2 (en) Inertial vibration transducer
US5701359A (en) Flat-panel speaker
US6411723B1 (en) Loudspeakers
EP1513369B1 (en) Speaker diaphragm and speaker using the diaphragm
JPH11512252A (en) Vibration transducer
SK25798A3 (en) Loudspeakers comprising panel-form acoustic radiating elements
SK26098A3 (en) A portable compact disc player
JPH11512257A (en) Panel loudspeaker
JPS6133434B2 (en)
US4315557A (en) Diaphragm for electro-acoustic transducer
KR19990037667A (en) Vibration transducer
US4552243A (en) Diaphragm material for acoustical transducer
SK25898A3 (en) Visual display means incorporating loudspeakers
JPH11512248A (en) Greeting cards
CZ58198A3 (en) Musical instrument with built-in loudspeakers
CZ58298A3 (en) Loudspeakers provided with panel-like acoustic radiating elements
JPH11512250A (en) package
CN110677789A (en) Composite vibration plate and loudspeaker using same
JPS6231877B2 (en)
JPS607440B2 (en) Diaphragm for electroacoustic transducer
JPS599512Y2 (en) Voice coil bobbin for electroacoustic transducer
JPS5858880B2 (en) Diaphragm for electroacoustic transducer