JPS623087Y2 - - Google Patents

Info

Publication number
JPS623087Y2
JPS623087Y2 JP16014780U JP16014780U JPS623087Y2 JP S623087 Y2 JPS623087 Y2 JP S623087Y2 JP 16014780 U JP16014780 U JP 16014780U JP 16014780 U JP16014780 U JP 16014780U JP S623087 Y2 JPS623087 Y2 JP S623087Y2
Authority
JP
Japan
Prior art keywords
neck
vacuum
plate
thickness
synthetic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16014780U
Other languages
Japanese (ja)
Other versions
JPS5786977U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16014780U priority Critical patent/JPS623087Y2/ja
Publication of JPS5786977U publication Critical patent/JPS5786977U/ja
Application granted granted Critical
Publication of JPS623087Y2 publication Critical patent/JPS623087Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Packages (AREA)
  • Thermally Insulated Containers For Foods (AREA)

Description

【考案の詳細な説明】 本考案は真空断熱容器、例えば金属製魔法瓶、
クライオスタツト、断熱弁当箱等の頚部構造の改
良に係り、頚部に於ける熱損失が特に少なく、然
かも断熱空間の真空度の低下を招かない様にした
真空断熱容器の頚部構造に関する。
[Detailed description of the invention] This invention is a vacuum insulated container, such as a metal thermos flask.
This invention relates to the neck structure of a vacuum insulated container that has particularly low heat loss in the neck and does not cause a decrease in the degree of vacuum in the insulated space, in relation to improving the neck structure of cryostats, insulated lunch boxes, etc.

真空断熱容器は、その秀れた断熱特性の故に一
般に広く利用されている。然し乍ら、従来の金属
製真空断熱容器に於いては、容器頚部からの熱の
侵入又は放散が相当量あるために、真空断熱の優
れた断熱特性を十分に活かし切れていないという
欠点がある。
Vacuum insulation containers are generally widely used because of their excellent insulation properties. However, conventional metal vacuum insulated containers have the disadvantage that the excellent heat insulating properties of vacuum insulation cannot be fully utilized because a considerable amount of heat enters or dissipates from the neck of the container.

これ等の問題を解決するために、従前から、容
器頚部を構成する金属板の厚みを極力薄くするた
めの努力が行なわれている。しかし、容器頚部の
機械的強度等の面から、金属板の厚みを薄くする
ことには一定の限界があり、容器頚部からの熱損
失を十分に低減させ得る迄には至つていない。
In order to solve these problems, efforts have been made to reduce the thickness of the metal plate constituting the container neck as much as possible. However, there is a certain limit to reducing the thickness of the metal plate in terms of the mechanical strength of the container neck, and it has not yet been possible to sufficiently reduce heat loss from the container neck.

一方、容器頚部の内層板を金属板から合成樹脂
板に代えることにより、頚部に於ける熱損失を少
くしようとする研究が、最近進められている。合
成樹脂材は熱伝導率が小さいため、頚部に於ける
板厚を比較的大きく出来るからである。しかし、
合成樹脂板はガスの透過率が金属に比較して極め
て高いうえ、樹脂自体からも多量の内部ガスが放
出されるため、断熱空間の真空度を長期に亘つて
所定値に保持し得ないという基本的な欠陥があ
る。
On the other hand, research has recently been underway to reduce heat loss at the neck of the container by replacing the metal plate with a synthetic resin plate for the inner layer of the neck of the container. This is because the synthetic resin material has a low thermal conductivity, so the plate thickness at the neck can be made relatively large. but,
Synthetic resin plates have extremely high gas permeability compared to metals, and the resin itself releases a large amount of internal gas, making it impossible to maintain the vacuum level in the insulation space at a specified value over a long period of time. There is a fundamental flaw.

そこで、本考案者は、合成樹脂板の表面に金属
を蒸着又はメツキ等によりコーテイングする事を
着想し、これを利用した真空断熱容器について
種々の実験を繰返し行なつて来た。その結果、金
属層が10μm以下では、ガスの透過を防止し且つ
合成樹脂板からの内部ガスを十分に遮断すること
が不可能であり、実用的な性能を得るためには、
50μm以上の金属層の厚みを要することを知得し
た。
Therefore, the inventor of the present invention came up with the idea of coating the surface of a synthetic resin plate with metal by vapor deposition or plating, and has repeatedly conducted various experiments on vacuum insulation containers using this coating. As a result, if the metal layer is 10 μm or less, it is impossible to prevent gas permeation and to sufficiently block internal gas from the synthetic resin plate, and in order to obtain practical performance,
It was learned that the thickness of the metal layer is required to be 50 μm or more.

