JPS623173B2 - - Google Patents

Info

Publication number
JPS623173B2
JPS623173B2 JP7944777A JP7944777A JPS623173B2 JP S623173 B2 JPS623173 B2 JP S623173B2 JP 7944777 A JP7944777 A JP 7944777A JP 7944777 A JP7944777 A JP 7944777A JP S623173 B2 JPS623173 B2 JP S623173B2
Authority
JP
Japan
Prior art keywords
polyester resin
plating
injection molded
parts
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7944777A
Other languages
Japanese (ja)
Other versions
JPS5415977A (en
Inventor
Koichi Sakai
Teruhisa Fukumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP7944777A priority Critical patent/JPS5415977A/en
Publication of JPS5415977A publication Critical patent/JPS5415977A/en
Publication of JPS623173B2 publication Critical patent/JPS623173B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Chemically Coating (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はポリエステル樹脂射出成形品のメツキ
方法に関する。 更にくわしくは、芳香族ポリエステル樹脂の物
理的、化学的性質を損うことなく、単に該樹脂成
形品の表面性を簡単な方法で改質することによつ
てメツキ性が向上されたメツキ方法に関するもの
である。 熱可塑性ポリエステル樹脂、たとえばポリエチ
レンテレフタレート(以下単にPET樹脂とい
う)やポリブチレンテレフタレート(以下単に
PBT樹脂という)は優れた機械的性質、耐熱
性、耐薬品性を有しておりエンジニヤリングプラ
スチツクとして種々の電気部品、機械部品に用い
られているが、更にこれに金属的な外観を賦与し
た成形物の金属メツキ品は従来のABS樹脂やポ
リプロピレン樹脂のメツキ品では利用しえなかつ
た耐熱性や機械的強度を必要とする新規な分野へ
の応用が期待される。 一般にプラスチツクメツキの方法は(1)前処理、
(2)化学エツチング、(3)センシタイジング、(4)アク
テイベーテイング、(5)化学メツキ及び(6)電気メツ
キの各工程からなつており、プラスチツクの種類
により種々の方法が用いられている。たとえば
ABS樹脂では(1)の前処理工程では成形品表面の
油脂類を除去することを目的としており続く(2)の
化学エツチング工程ではクロム酸−硫酸等の酸化
性酸性溶液にて表面粗化を進行せしめ、以下(3)、
(4)、(5)の工程を経て優れた密着性を有するメツキ
完成品を得ることが出来る。 一方、ポリエチレンテレフタレートやポリブチ
レンテレフタレートに代表されるポリエステル樹
脂は酸性液に対しては比較的安定であり、上述の
クロム酸−硫酸混合液による処理を施しても表面
粗化は不充分であり、続くメツキ工程を経ても充
分な密着強度は得られない。一方、エツチング液
としてアルカリ溶液を用いた場合には表面粗化が
進行する。これはポリエステル樹脂表面がアルカ
リにより加水分解をうけ、一部がエツチング液中
に溶解するためと考えられる。しかしながらこの
処理によつて多少メツキ金属被膜との密着性は向
上するものの充分満足できるものでなく、かかる
メツキ性の改良法が業界において渇望されてい
た。 本発明者は、このようなポリエステル樹脂射出
成形品のメツキ方法における難点を改善すべく、
ポリエステル樹脂の物理的化学的性質の改良およ
びエツチング条件について鋭意研究した結果、ポ
リエステル樹脂に充填剤を混合せしめることによ
り極めてメツキに適した性質が発現して容易に表
面粗化ができるようになり、且つ該組成物から成
る射出成形品をアルカリ性溶液で処理するとメツ
キ性が良好であることを見出し本発明に到達した
ものである。 すなわち、本発明は、熱可塑性ポリエステル樹
脂射出成形品をメツキする方法において、該ポリ
エステル樹脂に該ポリエステル樹脂100重量部当
り5〜100重量部の充填剤を含有せしめたポリエ
ステル樹脂組成物から成る射出成形品をアルカリ
性溶液に接触処理せしめ、次いでメツキを行なう
ことを特徴とするポリエステル樹脂射出成形品の
メツキ方法である。 本発明にいう熱可塑性ポリエステル樹脂とは、
酸成分としてテレフタル酸、ナフタレン−2・6
−ジカルボン酸、イソフタル酸のような二塩基性
酸又はそれらのエステル誘導体を用い、グリコー
ル成分としては炭素数2〜6のグリール、例えば
エチレングリコール、プロピレングリコール、ブ
チレングリコールを主として用いるが、その他ネ
オペンチルグリコールを用いて重合されたポリエ
ステル類でもよい。特に好ましいポリエステルと
してポリエチレンテレフタレート、ポリブチレン
テレフタレート、ポリエチレン−2・6−ナフタ
レート、ポリブチレン−2・6−ナフタレート等
の芳香族ポリエステルがあげられる。又これらポ
リエステルの混合物や共重合体であつてもよい。 本発明に用いられる充填剤の代表的なものとし
ては、アスベスト繊維、炭素繊維等の繊維状強化
充填剤やガラスビーズ、石こう、マイカ、クレ
ー、シリカ、けい酸カルシウム、タルク、三酸化
アンチモン、酸化チタン等の粒状或は板状の一般
プラスチツク用の充填剤があげられる。又これら
充填剤を2種以上併用することも可能である。 これら充填剤の添加量は、ポリエステル樹脂成
分100重量部に対し5〜100重量部が望ましい。5
重量部未満ではポリエステル樹脂とメツキ被覆と
の密着性が充分でなく、又100重量部を越えると
製造及び成形が困難となり得られるメツキ完成品
の外観もかなり劣る。 上記充填剤をポリエステル樹脂中に配合する方
法は種々考えられるが、充填剤のポリエステル成
形品中への分散が充分でないと得られたメツキ完
成品の表面外観が劣るため、成形に先立つて出来
るだけ均一に混練しておくことが望ましい。最も
一般的な混練方法としては、押出機を用いて該ポ
リエステル樹脂の溶融温度以上にてポリエステル
と該充填剤を溶融混練する方法である。 上記充填剤以外に該ポリエステル樹脂の他の特
性を改良する目的で異種のポリマー、着色剤、滑
剤、発泡剤、難燃剤、安定剤等をメツキ性改良効
果を損なわない量で添加混入してもよい。 これらの充填剤含有ポリエステルの表面粗化
(エツチング)をするためのアルカリ処理条件と
しては、比較的広範囲の条件の採用が可能である
が、メツキ金属被膜との密着性および得られたメ
