JPS6231817A - Microscope objective lens - Google Patents

Microscope objective lens

Info

Publication number
JPS6231817A
JPS6231817A JP16972785A JP16972785A JPS6231817A JP S6231817 A JPS6231817 A JP S6231817A JP 16972785 A JP16972785 A JP 16972785A JP 16972785 A JP16972785 A JP 16972785A JP S6231817 A JPS6231817 A JP S6231817A
Authority
JP
Japan
Prior art keywords
lens
aberration
dispersion
group
corrected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16972785A
Other languages
Japanese (ja)
Other versions
JP2628629B2 (en
Inventor
Katsuhiro Takada
勝啓 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP60169727A priority Critical patent/JP2628629B2/en
Priority to US06/890,738 priority patent/US4784478A/en
Priority to DE19863626164 priority patent/DE3626164A1/en
Publication of JPS6231817A publication Critical patent/JPS6231817A/en
Application granted granted Critical
Publication of JP2628629B2 publication Critical patent/JP2628629B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To correct not only the aberration of the basic wavelength but also the color aberration with a simple constitution by making the second lens of three group lens constitution into the refraction factor distributing type lens in which the dispersion of the periphery are larger than that of the center of the lens. CONSTITUTION:In the constitution of the first and second refraction factor distributing type lenses and the third lens, the magnification is secured by the strong positive refraction force of the first lens and the image surface curving is corrected at strong curvature surface. The color aberration on the negative axis generated at the first lens is corrected by the second lens in which the dispersion of the periphery are larger than that of the center of the lens, and at the position where the beam height of the aperture beam to image-form the image point on the axis is the highest, the second lens is positioned. Consequently, with a very simple constitution, not only the aberration of the basic wavelength but also the color aberration are corrected sufficiently, and the lens system of the high performance can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は顕微鏡対物レンズで、レンズ系中に少なくとも
一つの要素として光軸から半径方向の距離にしたがって
屈折率が変化する屈折率分布型レンズを用いた顕微鏡対
物レンズに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a microscope objective lens, which includes, as at least one element in the lens system, a gradient index lens whose refractive index changes according to the radial distance from the optical axis. The present invention relates to a microscope objective lens using a microscope objective lens.

〔従来の技術〕[Conventional technology]

顕微鏡対物レンズに対する要請として諸収差が良好に補
正されていることと共に、高い解像力を得るために開口
数(NA)が大きいことが望まれる。
As requirements for a microscope objective lens, it is desired that various aberrations be well corrected and that the numerical aperture (NA) be large in order to obtain high resolution.

また標本との衝突をさけるためなどから作動距離(WD
)が大であることが望ましい。一方、種々の対物レンズ
を交換して使用する必要からレンズ系の長さに対する制
約や像面までの距離を一定に保つなどの制約がある。更
に通常の顕微鏡光学系においては、色収差が十分良好に
補正されていないと、色のにじみが出て像がみにくくな
ってしまう。
In addition, in order to avoid collision with the specimen, the working distance (WD)
) is preferably large. On the other hand, there are constraints on the length of the lens system due to the need to replace and use various objective lenses, and constraints on keeping the distance to the image plane constant. Furthermore, in a normal microscope optical system, if chromatic aberration is not sufficiently corrected, color bleeding will occur and the image will be difficult to see.

これらすべての条件を満足せしめることは、レンズ系が
拡大系であることも加わって非常に困難なことである。
It is extremely difficult to satisfy all of these conditions, in addition to the fact that the lens system is a magnifying system.

従来は以上のような困難性を克服して上記諸要件を満足
する顕微鏡対物レンズを構成するために、対物レンズは
レンズ枚数の極めて多いものとならざるを得ず、更に借
方等の異常分散性の光学材料を使用したり、多数の接合
レンズを用いたりしなければならなかった。
Conventionally, in order to overcome the above-mentioned difficulties and construct a microscope objective lens that satisfies the various requirements mentioned above, the objective lens had to have an extremely large number of lenses, and also had anomalous dispersion such as debit. optical materials and a large number of cemented lenses.