又、メツキによる金属層は、ピンホールが比較
的多く、内部ガスの放出量が十分に低下する程の
効果が無いことも判明した。
It was also found that the plating metal layer had relatively many pinholes and was not effective enough to sufficiently reduce the amount of internal gas released.

更に、蒸着により金属層を形成する場合には、
合成樹脂の軟化の問題を起生する。即ち合成樹脂
の表面に50μm以上もの層厚の金属を蒸着させる
場合には、樹脂表層に於いて凝固する金属の凝固
熱により、合成樹脂が軟化を起すというのであ
る。又、樹脂の軟化を防ぎつつ50μm程度の層厚
に金属を蒸着するためには、約20〜30時間程度の
時間を要することになり、実用上に多くの問題が
あることが判明した。
Furthermore, when forming a metal layer by vapor deposition,
This causes the problem of softening of the synthetic resin. That is, when a metal with a layer thickness of 50 μm or more is deposited on the surface of a synthetic resin, the heat of solidification of the metal solidifying on the surface layer of the resin causes the synthetic resin to soften. Furthermore, it has been found that it takes about 20 to 30 hours to deposit metal to a layer thickness of about 50 μm while preventing softening of the resin, which poses many practical problems.

上述の如き各種の開発実験とその結果を通し
て、本願考案者は、厚さ0.01mm〜0.6mmの金属薄
板の一側に、厚さ0.5mm〜2mmのP.B.Tやポリエ
チレン等の合成樹脂を、エポキシ系接着材等を用
いるか、又は樹脂側をブロー成形して加熱し、溶
着によつて固着し、該積層板の金属側を真空側に
用いて真空断熱容器の頚部に用いることにより、
ガスの透過性が低く且つ合成樹脂材からの内部放
出ガスの遮断も完全で、長期に亘つて高真空度を
保持し得ると共に、頚部に於ける熱損失を著しく
低減させることが出来、そのうえ所望の機械的強
度を容易に得ることが出来る真空断熱容器の頚部
構造を開発した。
Through various development experiments and their results as described above, the inventor of the present application has applied synthetic resin such as PBT or polyethylene with a thickness of 0.5 mm to 2 mm to one side of a thin metal plate with a thickness of 0.01 mm to 0.6 mm, using an epoxy resin. By using an adhesive or the like, or by blow molding the resin side, heating it, and fixing it by welding, and using the metal side of the laminate as the vacuum side and using it for the neck of a vacuum insulated container,
It has low gas permeability and completely blocks internally emitted gas from the synthetic resin material, allowing it to maintain a high degree of vacuum for a long period of time, and significantly reducing heat loss in the neck area. We have developed a neck structure for vacuum insulated containers that can easily obtain the mechanical strength of .

以下、第1図乃至第4図に示す本考案の各実施
例に基づいて、その詳細を説明する。
Hereinafter, the details will be explained based on each embodiment of the present invention shown in FIGS. 1 to 4.

尚、本考案は実施例の構成のみに限定されるも
のではなく、その要旨を逸脱しない範囲に汚いて
適宜に構造の変更を為し得るものである。又、本
考案に係る“真空断熱容器の頚部構造”に於いて
用いる前記積層板は、真空断熱パネルの板材及び
枠材としても利用できることは勿論である。
It should be noted that the present invention is not limited to the configurations of the embodiments, but may be modified as appropriate without departing from the gist thereof. Furthermore, it goes without saying that the laminate used in the "neck structure of a vacuum insulated container" according to the present invention can also be used as a plate material and a frame material for a vacuum insulated panel.

