JPS6231181A - Helium container for superconducting energy storage apparatus - Google Patents
Helium container for superconducting energy storage apparatusInfo
- Publication number
- JPS6231181A JPS6231181A JP60168604A JP16860485A JPS6231181A JP S6231181 A JPS6231181 A JP S6231181A JP 60168604 A JP60168604 A JP 60168604A JP 16860485 A JP16860485 A JP 16860485A JP S6231181 A JPS6231181 A JP S6231181A
- Authority
- JP
- Japan
- Prior art keywords
- helium container
- kovar
- porcelain
- container
- ceramics
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000001307 helium Substances 0.000 title claims abstract description 27
- 229910052734 helium Inorganic materials 0.000 title claims abstract description 27
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 title claims abstract description 27
- 238000004146 energy storage Methods 0.000 title claims description 4
- 239000007788 liquid Substances 0.000 claims abstract description 11
- 239000000919 ceramic Substances 0.000 claims abstract description 10
- 239000000463 material Substances 0.000 claims abstract description 9
- 239000002184 metal Substances 0.000 claims abstract description 3
- 239000011810 insulating material Substances 0.000 claims description 7
- 239000002887 superconductor Substances 0.000 claims description 3
- 229910010293 ceramic material Inorganic materials 0.000 claims 1
- 229910000833 kovar Inorganic materials 0.000 abstract description 9
- 229910052573 porcelain Inorganic materials 0.000 abstract description 8
- 230000008646 thermal stress Effects 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract description 3
- 238000005476 soldering Methods 0.000 abstract 2
- 239000012212 insulator Substances 0.000 abstract 1
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000011449 brick Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 238000005219 brazing Methods 0.000 description 3
- 239000011151 fibre-reinforced plastic Substances 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910000674 AJ alloy Inorganic materials 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
Landscapes
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 超電導エネルギー貯蔵装置用ヘリウム容器に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a helium container for a superconducting energy storage device.
第3図に超電導エネルギー貯蔵装置の部分図を示す。液
体ヘリウム容器01の内部には超電導体02及びAJ合
金ブリック03が内蔵され、液体ヘリウムに浸漬されて
いる。なおA1合金プリンク03は各ターン毎に導体タ
ーン間絶縁板04で絶縁され、又導体ターン間締付ポル
)05にて上下方向に結合されている。液体ヘリウム容
器01の内壁板にかかる内圧はヘリウム容器補強ステー
06及びA1合金ブリック03を介して、液体ヘリウム
容器01の外壁板にかかる内圧とバランスしている。超
電導体02を通る電流によシ生ずる電磁力はA1合金ブ
リック03を経由してヘリウム容器の一部をなす縦支柱
07に伝達され、更に断熱支持材08を経由して岩盤に
伝達される。又液体ヘリウム容器01は真空保冷されて
おり、液体ヘリウム容器01の外部に輻射シールド09
がある。FIG. 3 shows a partial diagram of the superconducting energy storage device. A superconductor 02 and an AJ alloy brick 03 are contained inside the liquid helium container 01, and are immersed in liquid helium. Each turn of the A1 alloy plink 03 is insulated by an insulating plate 04 between the conductor turns, and vertically connected by a tightening pole 05 between the conductor turns. The internal pressure applied to the inner wall plate of the liquid helium container 01 is balanced with the internal pressure applied to the outer wall plate of the liquid helium container 01 via the helium container reinforcing stay 06 and the A1 alloy brick 03. The electromagnetic force generated by the current passing through the superconductor 02 is transmitted via the A1 alloy brick 03 to the vertical column 07 forming a part of the helium container, and further transmitted to the rock via the heat insulating support member 08. In addition, the liquid helium container 01 is kept vacuum cooled, and a radiation shield 09 is provided outside the liquid helium container 01.
There is.