ところで一般に光学系を構成する場合、多数のレンズを
組合わせることによって行なわれるが、収差補正能力を
高めるために球面レンズのみでなめ く非ヨ七ンズや屈折率分布型レンズが用い得ることは公
知である。更に色収差の補正に関して、レンズ中心の波
長に対する屈折率分布を制御することによって色収差を
補正し得ることも知られている○ 又顕微鏡の光学系に屈折率分布型レンズを用いた報告と
して特公昭47−28057号公報や特公昭57−39
405号公報がある。
By the way, when configuring an optical system, it is generally done by combining a large number of lenses, but it is well known that non-yellow lenses made of only spherical lenses or gradient index lenses can be used to improve the aberration correction ability. be. Furthermore, regarding the correction of chromatic aberration, it is known that chromatic aberration can be corrected by controlling the refractive index distribution with respect to the wavelength at the center of the lens. -28057 Publication and Special Publication No. 57-39
There is a publication No. 405.

これら公報のうち前者は、収差補正に関しては何ら記載
されておらず又後者は屈折率分布型レンズを用いての軸
外収差の補正に関して記載されているが、色収差の補正
に関しては言及されてぃない0 〔発明が解決しようとする問題点〕 本発明は、光軸から半径方向の距離に従って屈折率が変
化する屈折率分布型レンズを用いて基本波長の収差のみ
ならず色収差をも補正した顕微鏡の対物レンズを提供す
るものである。
The former of these publications does not mention anything about aberration correction, and the latter describes correction of off-axis aberrations using a gradient index lens, but does not mention correction of chromatic aberrations. No 0 [Problems to be solved by the invention] The present invention provides a microscope that corrects not only fundamental wavelength aberration but also chromatic aberration using a gradient index lens whose refractive index changes according to the radial distance from the optical axis. objective lens.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記問題点を解決するためにレンズ系中に光
軸から半径方向の距離にしたがって屈折率が変化する屈
折率分布型レンズを少なくとも一つ配置し、しかもこの
屈折率分布型レンズがレンズ中心における分散よりもレ
ンズ周辺の分散が犬であるものにした顕微鏡対物レンズ
である。
In order to solve the above problems, the present invention disposes at least one gradient index lens whose refractive index changes according to the distance in the radial direction from the optical axis in a lens system. This is a microscope objective lens in which the dispersion around the lens is higher than the dispersion at the center of the lens.

本発明の顕微鏡対物レンズは、物体側より頭に正の屈折
力を有する第1群レンズと、軸上像点を結像する開口光
線の光線高が最も高くなる高さの少な(とも半分の高さ
を有する範囲に位置せしめた第2群レンズと、第3群レ
ンズより構成され、そのうち少なくとも第2群レンズが
前記のような光軸から半径方向の距離に従って屈折率が
勾配を持ち更にレンズ中心における分散よりもレンズ周
辺の分散が犬であるような屈折率分布型レンズによって
構成されるレンズ系である。
The microscope objective lens of the present invention has a first group lens having a positive refractive power on the head side from the object side, and a small height (both half of It is composed of a second group lens and a third group lens, which are positioned in a range having a height, and at least the second group lens has a refractive index gradient according to the distance in the radial direction from the optical axis as described above. This is a lens system composed of a gradient index lens in which the dispersion at the periphery of the lens is smaller than the dispersion at the center.

通常、顕微鏡対物レンズは、球面収差、コマ収差、像面
わん曲、非点収差等が十分良好に補正されていなければ
ならない。これら収差のうち、特に像面わん曲と非点収
差を補正することによって他の収差の制約が厳しくなり
、これらすべての収差を良好に補正することが難しい。
Normally, a microscope objective lens must be sufficiently corrected for spherical aberration, coma aberration, field curvature, astigmatism, and the like. Among these aberrations, correction of field curvature and astigmatism in particular places stricter restrictions on other aberrations, making it difficult to satisfactorily correct all of these aberrations.

更に色収差まで補正しようとすると、使用するガラスの
屈折率2分散等を当初からある程度考慮して設計を進め
なければならず、そのために収差補正上大きな制約があ
る。
Furthermore, in order to correct chromatic aberration, the design must take into account the didispersion of the refractive index of the glass used to some extent from the beginning, and this imposes significant restrictions on aberration correction.