第1図は本考案の第1実施例を示すものであ
り、真空断熱板1を利用した弁当箱の縦断面図で
ある。又第2図は頚部の部分拡大断面図である。
図に於いて、2は真空断熱板1を構成する外層板
であり、厚さ0.6mmのステンレス板が使用されて
いて、その外形寸法は横幅175mm、縦幅250mm、高
さ55mmであつて、一側を開放した直方体状の筒体
に形成されている。又、3は断熱スペーサであつ
て、厚さ2mm、高さ3mmの硬質ガラス製の棧を3
段に積み重ねたものが使用されている。
FIG. 1 shows a first embodiment of the present invention, and is a longitudinal sectional view of a lunch box using a vacuum insulation board 1. As shown in FIG. FIG. 2 is a partially enlarged sectional view of the neck.
In the figure, 2 is the outer layer plate that constitutes the vacuum insulation board 1, and a stainless steel plate with a thickness of 0.6 mm is used, and its external dimensions are 175 mm in width, 250 mm in length, and 55 mm in height. It is formed into a rectangular parallelepiped cylinder with one side open. In addition, 3 is a heat insulating spacer, which is made of hard glass with a thickness of 2 mm and a height of 3 mm.
They are used stacked in tiers.

4は、金属薄板4aの一側に合成樹脂層4bを
固着して形成した積層板であつて、当該実施例に
於いては、厚さ0.1mmのステンレス板の一側に、
厚さ1mmのポリカーボネートを固着した積層板4
が、真空断熱板1の内層板として使用されてい
る。該積層板4は、前記外層板2と同様に一側が
開放した直方体状の筒体に形成されており、スペ
ーサ3を介設して前記外層板2内へ挿着すること
により、外寸厚さ10mmの真空断熱板1より成る弁
当箱本体が構成されている。
4 is a laminated plate formed by fixing a synthetic resin layer 4b to one side of a thin metal plate 4a, and in this embodiment, one side of a stainless steel plate with a thickness of 0.1 mm is
Laminated board 4 with 1mm thick polycarbonate adhered to it
is used as the inner layer of the vacuum insulation board 1. The laminated plate 4 is formed into a rectangular parallelepiped cylinder with one side open like the outer layer plate 2, and by inserting it into the outer layer plate 2 with a spacer 3 interposed, the outer dimension and thickness can be reduced. The main body of the lunch box is composed of a vacuum insulation board 1 with a diameter of 10 mm.

前記積層板4は、厚さ0.1mmのステンレス板を
直方体状に巻いて合せ目を半田付けした四角筒状
の一端に、プレス成型した深さ約5mmの四角型の
キヤツプを半田付でとり付けた直方体状の筒体内
へ、これよりやや小さ目に金型で成型したポリカ
ーボネート製の同形状の筒体の表面にエポキシ系
接着剤を塗布した後挿入し、接着剤を硬化せしめ
て製作されている。尚、前述の接着剤によらず、
前記ステンレス製の直方体状の筒体は外部から金
型で固定し、筒体内へポリエチレン等をブロー成
型法によつてステンレスと密着成型し、加熱して
溶着するようにしても良いことは勿論である。
又、本実施例にあつては、真空断熱板1の内層板
を全て前記ステンレスとポリカーボネイトとの積
層板4によつて形成しているが、弁当箱の開口部
5の近傍、即ちウレタン断熱材7が入つている部
分のみに前記積層板4を利用し、他の部分は厚さ
0.4〜0.5mm程度のステンレス板としても良い。
The laminated plate 4 is made by rolling a 0.1 mm thick stainless steel plate into a rectangular parallelepiped shape and soldering the seams to one end of a rectangular cylindrical shape, and a press-molded rectangular cap with a depth of about 5 mm attached by soldering. It is manufactured by applying an epoxy adhesive to the surface of a polycarbonate cylinder of the same shape that is molded into a slightly smaller size into a rectangular parallelepiped cylinder, and then inserting it and allowing the adhesive to harden. . In addition, regardless of the adhesive mentioned above,
Of course, the rectangular parallelepiped cylinder made of stainless steel may be fixed from the outside with a mold, and polyethylene or the like may be molded into the cylinder in close contact with the stainless steel by blow molding, and then heated and welded. be.
Further, in this embodiment, all the inner layers of the vacuum insulation board 1 are formed of the laminate plate 4 of stainless steel and polycarbonate, but the area near the opening 5 of the lunch box, that is, the urethane insulation material The laminated plate 4 is used only in the part where 7 is included, and the thickness is adjusted in other parts.
A stainless steel plate of about 0.4 to 0.5 mm may also be used.