ツキ成形物の特性を考慮すると次式が成立する条
件が望ましい。 15000≧C・2(T−20/10)・t≧20 〔但し、式中のC、t及びTは以下の通りであ
る。 C:アルカリ性水溶液の当量濃度 (規定) t:処理時間 (分) T:処理温度 (℃)〕 上記の条件下でアルカリ水溶液にて処理後、プ
ラスチツクに広く用いられているセンシタイジン
グ、アクテイベーテイング、化学メツキ、電気メ
ツキ等の工程を経てメツキ操作は完結する。な
お、上記式におけるC、t及びTは特に限定はな
いが、好ましくは、Cは0.1〜10規定、tは1〜
40分、Tは20〜80℃である。 本発明の組成物から成る射出成形品にアルカリ
性溶液による処理を施すと、射出成形品の最外層
表面はポリエステル樹脂がアルカリにより溶解さ
れるものの、充填材がアルカリ溶液に耐性がある
と、ポリエステル樹脂成分のみが選択的に溶解さ
れて、結果的に射出成形品の表面に充填材が凸部
を形成する形態で残存して表面粗化が図かられる
と推測される。これに対し、充填材がアルカリ溶
液に容易に溶解する場合には充填材が溶出して射
出成形品の表面は凹部を形成する形態で表面粗化
が図かられると推測される。このように充填材が
添加されている組成物より成る射出成形品は、つ
づくメツキ工程における金属との密着の良好な表
面状態が形成されるものと推定される。 また表面粗化は充填材、特にその形状や大きさ
に影響されると推定され、大きな凸部や凹部が形
成されると、メツキ後の成形品の外観(光沢や表
面平滑性)が劣つてくると推測される。従つて、
粒径の著しく大きい(例えば100μm以上)充填
材は避けることが望ましい。 以下実施例をあげて本発明を具体的に説明す
る。 尚、本実施例中で用いる測定項目のうち曲げ強
度、衝撃強度および熱変形温度の測定は各々
ASTM D−790、D−256およびD−648に準じ
て行なつた。ポリエステル樹脂の固有粘度〔η〕
はオルトクロロフエノール溶媒を用い35℃にて測
定した。また「部」は「重量部」である。 実施例 1 120℃にて5時間熱風乾燥した〔η〕=1.02のポ
リエチレンテレフタレート100部に対し、第1表
に示す各種充填材を25部タンブラーにて混合した
後、ベントタイプの65mmφ押出機を用いてシリン
ダー温度270〜280℃にて溶融混合しダイスから出
たスレツドを冷却切断して成形用ペレツトを得
た。このペレツトを用いて5オンスの射出成形機
にてシリンダー温度280℃、射出圧1000Kg/cm2
金型温度140℃、成形サイクル45秒にて試験用成
形品を射出成形した。得られた射出成形品の曲げ
破断強度、熱変形温度は第1表に示した。この射
出成形品を中性洗剤にて洗浄脱脂後5規定の水酸
化ナトリウム水溶液で50℃にて20分間浸漬し、次
いで流水中にて充分洗浄し、以下に示す常法に従
つて電気銅メツキを施した。 (1) センシタイジング 前記表面粗化した成形品を塩化第一スズ20
g、塩酸(38%水溶液)10c.c.、水1000c.c.の混合
液に25℃で3〜5分浸漬 (2) 水 洗 流水中1〜2分行なう。 (3) アクチベーテイング 塩化パラジウム0.5g、塩酸(38%水溶液)
5c.c.、水1000c.c.の混合液に25℃にて2〜5分間
浸漬 (4) 水 洗 流水中1〜2分行なう。 (5) 化学ニツケルメツキ 硫酸ニツケル20g/、次亜りん酸ナトリウ
ム15g/、硫酸アンモニウム50g/、クエ
ン酸ソーダ20g/からなる組成のPH8〜9の
液中40〜50℃にて10分間浸漬 (6) 水 洗 流水中1〜2分 (7) 電気銅メツキ 硫酸銅220g/、硫酸50g/、光沢剤
〔UBAC#1(荏原ユージライト(株)製品)5g/
からなる水溶液中、温度25〜30℃にて3A/
dm2の電流密度で電流を30〜60分間流し、金属
銅膜厚み約40μのメツキ被膜を樹脂成形品に形
成させた。 以上の処理工程を施して得た成形品の樹脂層と
銅膜との密着強度を第1表に示す。なお密着強度
は、剥離速度5cm/分にて巾1cmの密着面を90゜
の方向へはく離した時の強度を表わす。
The present invention relates to a method for plating polyester resin injection molded products. More specifically, it relates to a plating method in which the plating properties are improved by simply modifying the surface properties of the resin molded article without impairing the physical or chemical properties of the aromatic polyester resin. It is something. Thermoplastic polyester resins, such as polyethylene terephthalate (hereinafter simply referred to as PET resin) and polybutylene terephthalate (hereinafter simply referred to as PET resin)
PBT resin (PBT resin) has excellent mechanical properties, heat resistance, and chemical resistance, and is used as an engineering plastic in various electrical and mechanical parts. Metal-plated molded products are expected to be applied to new fields that require heat resistance and mechanical strength that cannot be used with conventional ABS resin or polypropylene resin-plated products. Generally, the methods of plastic plating include (1) pretreatment;
The process consists of (2) chemical etching, (3) sensitizing, (4) activating, (5) chemical plating, and (6) electroplating, and various methods are used depending on the type of plastic. There is. for example
For ABS resin, the purpose of the pretreatment process (1) is to remove oils and fats from the surface of the molded product, and the subsequent chemical etching process (2) roughens the surface using an oxidizing acidic solution such as chromic acid-sulfuric acid. Proceed, below (3),