通常色収差の補正は、屈折面の曲率2面間隔。Normally, chromatic aberration is corrected by the distance between two curvatures of the refractive surfaces.

屈折率2分散等を制御することにより行なわれるが、屈
折率分布型レンズを用いる場合は、更に分散分布すなわ
ち各波長毎の屈折率分布を制御することによっても行な
い得る。例えば色収差を考える際の基本となる細土色収
差は、屈折率分布型レンズでは単レンズでありながら曲
率半径と各波長の屈折率分布を制御することによって完
全に補正されることが収差論から導かれている。このよ
うな効果は、均質レンズ系にては期待し得ないものであ
り、屈折率分布型レンズの使用による色収差補正能力の
大きさを示している。
This is done by controlling the refractive index didispersion, etc., but if a gradient index lens is used, it can also be done by further controlling the dispersion distribution, that is, the refractive index distribution for each wavelength. For example, it is derived from aberration theory that Hosochi chromatic aberration, which is the basis when considering chromatic aberration, can be completely corrected by controlling the radius of curvature and the refractive index distribution of each wavelength in a gradient index lens, even though it is a single lens. It's dark. Such an effect cannot be expected with a homogeneous lens system, and shows the great ability to correct chromatic aberration by using a gradient index lens.

ところで顕微鏡対物レンズにおいて屈折率分布型レンズ
を用いて色収差を補正する場合、軸上像点を結像する開
口光線の光線高が最も高くなる位置に配置すれば色収差
の補正にとって有利である。
By the way, when correcting chromatic aberration using a gradient index lens in a microscope objective lens, it is advantageous for correcting chromatic aberration if the axial image point is placed at a position where the ray height of the aperture ray that forms the image is highest.

通常色収差の補正には、軸上の色収差と倍率の色収差の
補正が必要であるが、倍率の色収差は軸外性能に関する
ものである。通常の顕微鏡対物レンズは、軸外主光線が
光軸から大きく離れることなく伝播されるために、屈折
率分布型レンズを用いての倍率の色収差の補正効果は、
細土色収差の補正効果に比べやや低い。そのために倍率
の色収差の補正は他のパラメーターにより行ない、波長
毎の屈折率分布を制御することによって主に細土色収差
を補正すれば効果的に行なうことができる。
Normally, correction of chromatic aberration requires correction of axial chromatic aberration and lateral chromatic aberration, but lateral chromatic aberration relates to off-axis performance. In a normal microscope objective lens, the off-axis principal ray is propagated without departing greatly from the optical axis, so the effect of correcting chromatic aberration of magnification using a gradient index lens is
This is slightly lower than the correction effect for chromatic aberration. For this reason, the chromatic aberration of magnification can be effectively corrected by using other parameters, and by mainly correcting the chromatic aberration by controlling the refractive index distribution for each wavelength.

したがって光線のふるまいを効果的に制御出来る上記位
置に屈折率分布型レンズを配置することが好ましい。し
たがって上記のように本発明では、屈折率分布型レンズ
の前の第1群レンズと、屈折率分布型レンズの第2群レ
ンズと、その後に配置した第3群レンズの3群構成にし
である。
Therefore, it is preferable to arrange the gradient index lens at the above position where the behavior of the light beam can be effectively controlled. Therefore, as described above, the present invention has a three-group structure consisting of the first group lens in front of the gradient index lens, the second group lens of the gradient index lens, and the third group lens arranged after the gradient index lens. .

第1群レンズは倍率の確保のために強い屈折力を持つ必
要があり、また像面わん曲を補正するために強い曲率の
面を有するレンズで構成することが多い。第1群レンズ
をこのような構成で正の屈折力を有するレンズにすると
、この第1群レンズで大きな負の細土色収差が発生する
The first group lens needs to have strong refractive power to ensure magnification, and is often constructed of a lens having a surface with strong curvature to correct field curvature. If the first group lens is configured as such and has a positive refractive power, a large negative chromatic aberration will occur in the first group lens.