第4図及び第5図は第3図の縦支柱の水平断面図である
。第4図は通常部であシ、縦支柱07はA7合金ブリッ
ク03に接するFRP製支柱07gと容器01に結合し
たSUS製支柱07bとによシ構成される。しかし、液
体ヘリウム容器01と縦支柱07との接合が全てこの構
造だと周回電流による発熱が避けられないので、容器壁
は円周上の少くとも一ケ所電気的に絶縁する必要がある
。この構造としては、第5図に示すように、容器壁間の
FRP (繊維強化プラスチック)縦支柱07 b’と
コイルを受けるFR瀾支柱07Gの間に容器壁と接合さ
れたプレート09を挿入するが、このプレート09は支
柱076′に接着剤で接合したのち、植込ボルト010
で止める。4 and 5 are horizontal cross-sectional views of the vertical struts of FIG. 3; FIG. FIG. 4 shows the normal part, and the vertical support 07 is composed of an FRP support 07g in contact with the A7 alloy brick 03 and an SUS support 07b connected to the container 01. However, if all the connections between the liquid helium container 01 and the vertical support 07 are in this structure, heat generation due to the circulating current is unavoidable, so the container wall needs to be electrically insulated at at least one place on the circumference. In this structure, as shown in Fig. 5, a plate 09 joined to the container wall is inserted between the FRP (fiber reinforced plastic) vertical support 07 b' between the container walls and the FR support support 07G that receives the coil. However, after this plate 09 is bonded to the support column 076' with adhesive, the stud bolt 010 is attached.
Stop with.
従来の技術では縦支柱の接合部におけるヘリウムガスの
リークが考えられ、真空保冷が成立しなくなる恐れがあ
る。従ってリークの発生しない接着方法を開発する必要
がある。In the conventional technology, there is a possibility that helium gas leaks at the joints of the vertical columns, and vacuum cooling may not be achieved. Therefore, it is necessary to develop an adhesive method that does not cause leakage.
接着剤でリークを無くすことは困難なので、絶縁材とし
てセラミックスを使用する。但しセラミックスと通常の
低温材(例えばオーステナイト系ステンレス鋼)とは線
膨脹係数がかなシ違うので、両者の間に中間の線膨脹係
数を持つ材料(例えばコバール)を入れる。これら王者
間は夫々ろう付けすることにより確実々気密性を確保す
る。Since it is difficult to eliminate leaks with adhesives, ceramics are used as the insulating material. However, since the linear expansion coefficients of ceramics and ordinary low-temperature materials (for example, austenitic stainless steel) are quite different, a material with an intermediate linear expansion coefficient (for example, Kovar) is inserted between the two. By brazing each of these spaces, airtightness is ensured.
セラミックス等の絶縁材によシスチンレス製ヘリウム容
器が絶縁されて周回電流の発生全防ぎ、且つ確実な気密
性により真空保冷を行う。The cystine-free helium container is insulated with an insulating material such as ceramics, completely preventing the generation of circulating current, and ensuring vacuum cooling with reliable airtightness.
第1図において、液体ヘリウム容器1の一垂直断面に絶
縁材として磁器11等のセラミックスを使用することに
よシ周回電流を防止する。なおヘリウム容器1と磁器1
1とは線膨脹係数が一般的にかなシ異るので、低温時の
熱応力緩和の為、ヘリウム容器1と磁器11との間に中
間の線膨脹係数を持つ材料(例えばコバール12)を挿
入する。In FIG. 1, circulating current is prevented by using ceramics such as porcelain 11 as an insulating material on one vertical section of a liquid helium container 1. In addition, helium container 1 and porcelain 1
Since the coefficient of linear expansion is generally slightly different from that of 1, a material with an intermediate coefficient of linear expansion (for example, Kovar 12) is inserted between the helium container 1 and the porcelain 11 to relieve thermal stress at low temperatures. do.
ヘリウム容器1とコバール12.コバール12と磁器1
1とはろう付けで結合することにより気密性を確保する
。Helium container 1 and Kovar 12. Kovar 12 and porcelain 1
1 and is joined by brazing to ensure airtightness.
第2図は絶縁材としてAI!203材11′ヲ材用1′
ヲ使用る。Figure 2 shows AI as an insulating material! 203 material 11' for material 1'
Use wo.