Through steps (4) and (5), a finished plated product with excellent adhesion can be obtained. On the other hand, polyester resins such as polyethylene terephthalate and polybutylene terephthalate are relatively stable against acidic liquids, and even when treated with the above-mentioned chromic acid-sulfuric acid mixture, surface roughening is insufficient. Even after the subsequent plating step, sufficient adhesion strength cannot be obtained. On the other hand, when an alkaline solution is used as the etching solution, surface roughening progresses. This is thought to be because the surface of the polyester resin is hydrolyzed by the alkali and a portion of it is dissolved in the etching solution. However, although this treatment improves the adhesion to the plating metal film to some extent, it is not completely satisfactory, and there has been a desire in the industry for a method for improving the plating property. In order to improve the difficulties in the plating method for such polyester resin injection molded products, the present inventors
As a result of intensive research on improving the physical and chemical properties of polyester resin and on etching conditions, we have discovered that by mixing fillers with polyester resin, properties that are extremely suitable for plating are developed, and the surface can be easily roughened. The present invention was also achieved by discovering that injection molded articles made of the composition have good plating properties when treated with an alkaline solution. That is, the present invention provides a method for plating a thermoplastic polyester resin injection molded article, in which the injection molding is performed using a polyester resin composition in which the polyester resin contains 5 to 100 parts by weight of a filler per 100 parts by weight of the polyester resin. This is a method for plating polyester resin injection molded products, which is characterized in that the product is brought into contact with an alkaline solution and then plated. The thermoplastic polyester resin referred to in the present invention is
Terephthalic acid, naphthalene-2 and 6 as acid components
- Dibasic acids such as dicarboxylic acids and isophthalic acids or their ester derivatives are used, and as the glycol component, glycols having 2 to 6 carbon atoms, such as ethylene glycol, propylene glycol, butylene glycol, are mainly used, but other neopentyl Polyesters polymerized using glycol may also be used. Particularly preferred polyesters include aromatic polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, and polybutylene-2,6-naphthalate. It may also be a mixture or copolymer of these polyesters. Typical fillers used in the present invention include fibrous reinforcing fillers such as asbestos fibers and carbon fibers, glass beads, gypsum, mica, clay, silica, calcium silicate, talc, antimony trioxide, and Examples include granular or plate-like fillers for general plastics such as titanium. It is also possible to use two or more of these fillers in combination. The amount of these fillers added is preferably 5 to 100 parts by weight per 100 parts by weight of the polyester resin component. 5