この負の細土色収差を補正するためには、第2群レンズ
の屈折率分布型レンズが、レンズ中心の分散よりもレン
ズ周辺の分散が大であるような光軸から半径方向に屈折
率が変化する屈折率分布型レンズを用いて正の細土色収
差を発生させて補正することができる。
In order to correct this negative Hosochromatic aberration, the refractive index of the gradient index lens in the second group lens must be adjusted in the radial direction from the optical axis, where the dispersion around the lens is larger than the dispersion at the center of the lens. Positive chromatic aberration can be generated and corrected using a variable refractive index gradient lens.

逆にレンズ中心の分散よりもレンズ周辺の分散が小であ
れば負の細土色収差が発生し、これらを補正するには第
2群レンズより像側のレンズ群を複雑な構成にしなけれ
ばならなくなり極めて不利である。
Conversely, if the dispersion around the lens is smaller than the dispersion at the center of the lens, negative Hosotchi chromatic aberration will occur, and to correct this, the lens group on the image side of the second lens group must have a complex configuration. This is extremely disadvantageous.

軸上像点を結像する開口光線の光線高が最も高くなる高
さの少なくとも半分の高さを有する範囲に上記のような
屈折率分布型レンズを用いることによっても同等の色収
差補正効果を得ることができる。
The same chromatic aberration correction effect can be obtained by using a gradient index lens as described above in a range having a height at least half of the height where the ray height of the aperture ray that forms the axial image point is the highest. be able to.

更に軸外光線が光軸と交わる位置より像側の位置に屈折
率分布型レンズを用いることによって屈折率分布以外の
パラメーターによって補正を行なっていた倍率の色収差
を容易に補正することが可能になる。
Furthermore, by using a refractive index distribution lens at a position closer to the image than the position where the off-axis ray intersects with the optical axis, it becomes possible to easily correct chromatic aberration of magnification, which was previously corrected by parameters other than the refractive index distribution. .

〔実施例〕〔Example〕

以上詳細に説明した本発明の実施例(第1図に示す構成
)を次に示す。
An embodiment of the present invention (configuration shown in FIG. 1) described in detail above will be described below.

f=l  、  NA=0.46  、  β=20X
WD=0.2265  、f+ =4.895  、 
 Δ=11.32   +r、=  0.4325 dl ” 0.8270  no+ = 1.8340
0  νo+ = 37.16rz=  0.7311 d2=o、o119 rs ” 2.8175 da=o、7471  not=1.72600  ν
02 = 53.54 (11)r、 =−5,037
1 d、=3.2187 rs”  2.3789 ds ” 0.1472  nos = 1.5163
3  νas = 64.14 (*)ra:  3.
2099 第2群レンズ λ(nm)      n、        n258
7.56 −0.6449JX10−’  0.155
29X10−2656.28 −0.67774X10
−1 0.26729X10−’486.13−0.5
6174X10−10.57479X10−2第3群レ
ンズ λ      n、       n2587.56 
  −0.26784   0.20944656.2
8   −0.26756   0.20946486
.13   −0.26793   0.20855た
だしrlp r2 p・・・t reはし/ズ各面の曲
率半径、dB r d2p・・・、daは各レンズの肉
厚および空気間隔、n01 * n02 y n03は
夫々各レンズの屈折率(※印を付した屈折率分布型レン
ズの場合は中心での屈折率)、ν。1 、ν。2.ν0
.は夫々各レンズのアツベ数、fは全系の焦点距離、f
+は第1群レンズの焦点距離、NAは開口数、βは倍率
、WDは作動距離、Δは第2群レンズに使用された屈折
率分布型レンズの中心におけるアツベ数と光軸から0.
5離れた位置におけるアツベ数の差でΔが正ならレンズ
中心の分散よりもレンズ周辺の分散の方が大になる。
f=l, NA=0.46, β=20X
WD=0.2265, f+=4.895,
Δ=11.32 +r, = 0.4325 dl” 0.8270 no+ = 1.8340
0 νo+ = 37.16rz= 0.7311 d2=o, o119 rs ” 2.8175 da=o, 7471 not=1.72600 ν
02 = 53.54 (11) r, = -5,037
1 d, = 3.2187 rs" 2.3789 ds" 0.1472 nos = 1.5163
3 νas = 64.14 (*)ra: 3.
2099 2nd group lens λ (nm) n, n258
7.56 -0.6449JX10-' 0.155
29X10-2656.28 -0.67774X10
-1 0.26729X10-'486.13-0.5
6174X10-10.57479X10-2 3rd group lens λ n, n2587.56
-0.26784 0.20944656.2
8 -0.26756 0.20946486
.. 13 -0.26793 0.20855 However, rlp r2 p...t re is the radius of curvature of each surface, dB r d2p..., da is the thickness and air spacing of each lens, n01 * n02 y n03 is the refractive index of each lens (for gradient index lenses marked with an asterisk, the refractive index at the center), ν. 1, ν. 2. ν0
.. is the Atsube number of each lens, f is the focal length of the entire system, and f
+ is the focal length of the first group lens, NA is the numerical aperture, β is the magnification, WD is the working distance, and Δ is the Atsube number at the center of the gradient index lens used for the second group lens and 0.0 from the optical axis.
If Δ is positive in terms of the difference in Abbe numbers at positions 5 apart, the dispersion around the lens will be larger than the dispersion at the center of the lens.