周回電流対策部の接合方法として、セラミック、スをろ
う付けすることにより、気密性が向上する。As a joining method for the circulating current countermeasure section, the airtightness is improved by brazing ceramics.
更にセラミックスと金属製のヘリウム容器壁との間に、
コバール等の中部材を挿入することによシ熱応力が緩和
する。Furthermore, between the ceramic and the metal helium container wall,
Thermal stress is alleviated by inserting an intermediate member such as Kovar.
第1図は本発明の実施例の概略図、第2図は他の実施例
の概略図、第3図は従来装置の概略図、第4図及び第5
図は第3図の縦支柱の水平断面図である。
1・・・液体ヘリウム容器、11・・・セラミックス、
12・・・コバール
復代理人 弁理士 岡 本 重 窯
外2名
第1図
第2図FIG. 1 is a schematic diagram of an embodiment of the present invention, FIG. 2 is a schematic diagram of another embodiment, FIG. 3 is a schematic diagram of a conventional device, and FIGS.
The figure is a horizontal sectional view of the vertical strut of FIG. 3. 1...Liquid helium container, 11...Ceramics,
12... Kobar sub-agent Patent attorney Shige Okamoto 2 people outside the kiln Figure 1 Figure 2
Claims (1)
周回電流の発生を防ぐ絶縁材を挿入したヘリウム容器に
おいて、絶縁材としてセラミックスを用い、絶縁材と容
器壁との接合部に両者の中間の線膨脹係数を有する材料
を挿入し、各材料をロウ付けして気密構造としたことを
特徴とする超電導エネルギー貯蔵装置用ヘリウム容器。In a helium container that has an insulating material inserted into the metal container wall of the liquid helium container that surrounds the superconductor to prevent the generation of circulating current, ceramics are used as the insulating material, and a ceramic material is used at the joint between the insulating material and the container wall. A helium container for a superconducting energy storage device, characterized in that a material having a coefficient of linear expansion is inserted and each material is brazed to form an airtight structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60168604A JPS6231181A (en) | 1985-08-01 | 1985-08-01 | Helium container for superconducting energy storage apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60168604A JPS6231181A (en) | 1985-08-01 | 1985-08-01 | Helium container for superconducting energy storage apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6231181A true JPS6231181A (en) | 1987-02-10 |
Family
ID=15871138
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60168604A Pending JPS6231181A (en) | 1985-08-01 | 1985-08-01 | Helium container for superconducting energy storage apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6231181A (en) |
-
1985
- 1985-08-01 JP JP60168604A patent/JPS6231181A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4625192A (en) | Superconducting apparatus with improved current lead-in | |
JPS6231181A (en) | Helium container for superconducting energy storage apparatus | |
FR1564936A (en) | ||
JPH0319211Y2 (en) | ||
JP2765044B2 (en) | Cryogenic support structure | |
US4221834A (en) | Superconductive magnetic shield and method of making same | |
KR102446787B1 (en) | Passive magnetic shielding of structures immersed in plasma using superconductors | |
JP3416249B2 (en) | Superconducting accelerator | |
JPS6254982A (en) | Cryostat | |
JPH01312299A (en) | Transfer tube | |
JPS64805B2 (en) | ||
JPH0537662Y2 (en) | ||
JP3160348B2 (en) | High frequency heating device barrier window | |
JPS5838619Y2 (en) | cryogenic equipment | |
JP2726738B2 (en) | Superconducting helical wiggler | |
JPH01309212A (en) | Cooling method for superconductive cable | |
JP2538897Y2 (en) | Superconducting coil device | |
JP3373533B2 (en) | Insulation fitting for piping | |
SU854216A1 (en) | Cryogenic current inlet member | |
JPH0828532B2 (en) | Current leads for superconducting electromagnet devices | |
JP2686210B2 (en) | Superconducting coil device | |
SU1265435A1 (en) | Support for cryogenic equipment | |
JPS63108703A (en) | Supporting structure of electrical power supply line for superconductive conductor | |
JPS6288378A (en) | Cryogenic container | |
JPH04291772A (en) | Cryostat |