If it is less than 1 part by weight, the adhesion between the polyester resin and the plating coating will be insufficient, and if it exceeds 100 parts by weight, manufacturing and molding will be difficult and the appearance of the finished plated product will be considerably inferior. Various methods can be considered for blending the above-mentioned filler into the polyester resin, but if the filler is not sufficiently dispersed into the polyester molded product, the surface appearance of the finished plated product obtained will be poor, so as long as possible before molding. It is desirable to knead it uniformly. The most common kneading method is to melt-knead the polyester and the filler using an extruder at a temperature higher than the melting temperature of the polyester resin. In addition to the fillers mentioned above, different types of polymers, colorants, lubricants, foaming agents, flame retardants, stabilizers, etc. may be added in amounts that do not impair the plating property improvement effect for the purpose of improving other properties of the polyester resin. good. It is possible to adopt a relatively wide range of alkali treatment conditions for surface roughening (etching) these filler-containing polyesters; Considering the characteristics of , it is desirable that the following equation holds. 15000≧C・2(T-20/10)・t≧20 [However, C, t and T in the formula are as follows. C: equivalent concentration of alkaline aqueous solution (standard) t: treatment time (minutes) T: treatment temperature (°C)] After treatment with alkaline aqueous solution under the above conditions, sensitizing and activating, which are widely used for plastics, are performed. The plating operation is completed through processes such as plating, chemical plating, and electric plating. Note that C, t, and T in the above formula are not particularly limited, but preferably, C is 0.1 to 10N, and t is 1 to 10N.
40 minutes, T is 20-80°C. When an injection molded article made of the composition of the present invention is treated with an alkaline solution, the polyester resin on the surface of the outermost layer of the injection molded article is dissolved by the alkali, but if the filler is resistant to the alkaline solution, the polyester resin It is presumed that only the components are selectively dissolved, and as a result, the filler remains in the form of convex portions on the surface of the injection molded product, resulting in surface roughening. On the other hand, if the filler is easily dissolved in the alkaline solution, it is assumed that the filler is eluted and the surface of the injection molded product is roughened in the form of recesses. It is presumed that an injection molded article made of a composition to which a filler has been added in this way has a surface condition that allows good adhesion to metal in the subsequent plating step. It is also assumed that surface roughening is affected by the filler, especially its shape and size, and if large convexes or concave areas are formed, the appearance (gloss and surface smoothness) of the molded product after plating will deteriorate. It is assumed that it will come. Therefore,
It is desirable to avoid fillers with extremely large particle sizes (eg, 100 μm or more). The present invention will be specifically explained below with reference to Examples. Of the measurement items used in this example, bending strength, impact strength, and heat distortion temperature were measured individually.
It was conducted according to ASTM D-790, D-256 and D-648. Intrinsic viscosity of polyester resin [η]
was measured at 35°C using orthochlorophenol solvent. Furthermore, "parts" are "parts by weight." Example 1 100 parts of polyethylene terephthalate with [η] = 1.02, which had been dried with hot air at 120°C for 5 hours, was mixed with 25 parts of the various fillers shown in Table 1 in a tumbler, and then mixed in a vent type 65 mmφ extruder. The mixture was melted and mixed at a cylinder temperature of 270 to 280°C, and the threads coming out of the die were cooled and cut to obtain pellets for molding. This pellet was used in a 5-ounce injection molding machine at a cylinder temperature of 280℃ and an injection pressure of 1000Kg/cm 2 .
Test molded products were injection molded at a mold temperature of 140°C and a molding cycle of 45 seconds. The bending breaking strength and heat deformation temperature of the injection molded products obtained are shown in Table 1. After washing and degreasing this injection molded product with a neutral detergent, it was immersed in a 5N aqueous sodium hydroxide solution at 50°C for 20 minutes, thoroughly washed under running water, and electroplated with copper according to the conventional method shown below. was applied. (1) Sensitizing The surface roughened molded product is treated with stannous chloride 20
10 c.c. of hydrochloric acid (38% aqueous solution) and 1000 c.c. of water at 25°C for 3 to 5 minutes (2) Washing with water Immerse in running water for 1 to 2 minutes. (3) Activating palladium chloride 0.5g, hydrochloric acid (38% aqueous solution)
5 c.c. and water 1000 c.c. for 2 to 5 minutes at 25°C. (4) Rinse with running water for 1 to 2 minutes. (5) Chemical Nickel Metsuki Soak for 10 minutes at 40-50℃ in a solution with a pH of 8-9 consisting of nickel sulfate 20g/, sodium hypophosphite 15g/, ammonium sulfate 50g/, and sodium citrate 20g/ (6) Water Washing 1 to 2 minutes in running water (7) Electrolytic copper plating Copper sulfate 220g/, sulfuric acid 50g/, brightener [UBAC#1 (Ebara Eudylite Co., Ltd. product) 5g/
3A/3A at a temperature of 25-30℃ in an aqueous solution consisting of
A current was passed for 30 to 60 minutes at a current density of dm 2 to form a plating film with a thickness of about 40 μm on the resin molded product. Table 1 shows the adhesion strength between the resin layer and the copper film of the molded product obtained through the above treatment steps. The adhesion strength represents the strength when a 1 cm wide adhesion surface is peeled off in a 90° direction at a peeling speed of 5 cm/min.

【表】【table】

【表】 第1表から、ポリエステル樹脂が充填材を含有
すると密着強度の大巾な向上が認められ、一方、
材を含まないものは密着強度が低く、実用上使用
不能であることが明らかである。 実施例 2 〔η〕=1.13のポリブチレンテレフタレート100
部に酸化チタン〔チタン工業(株)銘柄:KA30粒径
平均0.3μm〕を第2表に示した添加量で添加
し、二軸押出機にて溶融混合し、射出成形品のペ
レツトを得た。このペレツトを用い、シリンダー
温度260℃、射出圧力800Kg/cm2、金型温度60℃に
てメツキ用の試験片(厚み2mm×巾100mm×長さ
100mm)を成形した。この試験片を用いて実施例
1と同様にエツチング工程を経てメツキ処理を施
し、金属との密着強度の測定および外観の観察を
行つた。得られた結果を第2表に示した。
[Table] From Table 1, it is observed that when polyester resin contains a filler, the adhesion strength is greatly improved;
It is clear that those containing no material have low adhesion strength and are practically unusable. Example 2 Polybutylene terephthalate 100 with [η] = 1.13
Titanium oxide [Titan Kogyo Co., Ltd. brand: KA30 particle size average 0.3 μm] was added to the mixture in the amount shown in Table 2, and the mixture was melt-mixed in a twin-screw extruder to obtain injection molded pellets. . Using this pellet, test pieces for plating (thickness 2 mm x width 100 mm x length
100mm) was molded. Using this test piece, it was subjected to an etching process and a plating process in the same manner as in Example 1, and the adhesion strength with metal was measured and the appearance was observed. The results obtained are shown in Table 2.

【表】 第2表に示されているように、酸化チタンの添
加量が5部より少ないと、エツチング効果が不充
分なため密着強度が実用範囲に達せず、メツキム
ラにより外観不良となつている。又充填材の添加
量が100部よりも多いと、密着強度は比較的良好
であるが、樹脂の成形性が悪く、均質な成形材料
が得にくく、従つてメツキ後の外観も均質性を欠
いており、好ましくない。 実施例 3 固有粘度〔η〕=0.75のポリエチレンテレフタ
レート樹脂100部、30部のガラス繊維および10部
のタルク粉末(径約2μ)を添加し、実施例1と
同様に押出混合および射出成形を行ない、試験用
の成形物を得た。 この試験片を用いて種々のアルカリ性水溶液に
よるエツチングを施したのち、実施例1と同様の
操作を経てメツキ完成品を得た。このメツキ完成
品は、ガラス繊維が含まれているためその鏡面性
がやゝ不良であるものの、他の特性はほゞ良好で
あつたので、密着強度の測定および外観の観察を
行つた。得られた結果を第3表に示した。
[Table] As shown in Table 2, if the amount of titanium oxide added is less than 5 parts, the etching effect will be insufficient, so the adhesion strength will not reach the practical range, and the appearance will be poor due to unevenness. . If the amount of filler added is more than 100 parts, the adhesion strength will be relatively good, but the moldability of the resin will be poor, making it difficult to obtain a homogeneous molding material, and the appearance after plating will also lack homogeneity. This is not desirable. Example 3 100 parts of polyethylene terephthalate resin with intrinsic viscosity [η] = 0.75, 30 parts of glass fiber and 10 parts of talc powder (diameter approximately 2μ) were added, and extrusion mixing and injection molding were performed in the same manner as in Example 1. A molded article for testing was obtained. After etching with various alkaline aqueous solutions using this test piece, the same operations as in Example 1 were carried out to obtain a plated finished product. Although the finished plating product contained glass fiber, its specularity was somewhat poor, but other properties were generally good, so the adhesion strength was measured and the appearance was observed. The results obtained are shown in Table 3.

【表】【table】

【表】 第3表より、ポリエステル樹脂組成物に対する
アルカリ性水溶液処理の効果は明らかである。
[Table] From Table 3, the effect of alkaline aqueous solution treatment on the polyester resin composition is clear.

