JPS6230912B2 - - Google Patents

Info

Publication number
JPS6230912B2
JPS6230912B2 JP54142483A JP14248379A JPS6230912B2 JP S6230912 B2 JPS6230912 B2 JP S6230912B2 JP 54142483 A JP54142483 A JP 54142483A JP 14248379 A JP14248379 A JP 14248379A JP S6230912 B2 JPS6230912 B2 JP S6230912B2
Authority
JP
Japan
Prior art keywords
container
layer
resin
parison
polyester resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54142483A
Other languages
Japanese (ja)
Other versions
JPS5664866A (en
Inventor
Tadashi Okudaira
Akio Tsuboi
Shigeharu Sugihara
Yoshihisa Hama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP14248379A priority Critical patent/JPS5664866A/en
Priority to DE803050007A priority patent/DE3050007A1/en
Priority to PCT/JP1980/000269 priority patent/WO1981001265A1/en
Priority to GB8118832A priority patent/GB2078171B/en
Priority to US06/269,056 priority patent/US4398642A/en
Publication of JPS5664866A publication Critical patent/JPS5664866A/en
Publication of JPS6230912B2 publication Critical patent/JPS6230912B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明はガスバリアヌ性に優れた透明床の高い
倚局容噚に関する。曎に詳しくは、少くずも皮
の熱可塑性暹脂からなる倚局構造を有する容噚
で、最倖局および最内局が熱可塑性ポリ゚ステル
暹脂からなり、䞭間局がメタキシリレン基含有ポ
リアミド重合䜓から構成され、䞔぀容噚の肉薄郚
分が少なくずも䞀方向に配向されおいるこずを特
城ずするガスバリアヌ性、力孊的性質に優れた透
明床の高い倚局容噚に関する。 埓来からポリ゚チレンテレフタレヌトを䞻䜓ず
する熱可塑性ポリ゚ステル暹脂は、その玠材の優
れた力孊的性質、ガスバリアヌ性、耐薬品性、保
銙性、衛生性などに着目されお各皮の容噚、フむ
ルム、シヌトなどに加工され、包装材料ずしお広
範に利甚されおいる。特に近幎、ブロヌ成圢技術
こずに二軞延䌞吹蟌成圢技術の向䞊によりびんや
猶ずい぀た䞭空容噚ずしおの利甚も目芚たしいも
のがある。 然しながらポリ゚チレンテレフタレヌトを䞻䜓
ずする熱可塑性ポリ゚ステル暹脂からなる二軞配
向した容噚ずお、䞇党の性胜を具備しおいるわけ
ではなく、特に充填する内容物がガス遮断性を芁
求する食品の容噚ずしおはその酞玠に察するガス
バリアヌ性の䞍足から䞍適圓であ぀た。これたで
高ガスバリアヌ性の機胜を有する熱可塑性暹脂ず
しお、゚チレン−酢酞ビニル共重合䜓けん化物や
スチレン−アクリロニトリル共重合物等が知られ
おいるが、それぞれの単䜓からなる容噚ずしおは
吞湿に察する抗力や衝撃抵抗に乏しか぀たり、あ
るいは衛生性ずい぀た芳点から実甚に耐えるもの
はなか぀た。 本発明者らは、熱可塑性ポリ゚ステル暹脂がも
぀優れた力孊的性質、透明性、耐薬品性、衛生性
を䜕ら損うこずなく、酞玠に察する遮断性を向䞊
するべく鋭意研究を重ね、メタキシリレン基含有
ポリアミド暹脂ずの耇合化により問題点の解決を
芋い出し、本発明に至぀た。すなわち、本発明は
少くずも皮の熱可塑性暹脂からなる倚局構造を
有する容噚であ぀お、最倖局および最内局が゚チ
レンテレフタレヌトを䞻たる繰り返し単䜍ずする
熱可塑性ポリ゚ステル暹脂、䞭間局がメタキシリ
レン基含有ポリアミド暹脂から構成され、か぀容
噚の肉薄郚分が少くずも䞀方向に配向されおいる
こずを特城ずするガスバリアヌ性、力孊的性質に
優れた透明床の高い倚局容噚に関する。 本発明でいう゚チレンテレフタレヌトを䞻たる
繰り返し単䜍ずする熱可塑性ポリ゚ステル暹脂ず
は、通垞酞成分の80モル以䞊、奜たしくは90モ
ル以䞊がテレフタル酞であり、グリコヌル成分
の80モル、奜たしくは90モル以䞊が゚チレン
グリコヌルであるポリ゚ステルを意味し、残郚の
他の酞成分ずしおむ゜フタル酞、ゞプニル゚ヌ
テル・4′−ゞカルボン酞、ナフタレン・−
たたは・−ゞカルボン酞、アゞピン酞、セバ
シン酞、デカン・10−ゞカルボン酞、ヘキサヒ
ドロテレフタル酞、たた他のグリコヌル成分ずし
おプロピレングリコヌル、・−ブタンゞオヌ
ル、ネオペンチルグリコヌル、ゞ゚チレングリコ
ヌル、シクロヘキサンゞメタノヌル、・−ビ
ス−ヒドロキシプニルプロパン、・
−ビス−ヒドロキシ゚トキシプニルプロ
パンたたはオキシ酞ずしお−オキシ安息銙酞、
−ヒドロ゚トキシ安息銙酞等を含有するポリ゚
ステル暹脂を意味する。たた皮以䞊のポリ゚ス
テルのブレンドにより゚チレンテレフタレヌトが
䞊蚘範囲ずなるブレンドでもよい。 なお、本発明におけるポリ゚ステル暹脂は必芁
に応じお着色剀、玫倖線吞収剀、垯電防止剀、熱
酞化劣化防止剀、抗菌剀、滑剀などの添加剀を適
宜の割合で含有するこずが出来る。該添加剀を䜿
甚するずきは倖局甚ポリ゚ステル暹脂に添加した
のが特に奜たしい。 本発明の熱可塑性ポリ゚ステル暹脂の固有粘床
は0.55以䞊の倀を有するこずが必芁であり、曎に
奜たしくは0.65〜1.4である。固有粘床が0.55未満
では、容噚の前駆成圢䜓であるパリ゜ンを透明な
非晶質状態で埗るこずが困難であるほか埗られる
容噚の機械的匷床も䞍充分である。 たた、本発明に䜿甚されるメタキシリレン基含
有ポリアミド暹脂は、メタキシレンゞアミン、も
しくはメタキシリレンゞアミンず党量の30以䞋
のパラキシリレンゞアミンを含む混合キシリレン
ゞアミンず、炭玠数が〜10個のα・ω−脂肪族
ゞカルボン酞ずから生成された構成単䜍を分子鎖
䞭に少くずも70モル含有した重合䜓である。 これらの重合䜓の䟋ずしおはポリメタキシリレ
ンアゞパミド、ポリメタキシリレンセバカミド、
ポリメタキシリレンスペラミド等のような単独重
合䜓、およびメタキシリレンパラキシリレンア
ゞパミド共重合䜓、メタキシリレンパラキシリ
レンピメラミド共重合䜓、メタキシリレンパラ
キシリレンアれラミド共重合䜓等のような共重合
䜓、ならびにこれらの単独重合䜓たたは共重合䜓
の成分ずヘキサメチレンゞアミンのような脂肪族
ゞアミン、ピペラゞンのような脂環匏ゞアミン、
パラ−ビス−−アミノ゚チルベンれンのよ
うな芳銙族ゞアミン、テレフタル酞のような芳銙
族ゞカルボン酞、ε−カプロラクタムのようなラ
クタム、γ−アミノヘプタン酞のようなω−アミ
ノカルボン酞、パラ−アミノメチル安息銙酞のよ
うな芳銙族アミノカルボン酞等ずを共重合した共
重合䜓等が挙げられる。䞊蚘の共重合䜓においお
パラキシリレンゞアミンは党キシリレンゞアミン
に察しお30以䞋であり、たたキシリレンゞアミ
ンず脂肪族ゞカルボン酞ずから生成された構成単
䜍は分子鎖䞭においお少くずも70モル以䞊であ
る。たたこれらのポリマヌに、たずえばナむロン
、ナむロン、、ナむロン、10、ナむロン
11、ナむロン12等の重合䜓、垯電防止剀、滑剀、
耐ブロツキング剀、安定剀、染料、顔料等を含有
させおもよい。 メタキシリレン基含有ポリアミド暹脂以䞋
SM暹脂ず略蚘自䜓本来は非晶状態では脆いた
め、盞察粘床が1.5以䞊、曎に奜たしくは2.0以䞊
有するこずが必芁である。 本発明における倚局容噚は熱可塑性ポリ゚ステ