屈折率分布型レンズでは、主軸から半径方向の距離をp
1波長λとした時各波長の屈折率が次の式で表わされる
分布をする。
For gradient index lenses, the radial distance from the principal axis is p
When one wavelength is λ, the refractive index of each wavelength has a distribution expressed by the following equation.

n(λ)=no(λ)+nt(λ)?2+n2(λ)9
4+・・・ここでno(λ)はレンズ中心での波長λに
対する屈折率、nl(λ)、n=(λ)、・・・は夫々
ψについての2次項、4次項、・・・の波長λに対する
係数である。上記データーではd、C,F線に対する分
布系数を示しである。
n(λ)=no(λ)+nt(λ)? 2+n2(λ)9
4+...Here, no(λ) is the refractive index for the wavelength λ at the center of the lens, nl(λ), n=(λ),... are the quadratic term, quartic term, etc. for ψ, respectively. It is a coefficient for wavelength λ. The above data shows the distribution coefficients for the d, C, and F lines.

この実施例はデーターに示すように第3群も屈折率分布
型レンズである。
In this example, as shown in the data, the third group is also a gradient index lens.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明し又実施例に示したように本発明の顕微
鏡対物ンンズは、極めて簡単な構成でありながら基本波
長の収差のみならず色収差をも充分に補正された非常に
高性能なレンズ系である0
As explained above in detail and shown in the examples, the microscope objective lens of the present invention has an extremely simple structure, but is a very high-performance lens system that sufficiently corrects not only fundamental wavelength aberration but also chromatic aberration. is 0

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の断面図、第2図は上記実施例
の収差曲線図である。
FIG. 1 is a sectional view of an embodiment of the present invention, and FIG. 2 is an aberration curve diagram of the above embodiment.

Claims (2)

【特許請求の範囲】[Claims] (1)物体側より順に正の屈折力を有する第1群レンズ
と、軸上像点を結像する開口光線の光線高が最も高くな
る高さの少なくとも半分の高さを有する範囲に位置せし
められた第2群レンズと、更に像側に位置する第3群レ
ンズとよりなり、前記第2群レンズが光軸から半径方向
の距離にしたがつて屈折率が勾配を持つ屈折率分布型レ
ンズであつてレンズ中心よりもレンズ周辺が分散が大で
あることを特徴とする顕微鏡対物レンズ。
(1) In order from the object side, the first group lens having positive refractive power is positioned in a range having a height at least half of the height at which the ray height of the aperture ray that forms the axial image point is the highest. A gradient index lens consisting of a second group lens located on the image side, and a third group lens located on the image side, where the second group lens has a gradient of refractive index according to the distance in the radial direction from the optical axis. A microscope objective lens characterized in that dispersion is larger at the periphery of the lens than at the center of the lens.
(2)前記屈折率分布型の第2群レンズが軸上像点を結
像する開口光線の光線高が最も高くなる位置に配置され
たことを特徴とする特許請求の範囲(1)の顕微鏡対物
レンズ。
(2) The microscope according to claim (1), wherein the second group lens of the gradient index type is arranged at a position where the ray height of the aperture ray that forms an axial image point is the highest. objective lens.
JP60169727A 1985-08-02 1985-08-02 Microscope objective lens Expired - Fee Related JP2628629B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60169727A JP2628629B2 (en) 1985-08-02 1985-08-02 Microscope objective lens
US06/890,738 US4784478A (en) 1985-08-02 1986-07-30 Microscope objective
DE19863626164 DE3626164A1 (en) 1985-08-02 1986-08-01 MICROSCOPE LENS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60169727A JP2628629B2 (en) 1985-08-02 1985-08-02 Microscope objective lens