6は、弁当箱本体内へ挿入する内箱であり、ポ
リカーボネイト等の有害物の析出のない合成樹脂
材でもつて形成されており、その一側には厚さ30
mmのウレタン断熱材7が固着されていて、弁当箱
本体の開口部5が閉塞される構成となつている。
8は内箱6の蓋体である。
6 is an inner box to be inserted into the lunch box body, and is made of a synthetic resin material such as polycarbonate that does not deposit harmful substances, and one side of the inner box has a thickness of 30 mm.
A urethane heat insulating material 7 of mm is fixed to the lunch box body so that the opening 5 of the lunch box body is closed.
8 is a lid of the inner box 6.

次に、本考案に係る頚部構造の断熱特性につい
て、前述した弁当箱を基にして説明する。
Next, the heat insulation properties of the neck structure according to the present invention will be explained based on the lunch box described above.

先ず比較のために、第1図に示した弁当箱と全
く同一の構成で、唯だ内層板を0.4mmのステンレ
ス板で形成した真空断熱弁当箱の熱損支を示せ
ば、下記の通りになる。尚、下記の熱損失量Q
は、計算値であるが、この値は実測値と略完全に
一致することが実証されている。
First, for comparison, the heat loss of a vacuum insulated lunch box with the exact same configuration as the lunch box shown in Figure 1, but with the only inner layer made of 0.4 mm stainless steel plate, is as follows: Become. In addition, the following heat loss amount Q
is a calculated value, but it has been demonstrated that this value almost completely agrees with the measured value.

全熱損失量Q=6.8kcal/H 内訳(a) 断熱スペーサ3からの伝熱損失 Q1=2.1kcal/H (b) ウレタン断熱材7からの伝熱損失 Q2=0.1kcal/H (c) 頚部Aからの伝熱損失 Q3=2.7kcal/H (d) 輻射による熱損失 Q4=1.5kcal/H (e) 真空断熱の分子熱伝導 (真空度1×10-4Torr) =Q5無視可能 上記の結果からも明らかな様に、頚部Aからの
伝熱損失Q3は全損失量Qの略40%を含めてお
り、この種真空断熱容器に於いては、当該損失
Q3の低減が最重要課題となつている。
Total heat loss Q = 6.8kcal/H Breakdown (a) Heat transfer loss from insulation spacer 3 Q 1 = 2.1kcal/H (b) Heat transfer loss from urethane insulation material 7 Q 2 = 0.1kcal/H (c ) Heat transfer loss from neck A Q 3 = 2.7 kcal/H (d) Heat loss due to radiation Q 4 = 1.5 kcal/H (e) Molecular heat conduction in vacuum insulation (degree of vacuum 1×10 -4 Torr ) = Q 5 Negligible As is clear from the above results, the heat transfer loss Q3 from the neck A includes approximately 40% of the total loss Q, and in this type of vacuum insulated container, the loss
Reducing Q3 has become the most important issue.

一方、本考案に係る頚部構造を有する第1図の
如き真空断熱弁当箱に於いては、頚部Aに於ける
伝熱損失Q3が略1/4(≒0.7kcal/H)に減少し、
その結果全熱損失量Qが4.8kcal/Hとなる。即
ち、熱損失量を略30%低減させることが可能とな
る。
On the other hand, in the vacuum insulated lunch box shown in FIG. 1 having the neck structure according to the present invention, the heat transfer loss Q3 at the neck A is reduced to approximately 1/4 (≒0.7kcal/H),
As a result, the total heat loss amount Q becomes 4.8 kcal/H. That is, it becomes possible to reduce the amount of heat loss by approximately 30%.

前記ステンレス板4aの厚みtは、前述の如く
真空度の保持という面から、少くとも0.01mm以上
の厚さを必要とし、又、厚さtが0.6mm以上にな
れば、この種の保温弁当箱に於いては、全体を発
泡ウレタンで保温する場合と断熱性能がほぼ同じ
になり、真空断熱にするメリツトが失なわれる。
The thickness t of the stainless steel plate 4a needs to be at least 0.01 mm or more in order to maintain the degree of vacuum as described above, and if the thickness t is 0.6 mm or more, this type of thermal lunch box As for the box, the insulation performance is almost the same as when the whole box is insulated with foamed urethane, and the advantage of vacuum insulation is lost.