ル暹脂を内、倖局ずし、メタキシリレン基含有ポ
リアミド暹脂を䞭間局ずするものであるが、堎合
により䞭間局ず倖局およびたたは䞭間局ず内局
の間に接着剀局を圢成するこずも出来る。 埓来、高ガスバリアヌ性暹脂ずしお公知の゚チ
レン−酢酞ビニル共重合䜓けん化物を甚いる堎合
は、それ自䜓が結晶性暹脂であるためパリ゜ン成
圢時に倱透が生じ透明性が著しく䜎䞋する。勿論
延䌞により薄局化すれば透明性は向䞊するが、延
䌞されない郚分たずえばびんの底郚は倱透した状
態で残るので倖芳䞊奜たしくない。 たた、スチレン−アクリロニトリル共重合䜓を
甚いた堎合は、それ自䜓が非晶性暹脂であるため
成圢時に倱透するこずはないが、そのガラス転移
枩床が高いためポリ゚ステル暹脂に適した延䌞枩
床䞋では充分延ばされないずいう欠点を有しおい
る。曎に非晶性暹脂であ぀お延䌞を斜しおも配向
結晶化を誘起しないため、残存延䌞応力により容
噚が倉圢するずいう欠点も有しおいる。これらの
暹脂に察しSM暹脂自䜓本来は結晶性暹脂である
が比范的Tgが高いため、溶融状態からの急冷凊
理により非晶化されやすく良奜な透明性を䞎える
ず共に、そのTgがポリ゚ステル暹脂のTgずほが
等しいこずから延䌞による配向結晶化が充分に誘
起され、前蚘高ガスバリアヌ性暹脂ず異な぀お優
れた透明性、ガスバリダヌ性、その他物性を有
し、しかも商品䟡倀の高い容噚ずなる。 本発明の倚局容噚においおは、SM暹脂からな
る䞭間局の厚みは䞻芁胎郚においおΌ〜mmで
あるのが実甚的で、奜たしくは10Ό〜500Όであ
る。たた内局および倖局を圢成するポリ゚ステル
暹脂局の厚みは50Ό〜mmであるのが実甚的で、
奜たしくは100Ό〜500Όである。曎に内、倖局お
よび䞭間局の合蚈の厚みは100Ό〜mmであるの
が実甚的で、奜たしくは200Ό〜mmである。 本発明における容噚は、埓来の容噚補造方法に
埓぀お補造するこずができるが、容噚の少くずも
肉薄郚が少くずも䞀方向に配向されおいるこずが
必芁である。配向の皋床は容噚の肉薄郚の厚み方
向ず平面方向の屈折率の差を枬定するこずにより
怜知出来る。優れたガスバリアヌ性ず高い透明性
を期埅するならば、平面方向ず厚み方向の屈折率
の差が0.02以䞊、曎には0.05以䞊であるこずが望
たしく、屈折率の差が0.02以䞋では充分な力孊的
性質やガスバリアヌ性の向䞊が期埅出来ない。屈
折率により枬定するこずが困難な堎合は、機械的
特性の異方性から怜知するこずも出来る。 本発明の容噚ずしおは、䟋えばびん、コツプ等
延䌞を䌎う成圢方法により埗られる容噚が䟋瀺さ
れる。 これらの容噚を埗る方法ずしおは、䟋えばびん
の堎合、埓来公知の抌出吹蟌成圢方法あるいは
軞延䌞吹蟌成圢方法があるが、軞延䌞吹蟌成圢
方法が有利である。軞延䌞吹蟌成圢方法の堎
合、倚局構造を有する膚匵可胜な幟䜕孊的圢状物
以䞋パリ゜ンず呌ぶを延䌞枩床に加熱した
埌、吹蟌金型内で軞方向に移動する延䌞ロツドず
圧瞮気䜓の吹蟌みにより膚匵させおびんの圢に賊
圢するこずが出来る。 倚局構造を有するパリ゜ンは、通垞の射出成圢
機たたは耇数個の溶融射出装眮を有する成圢機に
より、内局から順次段階的に圢成するこずによ
り、あるいは倚局抌出成圢機により圢成した倚局
パむプの䞀端を有底化するこず等によ぀お埗られ
る。たたパリ゜ンの加熱は、ブロツクヒヌタヌや
赀倖線ヒヌタヌ等の通垞の発熱䜓を有する加熱オ
ヌブン䞭で行うこずが出来る。 本発明の構成成分からなる倚局パリ゜ンの堎合
の延䌞枩床はポリ゚ステル暹脂単䜓からなるパリ
゜ンの延䌞枩床ずほが同じでよく、ポリ゚ステル
暹脂のガラス転移枩床Tgず関係し、〔Tg
15〕℃以䞊、〔Tg15〕℃以䞋、ずりわけ
80〜150℃が奜たしい。延䌞は軞方向に〜
倍、呚方向に〜倍延䌞するのが奜たしく、ず
りわけ延䌞倍率を高くするこずにより倖呚ず䞭間
局、䞭間局ず内局ずい぀た局間の圧着性が向䞊す
るずずもに透明性も高くなるこずから、面積延䌞
倍率軞方向の延䌞倍率×呚方向の延䌞倍率で
〜18倍が曎に奜たしい。 以䞋実斜䟋により本発明を説明する。たた本発
明で枬定した䞻な特性の枬定法を以䞋に瀺す。 (1) ポリ゚ステル暹脂の固有粘床〔η〕プノ
ヌルテトラクロロ゚タン重量比
混合溶媒を甚いお80℃で枬定した。 (2) ポリアミド暹脂のηrel暹脂を96重量
硫酞100mlに溶解、25℃で枬定した盞察粘
床。 (3) 屈折率アツベ屈折率蚈に偏光板を装着し、
25℃でナトリりムの線を甚いお枬定した。
軞、呚方向いずれも平面方向の屈折率をそ
れぞれnx、ny、厚み方向の屈折率をnzずし、 −nz△ 耇屈折床を算出しお配向の皋床を怜知し
た。 (4) 透明床及び霞床東掋粟機瀟補ヘヌズメヌタ
ヌを䜿甚し、JIS−K6714に準じ次匏より算
出した。 透明床T2T1×100 ヘヌズ−×100
 T1入射光量 T2党光線透過量 T3装眮による散乱光量 T4装眮ずサンプルによる散乱光量 (5) 酞玠透過量理化粟機工業瀟補二連匏ガス透
過率枬定噚を甚いASTM−−1434−58に準
じた方法で30℃で圧倉化により枬定した。
c.c.m2・24hr・atm (6) 氎蒞気透過量JIS−−0208に準じ40℃、
90RHでのカツプ法による重量増加から枬定
した。m2・24時間 (7) 匕匵特性巟10mmのたんざく状詊片を甚いお
東掋ボヌルドりむン瀟補テンシロンにより、チ
ダツク間50mm、匕匵速床50mmminの条件䞋
で、降䌏匷床、砎断匷䌞床を枬定した23
℃。 実斜䟋、および比范䟋 内局および倖局を構成するポリ゚ステル暹脂ず
しお、〔η〕0.72のポリ゚チレンテレフタレヌト
PETず略称を䜿甚し、䞭間局を構成するメタ
キシリレン基含有ポリアミド暹脂ずしお実斜䟋
においおはηrel2.2のポリメタキシリレンアゞ
パミドメタキシリレンパラキシリレン99
重量比SM−ず略称を、たた実斜䟋に
おいおはSM−に分子量4000のポリ゚チレング
リコヌル2.5重量を共重合したポリメタキシリ
レンアゞパミドSM−ず略称を䜿甚し、倖
埄35mm、長さ140mm、肉厚mmの倚局パリ゜ンを
成圢した。たた、比范䟋においおは〔η〕
0.72のポリ゚チレンテレフタレヌトを䜿甚しお、
実斜䟋、ず同圢状のパリ゜ンを成圢した。 倚局パリ゜ンの成圢はたずポリ゚ステル暹脂を
甚いお、厚さmmの最内局パリ゜ンを成圢した
埌、金型を順次亀換しお䞭間局にSM暹脂、最倖
局にポリ゚ステル暹脂を積局するこずにより埗
た。このパリ゜ンでの各局の厚みは内局䞭間
局倖局mm1.5mm1.5mmである。 なお、成圢はいずれも日本補鋌所補−95型射
出成圢機を甚いお行぀た。その時の条件を衚−
に瀺す。
The present invention relates to a highly transparent multilayer container with excellent gas barrier properties. More specifically, the container has a multilayer structure made of at least two types of thermoplastic resins, the outermost layer and the innermost layer are made of a thermoplastic polyester resin, the middle layer is made of a metaxylylene group-containing polyamide polymer, and The present invention relates to a highly transparent multilayer container with excellent gas barrier properties and mechanical properties, characterized in that the thin wall portion is oriented in at least one direction. Thermoplastic polyester resins, mainly composed of polyethylene terephthalate, have been used for various containers, films, sheets, etc. due to their excellent mechanical properties, gas barrier properties, chemical resistance, fragrance retention, and hygienic properties. It is processed and widely used as packaging material. In particular, in recent years, advances in blow molding technology, especially biaxial stretch blow molding technology, have led to remarkable use of hollow containers such as bottles and cans. However, biaxially oriented containers made of thermoplastic polyester resin mainly composed of polyethylene terephthalate do not have perfect performance, especially as food containers whose contents require gas barrier properties. It was unsuitable due to its lack of gas barrier properties against oxygen. So far, saponified ethylene-vinyl acetate copolymers and styrene-acrylonitrile copolymers have been known as thermoplastic resins with high gas barrier properties. There was nothing that could be put to practical use in terms of durability, impact resistance, or hygiene. The present inventors have conducted extensive research in order to improve the oxygen barrier properties of thermoplastic polyester resins without impairing their excellent mechanical properties, transparency, chemical resistance, and hygiene properties, and have found that thermoplastic polyester resins containing metaxylylene groups A solution to the problem was found by combining it with a polyamide resin, leading to the present invention. That is, the present invention provides a container having a multilayer structure made of at least two types of thermoplastic resins, wherein the outermost layer and the innermost layer are made of a thermoplastic polyester resin whose main repeating unit is ethylene terephthalate, and the middle layer is made of a metaxylylene group-containing polyamide. The present invention relates to a highly transparent multilayer container that is made of resin and has excellent gas barrier properties and mechanical properties, and is characterized in that the thin wall portion of the container is oriented in at least one direction. The thermoplastic polyester resin containing ethylene terephthalate as a main repeating unit in the present invention usually has an acid component of 80 mol% or more, preferably 90 mol% or more of terephthalic acid, and a glycol component of 80 mol% or more, preferably 90 mol% or more. It means a polyester in which ethylene glycol accounts for mol% or more, and the remaining acid components include isophthalic acid, diphenyl ether 4,4'-dicarboxylic acid, and naphthalene 1,4-
or 2,6-dicarboxylic acid, adipic acid, sebacic acid, decane 1,10-dicarboxylic acid, hexahydroterephthalic acid, and other glycol components such as propylene glycol, 1,4-butanediol, neopentyl glycol, diethylene glycol, cyclohexane. Dimethanol, 2,2-bis(4-hydroxyphenyl)propane, 2,2
- bis(4-hydroxyethoxyphenyl)propane or p-oxybenzoic acid as oxyacid,
It means a polyester resin containing p-hydroethoxybenzoic acid or the like. Alternatively, a blend of two or more types of polyester may be used so that ethylene terephthalate falls within the above range. The polyester resin in the present invention may contain additives such as colorants, ultraviolet absorbers, antistatic agents, thermal oxidative deterioration inhibitors, antibacterial agents, and lubricants in appropriate proportions, if necessary. When this additive is used, it is particularly preferable to add it to the polyester resin for the outer layer. The thermoplastic polyester resin of the present invention must have an intrinsic viscosity of 0.55 or more, more preferably 0.65 to 1.4. If the intrinsic viscosity is less than 0.55, it is difficult to obtain a parison, which is a precursor molded body of a container, in a transparent amorphous state, and the resulting container also has insufficient mechanical strength. The meta-xylylene group-containing polyamide resin used in the present invention is composed of meta-xylylene diamine or a mixed xylylene diamine containing meta-xylylene diamine and para-xylylene diamine in an amount of 30% or less of the total amount, and a carbon number of 6 to 10. It is a polymer containing in its molecular chain at least 70 mol % of a structural unit formed from an α·ω-aliphatic dicarboxylic acid. Examples of these polymers include polymethaxylylene adipamide, polymethaxylylene sebacamide,
Homopolymers such as polymethaxylylenesperamide, and metaxylylene/paraxylylene adipamide copolymers, metaxylylene/paraxylylene pimeramide copolymers, metaxylylene/paraxylylene azeramide copolymers, etc. copolymers such as, as well as components of these homopolymers or copolymers with aliphatic diamines such as hexamethylene diamine, cycloaliphatic diamines such as piperazine,
Aromatic diamines such as para-bis-(2-aminoethyl)benzene, aromatic dicarboxylic acids such as terephthalic acid, lactams such as ε-caprolactam, ω-aminocarboxylic acids such as γ-aminoheptanoic acid, Examples include copolymers obtained by copolymerizing aromatic aminocarboxylic acids such as para-aminomethylbenzoic acid. In the above copolymer, paraxylylene diamine accounts for 30% or less of the total xylylene diamine, and the constituent units formed from xylylene diamine and aliphatic dicarboxylic acid account for at least 70 mol% in the molecular chain. That's all. In addition, these polymers include, for example, nylon 6, nylon 6, 6, nylon 6, 10, nylon
11, polymers such as nylon 12, antistatic agents, lubricants,
Anti-blocking agents, stabilizers, dyes, pigments, etc. may also be included. Meta-xylylene group-containing polyamide resin (hereinafter referred to as
Since SM resin (abbreviated as SM resin) itself is inherently brittle in an amorphous state, it is necessary to have a relative viscosity of 1.5 or more, more preferably 2.0 or more. The multilayer container according to the present invention has inner and outer layers made of thermoplastic polyester resin and an intermediate layer made of metaxylylene group-containing polyamide resin, but in some cases an adhesive layer is provided between the intermediate layer and the outer layer and/or between the intermediate layer and the inner layer. It is also possible to form. Conventionally, when a saponified ethylene-vinyl acetate copolymer known as a high gas barrier resin is used, since the resin itself is a crystalline resin, devitrification occurs during parison molding, resulting in a significant decrease in transparency. Of course, transparency can be improved by thinning the layer by stretching, but the portions that are not stretched, such as the bottom of the bottle, remain in a devitrified state, which is unfavorable in terms of appearance. Furthermore, when using a styrene-acrylonitrile copolymer, since it is an amorphous resin itself, it will not devitrify during molding, but its glass transition temperature is high, so it cannot be used under the stretching temperature suitable for polyester resin. It has the disadvantage that it cannot be extended sufficiently. Furthermore, since it is an amorphous resin and does not induce oriented crystallization even when stretched, it also has the disadvantage that the container deforms due to residual stretching stress. For these resins, SM resin itself is originally a crystalline resin, but since it has a relatively high Tg, it is easily amorphized by rapid cooling treatment from the molten state, giving it good transparency, and its Tg is higher than that of polyester resin. Since this is almost the same, oriented crystallization by stretching is sufficiently induced, and unlike the high gas barrier resins, the container has excellent transparency, gas barrier properties, and other physical properties, and has high commercial value. In the multilayer container of the present invention, the thickness of the intermediate layer made of SM resin in the main body is practically 5 .mu.m to 1 mm, preferably 10 .mu.m to 500 .mu.m. In addition, it is practical that the thickness of the polyester resin layer forming the inner layer and outer layer is 50 Ό to 1 mm.
Preferably it is 100Ό to 500Ό. Further, the total thickness of the inner, outer and intermediate layers is practically 100Ό to 2mm, preferably 200Ό to 1mm. The container of the present invention can be manufactured according to conventional container manufacturing methods, but it is necessary that at least the thin wall portion of the container is oriented in at least one direction. The degree of orientation can be detected by measuring the difference in refractive index between the thickness direction and the plane direction of the thin wall portion of the container. If you expect excellent gas barrier properties and high transparency, it is desirable that the difference in refractive index between the plane direction and the thickness direction is 0.02 or more, and even more preferably 0.05 or more.If the difference in refractive index is 0.02 or less, sufficient mechanical strength is achieved. No improvement in physical properties or gas barrier properties can be expected. If it is difficult to measure by refractive index, it can also be detected by anisotropy of mechanical properties. Examples of the container of the present invention include containers obtained by a molding method involving stretching, such as bottles and pots. For example, in the case of bottles, methods for obtaining these containers include conventionally known extrusion blow molding methods or
Although there are axial stretch blow molding methods, biaxial stretch blow molding methods are preferred. In the case of the biaxial stretch blow molding method, after heating the expandable geometric shape with a multilayer structure (hereinafter referred to as parison) to the stretching temperature, a stretching rod and a compressed gas are moved axially in the blow mold. It can be expanded and shaped into a bottle by blowing into it. A parison having a multilayer structure is formed by forming one end of a multilayer pipe in a stepwise manner starting from the inner layer using a normal injection molding machine or a molding machine with multiple melt injection devices, or by using a multilayer extrusion molding machine. Obtained by bottoming out, etc. The parison can also be heated in a heating oven equipped with a conventional heating element such as a block heater or an infrared heater. The stretching temperature in the case of a multilayer parison made of the constituent components of the present invention may be approximately the same as that of a parison made of a single polyester resin, and is related to the glass transition temperature (Tg) of the polyester resin.
15〔℃ or more, [2 (Tg) + 15〕℃ or less, especially
80-150°C is preferred. Stretching is 1 to 4 in the axial direction.
It is preferable to stretch 2 to 7 times in the circumferential direction.In particular, by increasing the stretching ratio, the pressure bonding between the outer periphery and the intermediate layer, the intermediate layer and the inner layer, etc. improves, and the transparency also increases. More preferably, the area stretching ratio (stretching ratio in the axial direction x stretching ratio in the circumferential direction) is 5 to 18 times. The present invention will be explained below with reference to Examples. Furthermore, methods for measuring the main characteristics measured in the present invention are shown below. (1) Intrinsic viscosity of polyester resin [η]; Phenol/tetrachloroethane = 6/4 (weight ratio)
Measurement was performed at 80°C using a mixed solvent. (2) ηrel of polyamide resin: Relative viscosity measured at 25°C after dissolving 1 g of resin in 100 ml of 96% sulfuric acid. (3) Refractive index: Attach a polarizing plate to the Atsube refractometer,
Measured using sodium D line at 25°C.
Let the refractive index in the axial and circumferential directions (both plane directions) be nx and ny, and the refractive index in the thickness direction be nz, and calculate nx + ny/2-nz = △n (birefringence) to detect the degree of orientation. did. (4) Transparency and haze: Calculated using Hazemeter S manufactured by Toyo Seiki Co., Ltd. according to the following formula according to JIS-K6714. Transparency= T2 / T1 ×100(%) Haze= T4 − T3 ( T2 / T1 )/ T2 ×100(
%) T 1 ; Incident light amount T 2 ; Total light transmission amount T 3 ; Scattered light amount by the device T 4 ; Scattered light amount by the device and sample (5) Oxygen permeation amount; Rika Seiki Kogyo dual-unit gas permeability meter It was measured by pressure change at 30°C using a method according to ASTM-D-1434-58.
(cc/m 2・24hr・atm) (6) Water vapor permeation rate; 40℃ according to JIS-Z-0208,
It was measured from the weight increase by the Cupp method at 90% RH. (g/m 2・24 hours) (7) Tensile properties: The yield strength was measured using a tanzag-shaped specimen with a width of 10 mm using a Tensilon manufactured by Toyo Baldwin Co., Ltd. under conditions of a chuck distance of 50 mm and a tensile speed of 50 mm/min. , the breaking strength and elongation were measured (23
℃). Examples 1, 2 and Comparative Example Polyethylene terephthalate (abbreviated as PET) with [η] = 0.72 was used as the polyester resin constituting the inner layer and the outer layer, and Example 1 was used as the meta-xylylene group-containing polyamide resin constituting the intermediate layer.
In the case of polymethaxylylene adipamide with ηrel=2.2 (methaxylylene/paraxylylene=99/
1 weight ratio) (abbreviated as SM-1), and in Example 2, polymethaxylylene adipamide (abbreviated as SM-2) obtained by copolymerizing SM-1 with 2.5% by weight of polyethylene glycol having a molecular weight of 4000 was used. Then, a multilayer parison with an outer diameter of 35 mm, a length of 140 mm, and a wall thickness of 5 mm was molded. In addition, in Comparative Example 1, [η]=
Using 0.72 polyethylene terephthalate,
A parison having the same shape as in Examples 1 and 2 was molded. The multilayer parison was first molded using polyester resin to form the innermost layer parison with a thickness of 2 mm, and then the molds were sequentially replaced to layer SM resin for the middle layer and polyester resin for the outermost layer. The thickness of each layer in this parison is inner layer: middle layer: outer layer = 2 mm: 1.5 mm: 1.5 mm. All molding was performed using an N-95 injection molding machine manufactured by Japan Steel Works. Table 1 shows the conditions at that time.
Shown below.

【衚】 このパリ゜ンを自転甚駆動装眮の぀いたパリ゜
ン嵌合郚にパリ゜ン開口端を嵌装し、遠赀倖ヒヌ
タヌを有するオヌブン䞭で回転させながらパリ゜
ンの衚面枩床が110℃になるたで加熱した。この
あずパリ゜ンを吹蟌金型内に移送し延䌞ロツドの
移動速床22cm秒、圧瞮気䜓圧20Kgcm2の条件䞋
で吹蟌成圢し、党長265mm、胎郚の倖埄80mm、内
容積1000mlのビヌルびん圢状の䞭空容噚を埗た。
これらの容噚の性胜を衚−に瀺す。
[Table] The open end of this parison was fitted into the parison fitting part equipped with a rotation drive device, and the parison was heated while rotating in an oven equipped with a far-infrared heater until the surface temperature of the parison reached 110℃. . After that, the parison was transferred into a blow mold and blow molded under the conditions of a stretching rod moving speed of 22 cm/sec and a compressed gas pressure of 20 Kg/cm 2 to produce a beer with a total length of 265 mm, an outer diameter of the body of 80 mm, and an internal volume of 1000 ml. A bottle-shaped hollow container was obtained.
Table 2 shows the performance of these containers.

【衚】 した詊隓片を甚いお行぀た。
本実斜䟋により埗られた容噚は、ポリ゚チレン
テレフタレヌト単䜓からなる容噚に比べ透明床、
力孊的性質の䜕ら犠牲なく、酞玠ガス遮断性を著
しく向䞊させたものであるこずがわかる。
[Table]
The container obtained in this example has a lower transparency than a container made of polyethylene terephthalate alone.
It can be seen that the oxygen gas barrier properties are significantly improved without any sacrifice in mechanical properties.

Claims (1)

【特蚱請求の範囲】[Claims]  少くずも皮の熱可塑性暹脂からなる倚局構
造を有する容噚であ぀お、最倖局および最内局が
゚チレンテレフタレヌトを䞻たる繰り返し単䜍ず
する固有粘床0.55以䞊の熱可塑性ポリ゚ステル暹
脂、䞭間局がメタキシリレン基含有ポリアミド暹
脂から構成され、か぀容噚の肉薄郚分が少くずも
䞀方向に配向されおいるこずを特城ずする倚局容
噚。
1 A container having a multilayer structure consisting of at least two types of thermoplastic resins, in which the outermost layer and the innermost layer are thermoplastic polyester resins with an intrinsic viscosity of 0.55 or more whose main repeating unit is ethylene terephthalate, and the middle layer contains metaxylylene groups. A multilayer container made of polyamide resin, characterized in that a thin wall portion of the container is oriented in at least one direction.
JP14248379A 1979-11-02 1979-11-02 Multilayer vessel Granted JPS5664866A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP14248379A JPS5664866A (en) 1979-11-02 1979-11-02 Multilayer vessel
DE803050007A DE3050007A1 (en) 1979-11-02 1980-10-29 Multi-layered vessel and process for producing same
PCT/JP1980/000269 WO1981001265A1 (en) 1979-11-02 1980-10-29 Multi-layered vessel and process for producing same
GB8118832A GB2078171B (en) 1979-11-02 1980-10-29 Multi-layered vessel and process for producing same
US06/269,056 US4398642A (en) 1979-11-02 1980-10-29 Multi-ply vessel and method for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14248379A JPS5664866A (en) 1979-11-02 1979-11-02 Multilayer vessel

Publications (2)

Publication Number Publication Date
JPS5664866A JPS5664866A (en) 1981-06-02
JPS6230912B2 true JPS6230912B2 (en) 1987-07-06

Family

ID=15316363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14248379A Granted JPS5664866A (en) 1979-11-02 1979-11-02 Multilayer vessel

Country Status (1)

Country Link
JP (1) JPS5664866A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05301514A (en) * 1992-04-24 1993-11-16 Taiheiyo Kogyo Kk Air-conditioning device for automobile

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5677144A (en) * 1979-11-30 1981-06-25 Yoshino Kogyosho Co Ltd Bottle body in polyethylene terephthalate resin
AU549286B2 (en) * 1981-01-22 1986-01-23 Toyo Boseki K.K. Blow moulded multiply vessel
JPS5890033A (en) * 1981-11-13 1983-05-28 株匏䌚瀟吉野工業所 Bottle body
AU2003289228A1 (en) 2002-12-10 2004-06-30 Toyo Boseki Kabushiki Kaisha Material for fuel-system part and fuel-system part comprising the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133176A (en) * 1974-08-29 1976-03-22 Toyo Boseki HOSOYOFUKUGOFUIRUMU

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133176A (en) * 1974-08-29 1976-03-22 Toyo Boseki HOSOYOFUKUGOFUIRUMU

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05301514A (en) * 1992-04-24 1993-11-16 Taiheiyo Kogyo Kk Air-conditioning device for automobile

Also Published As

Publication number Publication date
JPS5664866A (en) 1981-06-02

Similar Documents

Publication Publication Date Title
US4398642A (en) Multi-ply vessel and method for production thereof
AU618770B2 (en) Transparent gas-barrier multilayer structure
EP0186154B1 (en) Multilayer parison, process for its production and multilayer container
JPH0579494B2 (en)
JPS60240409A (en) Preparation of multilayer parison
KR970006674B1 (en) Copolyester
JPH05309648A (en) Multi-layer vessel and its manufacture
JPH0227942B2 (en) TASOYOKI
JPH0454702B2 (en)
JP2663578B2 (en) Polyester hollow molded body
JPS5841181B2 (en) Manufacturing method for multilayer containers
JPS6230912B2 (en)
JPS6239088B2 (en)
JPS60232952A (en) Polyester laminated molded shape and use application thereof
JPH04168148A (en) Polyester resin composition and its use
JPS60238355A (en) Polyester composition and its use
JPH01294426A (en) Multiple layer container
JPS59230022A (en) Biaxially oriented polyester hollow molded article
JPH0611797B2 (en) Polyester hollow molding
JPH0423B2 (en)
JPS6279258A (en) Polyester bottle and production thereof
JPS63267548A (en) Gas-barrier multi-layer structure
JPH0126940B2 (en)
JP2629333B2 (en) Polyester hollow molded body
JPH03133640A (en) Polyester multi-layer molded form