Claims (1)

【特許請求の範囲】[Claims] 1 熱可塑性ポリエステル樹脂射出成形品をメツ
キする方法において、該ポリエステル樹脂に該ポ
リエステル樹脂100重量部当り5〜100重量部の量
比からなるアスベスト繊維、炭素繊維、ガラスビ
ーズ、炭酸カルシウム、石コウ、マイカ、クレ
ー、シリカ、珪酸カルシウム、タルク、三酸化ア
ンチモン及び酸化チタンから選ばれる1種又は2
種以上の充填材を含有せしめたポリエステル樹脂
組成物からなる射出成形品をアルカリ性溶液に接
触処理せしめ、次いで電気メツキ工程を含むメツ
キを行なうことを特徴とするポリエステル樹脂射
出成形品のメツキ方法。
1. In a method of plating a thermoplastic polyester resin injection molded product, asbestos fibers, carbon fibers, glass beads, calcium carbonate, gypsum, etc. in an amount ratio of 5 to 100 parts by weight per 100 parts by weight of the polyester resin are added to the polyester resin. One or two selected from mica, clay, silica, calcium silicate, talc, antimony trioxide, and titanium oxide
1. A method for plating a polyester resin injection molded product, which comprises contact-treating an injection molded product made of a polyester resin composition containing one or more fillers with an alkaline solution, and then plating including an electroplating step.
JP7944777A 1977-07-05 1977-07-05 Metho of plating polyester resin Granted JPS5415977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7944777A JPS5415977A (en) 1977-07-05 1977-07-05 Metho of plating polyester resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7944777A JPS5415977A (en) 1977-07-05 1977-07-05 Metho of plating polyester resin

Publications (2)

Publication Number Publication Date
JPS5415977A JPS5415977A (en) 1979-02-06
JPS623173B2 true JPS623173B2 (en) 1987-01-23

Family

ID=13690126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7944777A Granted JPS5415977A (en) 1977-07-05 1977-07-05 Metho of plating polyester resin

Country Status (1)

Country Link
JP (1) JPS5415977A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5599929A (en) * 1979-01-24 1980-07-30 Teijin Ltd Preparation of plated molded polyester resin article
US4325991A (en) * 1981-01-05 1982-04-20 Crown City Plating Co. Electroless plating of polyesters
JPH0713318B2 (en) * 1985-05-02 1995-02-15 東レ株式会社 Method for producing surface metallized thermoplastic polyester resin molded article
JP2581543B2 (en) * 1986-07-04 1997-02-12 エビナ電化工業 株式会社 Method for producing plated wholly aromatic polyester liquid crystal polymer molded article
JP4836286B2 (en) * 2008-10-21 2011-12-14 東芝エレベータ株式会社 Elevator equipment
JP5426325B2 (en) * 2009-11-09 2014-02-26 三共化成株式会社 Molded circuit parts

Also Published As

Publication number Publication date
JPS5415977A (en) 1979-02-06

Similar Documents

Publication Publication Date Title
JPS623173B2 (en)
JP2002105231A (en) Thermoplastic polyester resin molded article with metallized surface
JPS6130031B2 (en)
JPS6328464B2 (en)
JPS6240430B2 (en)
JPS58157827A (en) Preparation of polyester molded article having metallized surface
JPH0420024B2 (en)
JPH0639713B2 (en) Method for producing surface metallized thermoplastic polyester resin molded article
JPS5829852A (en) Polyester resin composition capable of plating
JPH0639712B2 (en) Method for producing surface metallized thermoplastic polyester resin molded article
JPS6023440A (en) Polyester composition
JPS5827816B2 (en) Method of plating thermoplastic polyester
JPS61133381A (en) Manufacture of surface-metallized molded article of thermoplastic polyester resin
JPH0696769B2 (en) Method for producing surface metallized poly (ethylene terephthalate) resin molded article
JPS58157828A (en) Preparation of polyester molded article having metallized surface
JPS5927946A (en) Platable polyester resin composition
JPS587447A (en) Polyester resin composition for metallizing
JP2007191742A (en) Plating method for polylactic acid resin molding
JPS63149384A (en) Method for plating polyamide resin
JPS61253393A (en) Production of molded article of thermoplastic polyester resin having metallized surface
JP3975123B2 (en) Plating synthetic resin molded product and its manufacturing method
JP3975122B2 (en) Method for producing plated polyester resin molded product
JPS63275660A (en) Polyester resin composition
JPS6063379A (en) Manufacture of surface-metallized molded article of polybutylene terephthalate resin
JPS61253370A (en) Production of surface-metallized thermoplastic polyester resin molding