又、ステンレス板以外の金属でも、金属薄板4
aとして使用可能であるが、熱伝導率がステンレ
ス板(14kcal/m.H.℃)の2倍近くにもなれ
ば、当該頚部構造とする利益が薄れるため、熱伝
導率が30kcal/m.H.℃以下の材質が望ましい。
In addition, metal thin plates 4 can be used for metals other than stainless steel plates.
A, but if the thermal conductivity is nearly twice that of a stainless steel plate (14kcal/mH℃), the benefits of the neck structure will be diminished, so materials with a thermal conductivity of 30kcal/mH℃ or less are recommended. is desirable.

第3図は本考案の第2実施例の要部を示すもの
であり、円筒状の全金属製魔法瓶に適用したもの
である。又第4図は頚部の部分拡大断面図であ
る。
FIG. 3 shows the main part of a second embodiment of the present invention, which is applied to a cylindrical all-metal thermos flask. FIG. 4 is a partially enlarged sectional view of the neck.

図に於いて、9及び10はステンレス製の内槽
と外槽である。当該断熱容器の頚部Aは、予かじ
め0.1mm厚のステンレス板4aを円筒状に加工形
成した筒体の内面に、厚さ2mmにガラス繊維とエ
ポキシ樹脂の所謂F.R.Pを積層成形した構造の積
層板4によつて構成されており、該積層板4の両
端部は、夫々内槽9と外槽10の端部へハンダ付
けによつて固着されている。
In the figure, 9 and 10 are an inner tank and an outer tank made of stainless steel. The neck A of the heat insulating container is made of a laminated structure in which so-called FRP, which is made of glass fiber and epoxy resin, is laminated to a thickness of 2 mm on the inner surface of a cylindrical body made of a 0.1 mm thick stainless steel plate 4a that has been processed in advance into a cylindrical shape. It is composed of a plate 4, and both ends of the laminated plate 4 are fixed to the ends of an inner tank 9 and an outer tank 10, respectively, by soldering.

前記F.R.P4bの熱伝導率は0.2kcal/m.H.℃
程度であつて極めて低く、その厚さをステンレス
板4aの20倍(2mm)にしても伝熱損失は無視し
得る程度であり、当該F.R.P4bにより、容器頚
部Aの機械的強度を所望の値に保持することが出
来る。又、F.R.Pに代え、他の低熱伝導率の合成
樹脂材の使用が可能であることは勿論である。
The thermal conductivity of the above FRP4b is 0.2kcal/mH℃
Even if the thickness of the stainless steel plate 4a is made 20 times (2 mm), the heat transfer loss is negligible, and the mechanical strength of the container neck A can be adjusted to the desired value by the FRP 4b. can be retained. Furthermore, it is of course possible to use other synthetic resin materials with low thermal conductivity in place of FRP.

本考案は上述の通り、極めて簡単な構成にも拘
わらず、従来から金属真空断熱容器の最弱点であ
るとされていた容器頚部Aに於ける熱損失を著し
く減少させることが出来る。
As described above, despite the extremely simple structure of the present invention, it is possible to significantly reduce heat loss at the container neck A, which has traditionally been considered to be the weakest point of a metal vacuum insulated container.

又、合成樹脂層によつて容器頚部の機械的強度
を保持することが出来、そのうえ金属薄板により
ガスの透過が完全に遮断されるため、真空度が経
時的に低下することもない。このように、本考案
は優れた実用的効用を有するものである。
Furthermore, the mechanical strength of the container neck can be maintained by the synthetic resin layer, and the thin metal plate completely blocks gas permeation, so that the degree of vacuum does not decrease over time. Thus, the present invention has excellent practical utility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本考案の第1実施例を示す縦断面図
であり、真空断熱弁当箱に本考案を適用したもの
である。第2図は、第1図B部の拡大断面図であ
る。第3図は、本考案の第2実施例を示す縦断面
図である。第4図は、第3図C部の拡大断面図で
ある。 A……真空断熱容器の頚部、1……真空断熱
板、2……外層板、3……断熱スペーサ、4……
積層板、4a……金属薄板、4b……合成樹脂
層、5……開口部、6……内箱、7……ウレタン
断熱材、8……内箱の蓋、9……内槽、10……
外槽。
FIG. 1 is a longitudinal sectional view showing a first embodiment of the present invention, in which the present invention is applied to a vacuum insulated lunch box. FIG. 2 is an enlarged sectional view of section B in FIG. 1. FIG. 3 is a longitudinal sectional view showing a second embodiment of the present invention. FIG. 4 is an enlarged sectional view of section C in FIG. 3. A... Neck of vacuum insulation container, 1... Vacuum insulation board, 2... Outer layer plate, 3... Heat insulation spacer, 4...
Laminated plate, 4a... Metal thin plate, 4b... Synthetic resin layer, 5... Opening, 6... Inner box, 7... Urethane insulation material, 8... Inner box lid, 9... Inner tank, 10 ……
Outer tank.

Claims (1)

【実用新案登録請求の範囲】 (1) 金属薄板4aの一側に合成樹脂層4bを密着
して積層板4を形成し、該積層板4の金属薄板
4aを真空側にして断熱容器の頚部Aを構成す
ることを特徴とする真空断熱容器の頚部構造。 (2) 熱伝導率が30Kcal/m.H.℃以下であり、且
つ厚みtが0.01mm〜0.6mmの金属薄板4aを用
いる実用新案登録請求の範囲第1項に記載の真
空断熱容器の頚部構造。
[Claims for Utility Model Registration] (1) Laminated plate 4 is formed by closely adhering a synthetic resin layer 4b to one side of a thin metal plate 4a, and the neck of a heat-insulating container is made with the thin metal plate 4a of the laminated plate 4 on the vacuum side. A neck structure of a vacuum insulated container characterized by comprising A. (2) The neck structure of a vacuum heat-insulating container according to claim 1, which uses a thin metal plate 4a having a thermal conductivity of 30 Kcal/mH°C or less and a thickness t of 0.01 mm to 0.6 mm.
JP16014780U 1980-11-07 1980-11-07 Expired JPS623087Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16014780U JPS623087Y2 (en) 1980-11-07 1980-11-07

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16014780U JPS623087Y2 (en) 1980-11-07 1980-11-07

Publications (2)

Publication Number Publication Date
JPS5786977U JPS5786977U (en) 1982-05-28
JPS623087Y2 true JPS623087Y2 (en) 1987-01-23

Family

ID=29519143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16014780U Expired JPS623087Y2 (en) 1980-11-07 1980-11-07

Country Status (1)

Country Link
JP (1) JPS623087Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6515913B2 (en) * 2016-12-22 2019-05-22 トヨタ自動車株式会社 Vacuum insulation container

Also Published As

Publication number Publication date
JPS5786977U (en) 1982-05-28

Similar Documents

Publication Publication Date Title
DE29903673U1 (en) Insulating housing, especially for cooling devices and / or energy storage
CN103370120A (en) Gas adsorption device and vacuum heat insulating material provided therewith
US4505977A (en) Thermal insulation
JPS623087Y2 (en)
KR840000552Y1 (en) Vacuummed wall preventing heat transfer
DE10148587C1 (en) Thermal container includes thermal insulators which are embedded in annular insulation flange and lid which is releasably seated in flange
JPH0820034B2 (en) Heat insulation manufacturing method
JP4944567B2 (en) Vacuum insulation article and method for manufacturing the same
DE2100585A1 (en) Vacuum-sealed vessel
JPH1122896A (en) Vacuum heat insulating material
JP2006124013A (en) Portable heat insulating container
KR100664279B1 (en) Vacuum isolation material for refrigerator cabinet and manufacturing method thereof and isolation structure of refrigerator cabinet applying the same
EP1243525B1 (en) Container for long-term transport comprising highly insulated components
JPH08100991A (en) Manufacture of thermal insulation panel
JPS60165484A (en) Manufacture of heat-insulator pack
CA2199237A1 (en) Thermally insulated synthetic resin container and thermally insulated synthetic resin lid
JPH0454399Y2 (en)
DE2022381A1 (en) Insulating packing for storage containers for liquefied - gases
JPS63231190A (en) Heat-insulating structure
JPS624841Y2 (en)
JPH072875U (en) Insulation structure
KR20030060193A (en) Plastic Box Using Vacuum Heat Shield Merterial
JP2000109044A (en) Cup container
JPS6028356Y2 (en) Water bottle
JPH0214120Y2 (en)