Publications (2)

Publication Number Publication Date
JPS6231817A true JPS6231817A (en) 1987-02-10
JP2628629B2 JP2628629B2 (en) 1997-07-09

Family

ID=15891729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60169727A Expired - Fee Related JP2628629B2 (en) 1985-08-02 1985-08-02 Microscope objective lens

Country Status (1)

Country Link
JP (1) JP2628629B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0380211A (en) * 1989-08-24 1991-04-05 Olympus Optical Co Ltd Objective lens for microscope
JPH03189608A (en) * 1989-12-19 1991-08-19 Olympus Optical Co Ltd Microscopic objective lens
US6034825A (en) * 1995-12-04 2000-03-07 Olympus Optical Co., Ltd. Objective lens system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53135661A (en) * 1977-04-28 1978-11-27 Zeiss Stiftung Objective lens of achromatic microscope
JPS56142508A (en) * 1980-04-05 1981-11-06 Nippon Kogaku Kk <Nikon> Objective lens of microscope
JPS57148717A (en) * 1981-03-12 1982-09-14 Nippon Kogaku Kk <Nikon> Objective lens of microscope
JPS59195611A (en) * 1983-04-21 1984-11-06 Mitsubishi Electric Corp Lens system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53135661A (en) * 1977-04-28 1978-11-27 Zeiss Stiftung Objective lens of achromatic microscope
JPS56142508A (en) * 1980-04-05 1981-11-06 Nippon Kogaku Kk <Nikon> Objective lens of microscope
JPS57148717A (en) * 1981-03-12 1982-09-14 Nippon Kogaku Kk <Nikon> Objective lens of microscope
JPS59195611A (en) * 1983-04-21 1984-11-06 Mitsubishi Electric Corp Lens system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0380211A (en) * 1989-08-24 1991-04-05 Olympus Optical Co Ltd Objective lens for microscope
US5059005A (en) * 1989-08-24 1991-10-22 Olympus Optical Co., Ltd. Objective lens system for microscopes
JPH03189608A (en) * 1989-12-19 1991-08-19 Olympus Optical Co Ltd Microscopic objective lens
US5239413A (en) * 1989-12-19 1993-08-24 Olympus Optical Co., Ltd. Objective lens system for microscopes
US6034825A (en) * 1995-12-04 2000-03-07 Olympus Optical Co., Ltd. Objective lens system

Also Published As

Publication number Publication date
JP2628629B2 (en) 1997-07-09

Similar Documents

Publication Publication Date Title
US7227700B2 (en) Wide zoom lens system
JP3009056B2 (en) Eyepiece
JPH10274742A (en) Immersion microscopic objective lens
JP2991524B2 (en) Wide-angle lens
JP4187311B2 (en) Medium telephoto lens
US4139265A (en) Modified gauss type photographic lens
JP4491107B2 (en) Lens for photography
JPH0380211A (en) Objective lens for microscope
US4348085A (en) Inverted telephoto type wide angle lens
JP3401317B2 (en) Loupe
US5729391A (en) Microscope objective lens
JPS6231817A (en) Microscope objective lens
US5815317A (en) Eyepiece with broad visibility
JP4765229B2 (en) Imaging optics
JP3525599B2 (en) Low magnification microscope objective
JPS6231816A (en) Microscope objective lens
US5659422A (en) Eyepiece
JPH1138330A (en) Eyepiece
JPS6146809B2 (en)
JP3541285B2 (en) Eyepiece
JPS61275810A (en) Microscope objective
JPH11160624A (en) Microscope objective lens
JP3414853B2 (en) Microscope objective lens
JPS6228441B2 (en)
JPH04102818A (en) Ocular using graded index lens

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees