JPS6230696Y2 - - Google Patents

Info

Publication number
JPS6230696Y2
JPS6230696Y2 JP1981010628U JP1062881U JPS6230696Y2 JP S6230696 Y2 JPS6230696 Y2 JP S6230696Y2 JP 1981010628 U JP1981010628 U JP 1981010628U JP 1062881 U JP1062881 U JP 1062881U JP S6230696 Y2 JPS6230696 Y2 JP S6230696Y2
Authority
JP
Japan
Prior art keywords
evaporator
refrigerant
ejector
gas
pressure loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981010628U
Other languages
Japanese (ja)
Other versions
JPS57124086U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981010628U priority Critical patent/JPS6230696Y2/ja
Publication of JPS57124086U publication Critical patent/JPS57124086U/ja
Application granted granted Critical
Publication of JPS6230696Y2 publication Critical patent/JPS6230696Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Jet Pumps And Other Pumps (AREA)

Description

【考案の詳細な説明】 本考案は、従来キヤピラリチユーブを用いて行
つていた減圧作用をエジエクターにより行わせ、
その噴射エネルギーにより生ずる吸引作用により
低圧液冷媒を、気液分離器、蒸発器、エジエクタ
ー間で循環させると共に、エジエクターにて蒸発
器を通過しエジエクタに吸引された気化冷媒を圧
縮し、圧縮機での圧縮仕事を減少させて成績係数
を大幅に向上させる冷凍サイクルに関する。
[Detailed description of the invention] This invention uses an ejector to perform the depressurizing action that was conventionally performed using a capillary tube.
The suction effect generated by the injection energy circulates the low-pressure liquid refrigerant among the gas-liquid separator, evaporator, and ejector, and the ejector compresses the vaporized refrigerant that has passed through the evaporator and is sucked into the ejector. This invention relates to a refrigeration cycle that significantly improves the coefficient of performance by reducing the compression work of the refrigeration cycle.

先ず、第1図及び第2図を参照してこの種の冷
凍サイクルの構成と動作とを説明する。
First, the configuration and operation of this type of refrigeration cycle will be explained with reference to FIGS. 1 and 2.

第1図において、1は圧縮機、2は凝縮器、3
はエジエクターであり、前記圧縮機1から吐出さ
れた冷媒ガスは凝縮器2に至り凝縮し、この冷媒
液がエジエクター3のノズル3aに流入するよう
に接続されている。
In Fig. 1, 1 is a compressor, 2 is a condenser, and 3 is a compressor.
is an ejector, which is connected so that refrigerant gas discharged from the compressor 1 reaches a condenser 2 and is condensed, and this refrigerant liquid flows into a nozzle 3a of an ejector 3.

エジエクター3は、冷媒液が噴射されることに
より圧力が低下し冷媒が吸引される吸入室3b、
この吸入室3bの入口である吸入口3c、噴射冷
媒と吸引冷媒が混合される平行部3d、前記吸入
室3bから平行部3dに至る導入部3e、混合さ
れた冷媒が圧力を回復する末広部、末広部出口で
ある吐出口3gより構成されている。
The ejector 3 includes a suction chamber 3b in which the pressure is reduced by injecting the refrigerant liquid and the refrigerant is sucked;
A suction port 3c which is the entrance of the suction chamber 3b, a parallel section 3d where the injected refrigerant and the suction refrigerant are mixed, an introduction section 3e leading from the suction chamber 3b to the parallel section 3d, and a divergent section where the mixed refrigerant recovers its pressure. , and a discharge port 3g which is a divergent outlet.

4は気液分離器であり、この気液分離器4の吸
入口4aははエジエクター吐出口3gと接続管5
によつて接続されている。また、この気液分離器
4には下部吐出口4bと上部吐出口4cが設けら
れている。この下部吐出口4bは絞り装置6(第
1蒸発器7の圧力損失が大きい場合は省略するこ
ともできる)を介して第1蒸発器7に接続されて
おり、気液分離器4に溜つた液冷媒の一部が第1
蒸発器7により蒸発される。また、第1蒸発器7
の出口側は前記エジエクター吸入口3cに接続さ
れ、上部吐出口4cは第2蒸発器8を介して前記
圧縮機1の吸込側へ接続されている。
4 is a gas-liquid separator, and the suction port 4a of this gas-liquid separator 4 is connected to the ejector discharge port 3g and the connecting pipe 5.
connected by. Further, this gas-liquid separator 4 is provided with a lower discharge port 4b and an upper discharge port 4c. This lower discharge port 4b is connected to the first evaporator 7 via a throttling device 6 (which can be omitted if the pressure loss of the first evaporator 7 is large), and is connected to the first evaporator 7 to remove the gas accumulated in the gas-liquid separator 4. Part of the liquid refrigerant
It is evaporated by the evaporator 7. In addition, the first evaporator 7
The outlet side of the compressor 1 is connected to the ejector suction port 3c, and the upper discharge port 4c is connected to the suction side of the compressor 1 via the second evaporator 8.

次に、上記冷凍サイクルの動作を第2図に示し
たモリエル線図と共に説明する。先ずaの状態で
圧縮機1に吸引された冷媒は圧縮されてbの状態
の高温高圧ガスとなり、凝縮器2で凝縮されてc
の状態の液となる。この液冷媒はエジエクター3
のノズル3aより噴射され、等エントロピに近い
膨張を行ないdの状態となる。このとき生ずるエ
ジエクター効果により第1蒸発器7からのjの状
態の冷媒が吸入室3bに吸引され噴射された冷媒
と共に導入部3eを通り平行部3dで混合され
る。このとき末広部3fで圧力回復を行ないfの
状態まで圧力が高められ、気液分離器4に吐出さ
れる。気液分離器4ではgの状態のガスとlの状
態の液とに分離されるが液の一部は絞り装置6に
より絞り膨張を行ないhの状態となり、第1蒸発
器7により蒸発を行ないjの状態となる。
Next, the operation of the refrigeration cycle will be explained with reference to the Mollier diagram shown in FIG. First, the refrigerant sucked into the compressor 1 in state a is compressed to become a high-temperature, high-pressure gas in state b, and is condensed in the condenser 2 to become c.
It becomes a liquid in the state of . This liquid refrigerant is ejector 3
is injected from the nozzle 3a, and undergoes nearly isentropic expansion to reach the state d. Due to the ejector effect generated at this time, the refrigerant in the state J from the first evaporator 7 is sucked into the suction chamber 3b and mixed with the injected refrigerant in the parallel part 3d through the introduction part 3e. At this time, the pressure is restored in the divergent portion 3f, the pressure is increased to the state f, and the gas is discharged to the gas-liquid separator 4. In the gas-liquid separator 4, the gas is separated into the gas in the state of g and the liquid in the state of l, but a part of the liquid is throttled and expanded by the expansion device 6 to become the state of h, and is evaporated by the first evaporator 7. The state is j.

k点は第1蒸発器7のjの状態の出口冷媒が昇
圧された仮想の点を示し、また気液分離器7の液
の一部とガスの混合状態はmで表わされ、上部吐
出口4cより第2蒸発器8に入り、液冷媒が蒸発
してaの状態となり、圧縮機1に吸引される。
Point k indicates a virtual point where the pressure of the outlet refrigerant in state J of the first evaporator 7 is increased, and the mixed state of a part of the liquid and gas in the gas-liquid separator 7 is expressed as m, and the upper discharge The liquid refrigerant enters the second evaporator 8 from the outlet 4c, evaporates into the state a, and is sucked into the compressor 1.

上記のような冷凍サイクルにおいて、凝縮器2
を流れる冷媒循環量をG(Kg/h)、第1蒸発器
7を流れる冷媒循環量をg(Kg/h)とし、また
第1蒸発器7の圧力損失をΔP1、第2蒸発器8の
圧力損失をΔP2、絞り装置の抵抗をΔPcとす
る。ここでΔPcの大きさはエジエクターの性能
に対応して設定されるものである。
In the above-mentioned refrigeration cycle, the condenser 2
The amount of refrigerant circulating through the first evaporator 7 is G (Kg/h), the amount of refrigerant circulating through the first evaporator 7 is g (Kg/h), the pressure loss of the first evaporator 7 is ΔP 1 , and the second evaporator 8 is ΔP 1 . Let the pressure loss of ΔP 2 be ΔP 2 and the resistance of the throttle device be ΔP c . Here, the magnitude of ΔP c is set in accordance with the performance of the ejector.

このような冷凍サイクルにおいて、第1蒸発器
7側への冷媒流量を気液分離器4内に滞留する液
冷媒量より増大しても、第1蒸発器7側へはガス
状冷媒が導入されるだけで、熱交換率は低下し圧
力損失は増大するという問題を発生させる。
In such a refrigeration cycle, even if the flow rate of refrigerant to the first evaporator 7 is increased compared to the amount of liquid refrigerant retained in the gas-liquid separator 4, gaseous refrigerant is not introduced to the first evaporator 7. This causes problems such as a decrease in heat exchange efficiency and an increase in pressure loss.

又ちようど液冷媒全部を第1蒸発器側に流すよ
うにしてもコンプレツサ1に潤滑油を含んだ液冷
媒が全く帰環しないので、潤滑油の補充ができな
いという点で問題である。
Furthermore, even if all of the liquid refrigerant is allowed to flow to the first evaporator side, the liquid refrigerant containing lubricating oil does not return to the compressor 1 at all, so there is a problem in that the lubricating oil cannot be replenished.

又、このように第2蒸発器、コンプレツサ側に
液冷媒の帰環流量が減少すればするほど気液分離
器4に滞留する液冷媒中の潤滑油の濃度が増大
し、その結果の潤滑油濃度の大きい液冷媒がエジ
エクタに吸引されることで、伝熱性能が低下する
上に、エジエクター3の吸引による第1蒸発器7
中のガス冷媒の速度が比較的遅いものであること
から、冷媒だけが蒸発して潤滑油が第1蒸発器7
内にて滞留し熱伝達性能を著しく低下させる。
Furthermore, as the return flow rate of the liquid refrigerant to the second evaporator and compressor side decreases, the concentration of lubricating oil in the liquid refrigerant remaining in the gas-liquid separator 4 increases, and as a result, the lubricating oil As the liquid refrigerant with a high concentration is sucked into the ejector, the heat transfer performance deteriorates, and the first evaporator 7 due to the suction of the ejector 3
Since the speed of the gas refrigerant inside is relatively slow, only the refrigerant evaporates and the lubricating oil flows into the first evaporator 7.
The heat transfer performance is significantly reduced.

又、逆に第2蒸発器8への帰環流量が大きくな
り過ぎると、第1蒸発器7での蒸気発生量は減少
し、エジエクターの噴射によるガス冷媒の圧縮作
用を高めることができない。
On the other hand, if the return flow rate to the second evaporator 8 becomes too large, the amount of steam generated in the first evaporator 7 decreases, and the compression effect of the gas refrigerant by injection from the ejector cannot be enhanced.

本考案はこのような特性に鑑みて成したもので
あり、この種の冷凍サイクルにおけるエジエクタ
ーの作用が最も効果的な流量比(g/G)を決定
するものである。
The present invention was developed in view of these characteristics, and the action of the ejector in this type of refrigeration cycle determines the most effective flow rate ratio (g/G).

以下、第1図及び第2図に、第3図乃至第5図
を加えて本考案について説明する。
Hereinafter, the present invention will be explained by adding FIGS. 3 to 5 to FIGS. 1 and 2.

第3図は本考案冷凍サイクルに用いたエジエク
ターの性能図、第4図は本考案冷凍サイクルの特
性図、第5図は本考案冷凍サイクルにおけるエジ
エクターの効率曲線図である。
FIG. 3 is a performance diagram of the ejector used in the refrigeration cycle of the present invention, FIG. 4 is a characteristic diagram of the refrigeration cycle of the present invention, and FIG. 5 is an efficiency curve diagram of the ejector in the refrigeration cycle of the present invention.

まずこのような冷凍サイクルに使用されるエジ
エクターの特性は第3図のように表わされる。即
ち、凝縮機2を通過する冷媒流量つまりエジエク
ター3での噴射冷媒量Gと、エジエクター3の吸
引作用にてキヤピラリチユーブ6、第1蒸発器7
を通過する冷媒流量gとの流量比(g/G)の増
減に応じて、エジエクター3の吸込圧差ΔPE
(第1図のエジエクター吸入口3Cとエジエクタ
ー吐出口3gとの圧力差)は変化する。又当該流
量比(g/G)を変えることにより第1蒸発器7
の圧力損失ΔP1、第2蒸発器8の圧力損失ΔP2
変化し、第4図に表わせるような特性となる。
First, the characteristics of the ejector used in such a refrigeration cycle are shown in FIG. That is, the refrigerant flow rate passing through the condenser 2, that is, the amount G of refrigerant injected by the ejector 3, and the suction action of the ejector 3 cause the capillary tube 6 and the first evaporator 7 to
The suction pressure difference of the ejector 3 ΔP E
(The pressure difference between the ejector suction port 3C and the ejector discharge port 3g in FIG. 1) changes. Also, by changing the flow rate ratio (g/G), the first evaporator 7
The pressure loss ΔP 1 of the second evaporator 8 and the pressure loss ΔP 2 of the second evaporator 8 change, resulting in the characteristics shown in FIG.

但し、第1蒸発器7及び第2蒸発器8の大きさ
は、各々の蒸発器7,8を流れる冷媒液を蒸発さ
せるのに最適な大きさに形成されているものとす
る。
However, the sizes of the first evaporator 7 and the second evaporator 8 are assumed to be optimal for evaporating the refrigerant liquid flowing through each evaporator 7 and 8.

ここで、第4図において、破線は、絞り装置6
での圧力損失ΔPcに第1蒸発器7での圧力損失
ΔP1を加えたもの、つまり気液分離器4の下部吐
出口4b、エジエクタ3の吸入口3C間の圧力損
失であつて、エジエクター3の上記吸込差圧ΔP
Eに相当する。
Here, in FIG. 4, the broken line indicates the aperture device 6.
The pressure loss ΔP c in the first evaporator 7 is added to the pressure loss ΔP 1 in the first evaporator 7, that is, the pressure loss between the lower discharge port 4b of the gas-liquid separator 4 and the suction port 3C of the ejector 3. The above suction differential pressure ΔP of 3
Corresponds to E.

いま、第1蒸発器7の流量gが小さいもの(流
量比g/Gが小さいもの)とすると、第4図から
明らかな通り、 ΔP2>ΔP1+ΔPc=ΔPE となる。
Now, assuming that the flow rate g of the first evaporator 7 is small (the flow rate ratio g/G is small), as is clear from FIG. 4, ΔP 2 >ΔP 1 +ΔP c =ΔP E.

その結果、絞り装置6の入口と第2蒸発器8の
入口の圧力は等しいことから、コンプレツサ1に
吸引される冷媒圧力Paと第1蒸発器7の吐出口
の冷媒圧力Pjとの関係は、 Pa<Pj となる。従つて、第4図に示すように上記第2蒸
発器8の圧力損失が、上記気液分離器4の下部出
口4b、エジエクター吸入口3C間の圧力損失Δ
P1+ΔPcを上回わる流量比(g/G)において
は、エジエクター3で吸入冷媒を圧縮してコンプ
レツサ1の圧縮仕事を減じて成績係数を高めると
いう所期の目的を達成できない。
As a result, since the pressures at the inlet of the throttle device 6 and the inlet of the second evaporator 8 are equal, the relationship between the refrigerant pressure Pa drawn into the compressor 1 and the refrigerant pressure Pj at the discharge port of the first evaporator 7 is as follows. Pa<Pj. Therefore, as shown in FIG. 4, the pressure loss of the second evaporator 8 is equal to the pressure loss Δ between the lower outlet 4b of the gas-liquid separator 4 and the ejector inlet 3C.
At a flow rate ratio (g/G) exceeding P 1 +ΔP c , the intended purpose of increasing the coefficient of performance by compressing the suction refrigerant with the ejector 3 and reducing the compression work of the compressor 1 cannot be achieved.

又、一方で、エジエクター3の出口での冷媒の
乾き度がXdであるから、気液分離器4にはG
(1−Xd)の冷媒液しか存在しない。
On the other hand, since the dryness of the refrigerant at the outlet of the ejector 3 is Xd, the gas-liquid separator 4 has a G
Only (1-Xd) refrigerant liquid exists.

従つて、第1蒸発器7に、G(1−Xd)以上
の冷媒流量を流しても、G(1−Xd)を越える
分だけフラツシユガスとなる気相冷媒が第1蒸発
器7に流れることになり、結局フラツシユガスの
増大により熱交換率が低下すると共に圧力損失が
著しく増大して、冷凍サイクルとしてはきわめて
不都合となる。
Therefore, even if a refrigerant flow rate of G(1-Xd) or more flows into the first evaporator 7, the amount of gas phase refrigerant that exceeds G(1-Xd) will flow into the first evaporator 7 as flash gas. As a result, the heat exchange rate decreases due to the increase in flash gas, and the pressure loss increases significantly, which is extremely inconvenient for the refrigeration cycle.

又、G(1−Xd)全て第1蒸発器7側へ流す
とコンプレツサ1への液冷媒の帰環は全くなくな
り、この液冷媒に含まれる潤滑油は全くなくなつ
てしまう。従つて、第1蒸発器7を通過する冷媒
流量はG(1−Xd)より小さくすることが望ま
しく、 g<G(1−Xd)であるから、 ∴g/G<(1−Xd)となり、 冷凍サイクルを効率的に作用させるために、上記
流量比g/Gを(1−Xd)以下にすることが望
ましいことがわかる。
Furthermore, if all of G(1-Xd) flows to the first evaporator 7 side, the liquid refrigerant will not return to the compressor 1 at all, and the lubricating oil contained in this liquid refrigerant will be completely exhausted. Therefore, it is desirable that the flow rate of refrigerant passing through the first evaporator 7 is smaller than G(1-Xd), and since g<G(1-Xd), ∴g/G<(1-Xd). , It can be seen that in order to make the refrigeration cycle work efficiently, it is desirable to set the above flow rate ratio g/G to (1-Xd) or less.

従つて、上述の点から、本考案は上記流量比
(g/G)を、 K<g/G<(1−Xd) の範囲内に設定するものである。
Therefore, in view of the above points, the present invention sets the flow rate ratio (g/G) within the range of K<g/G<(1-Xd).

ここでKは、第1蒸発器7での圧力損失をΔ
P1、第2蒸発器8での圧力損失をΔP2、絞り装置
6での圧力損失をΔPCとするとき、 ΔP2=P1+PC の関係となる時の流量比(g/G)を表わす。
Here, K is the pressure loss in the first evaporator 7 Δ
P 1 , the pressure loss in the second evaporator 8 is ΔP 2 , and the pressure loss in the throttle device 6 is ΔP C , the flow rate ratio (g/G) when the relationship ΔP 2 = P 1 + P C is established. represents.

又、Xdはエジエクター3出口3gでの冷媒の
乾き度(第2図中d点での乾き度)である。
Moreover, Xd is the dryness of the refrigerant at the outlet 3g of the ejector 3 (the dryness at point d in FIG. 2).

上記のように、流量比(g/G)を、K<g/
G<(1−Xd)とすると、 ΔP2<ΔP1+ΔPc=ΔPEとなる結果、 Pa>Pj となり、蒸発圧力よりも圧縮機吸入圧力が高く
なり、サイクルの成積係数は大幅に向上する。
As mentioned above, the flow rate ratio (g/G) is defined as K<g/
If G < (1-Xd), ΔP 2 < ΔP 1 + ΔP c = ΔP E. As a result, Pa > Pj, the compressor suction pressure becomes higher than the evaporation pressure, and the cycle product coefficient improves significantly. do.

また、エジエクターの効率も第5図に示される
如く0.4≦g/G<(1−xd)の範囲で高い値をと
る。
Further, the efficiency of the ejector takes a high value in the range of 0.4≦g/G<(1-xd) as shown in FIG.

さらに、前記流量比g/Gを(1−Xd)未満
とし、液冷媒の一部を第2蒸発器8側にも流すこ
とにより、気液分離器内での潤滑油濃度の増大を
抑えて第1蒸発器7での熱交換量を増大させると
共に、第1蒸発器7中での潤滑油の滞留を極力抑
えて熱伝達性能の低下を抑えることができる、一
方コンプレツサ1に対して液冷媒の一部が帰環す
ることにより潤滑油の補充を行つてコンプレツサ
を保全する。
Furthermore, by setting the flow rate ratio g/G to less than (1-Xd) and causing a part of the liquid refrigerant to flow also to the second evaporator 8 side, an increase in lubricating oil concentration in the gas-liquid separator can be suppressed. In addition to increasing the amount of heat exchange in the first evaporator 7, it is possible to suppress the retention of lubricating oil in the first evaporator 7 as much as possible, thereby suppressing a decrease in heat transfer performance. A portion of the compressor returns to the ring, replenishing the lubricating oil and maintaining the compressor.

以上本考案は、圧縮機、凝縮器、エジエクタ
ー、気液分離器、第2蒸発器を順次接続すると共
に、前記エジエクターの吸込口と気液分離器の冷
媒液滞留部との間に、絞り装置を介して第1蒸発
器を並設して成る冷凍サイクルにおいて、第1蒸
発器を通過する冷媒循環量gと凝縮器を通過する
冷媒循環量Gとの比を下記の範囲内に設定したこ
とを特徴とする冷凍サイクルである。
As described above, the present invention connects a compressor, a condenser, an ejector, a gas-liquid separator, and a second evaporator in sequence, and also provides a throttling device between the suction port of the ejector and the refrigerant liquid retention section of the gas-liquid separator. In a refrigeration cycle in which a first evaporator is arranged in parallel through This is a refrigeration cycle characterized by:

K≦g/G<(1−Xd) 但し、Kは、上記第2蒸発器での圧力損失をΔ
P2、第1蒸発器での圧力損失をΔP1、絞り装置で
の圧力損失をΔPCとした場合に、ΔP2=ΔP1
ΔPcとなる時の上記流量比(g/G)の値、 Xdはエジエクター出口の乾き度とする。
K≦g/G<(1-Xd) However, K is the pressure loss in the second evaporator Δ
P 2 , ΔP 1 is the pressure loss in the first evaporator, and ΔP C is the pressure loss in the throttle device, then ΔP 2 = ΔP 1 +
The value of the above flow rate ratio (g/G) when ΔP c is reached, and Xd is the dryness at the ejector outlet.

従つて、上記流量比(g/G)を上記K以上に
することにより、上記第1蒸発器の蒸発圧力より
コンプレツサの吸入圧力を高めることができるこ
とになる。
Therefore, by setting the flow rate ratio (g/G) to the above K or more, the suction pressure of the compressor can be made higher than the evaporation pressure of the first evaporator.

つまり、第1蒸発器の吐出するガス冷媒をエジ
エクタの作用にて圧縮することができ、その結
果、コンプレツサでの圧縮仕事を減じてサイクル
の成績係数を大幅に増大することができる。
That is, the gas refrigerant discharged from the first evaporator can be compressed by the action of the ejector, and as a result, the compression work in the compressor can be reduced and the coefficient of performance of the cycle can be significantly increased.

一方、上記流量比(g/G)を上記(1−
Xd)未満とすることで、第1蒸発器にフラツシ
ユガスを流入させることなく効率の良い熱交換を
行うことができると共に一部第2熱交換器側に液
冷媒を流入させて気液分離器内での潤滑油の濃度
の増大を抑えると共に、コンプレツサに液冷媒中
の潤滑油を帰環してコンプレツサの保全を計るこ
とができる。
On the other hand, the above flow rate ratio (g/G) is changed to the above (1-
By setting the temperature to less than In addition to suppressing an increase in the concentration of lubricating oil in the liquid refrigerant, it is possible to maintain the compressor by returning the lubricating oil in the liquid refrigerant to the compressor.

従つて、気液分離器内での潤滑油の濃度を抑え
ることにより、第1蒸発器での熱交換量を増大さ
せると共に、第1蒸発器内での潤滑油の滞留を抑
えて熱伝達性能を増加させることができる。
Therefore, by suppressing the concentration of lubricating oil in the gas-liquid separator, the amount of heat exchange in the first evaporator can be increased, and the retention of lubricating oil in the first evaporator can be suppressed to improve heat transfer performance. can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はエジエクターを用いた冷凍サイクルの
サイクル図、第2図は第1図に示した冷凍サイク
ルのモリエル線図、第3図は本考案冷凍サイクル
に用いたエジエクターの性能図、第4図は本考案
冷凍サイクルの特性図、第5図は本考案冷凍サイ
クルにおけるエジエクターの効率曲線図である。 1:圧縮機、2:凝縮器、3:エジエクター、
4:気液分離器、7:第1蒸発器、8:第2蒸発
器。
Figure 1 is a cycle diagram of a refrigeration cycle using an ejector, Figure 2 is a Mollier diagram of the refrigeration cycle shown in Figure 1, Figure 3 is a performance diagram of the ejector used in the refrigeration cycle of the present invention, and Figure 4. is a characteristic diagram of the refrigeration cycle of the present invention, and FIG. 5 is an efficiency curve diagram of the ejector in the refrigeration cycle of the present invention. 1: Compressor, 2: Condenser, 3: Ejector,
4: gas-liquid separator, 7: first evaporator, 8: second evaporator.

Claims (1)

【実用新案登録請求の範囲】 圧縮機、凝縮器、エジエクター、気液分離器、
第2蒸発器を順次接続すると共に、前記エジエク
ターの吸込口と気液分離器の冷媒液滞留部との間
に、絞り装置を介して第1蒸発器を並設して成る
冷凍サイクルにおいて、 第1蒸発器を通過する冷媒循環量gと凝縮器を
通過する冷媒循環量Gとの比を下記の範囲内に設
定したことを特徴とする冷凍サイクル。 K≦g/G<(1−Xd) 但し、Kは、上記第2蒸発器での圧力損失をΔ
P2、第1蒸発器での圧力損失をΔP1、絞り装置で
の圧力損失をΔPcとした場合に、ΔP2=ΔP1
ΔPcとなる時の上記流量比(g/G)の値、 Xdはエジエクター出口の乾き度。
[Claims for utility model registration] Compressor, condenser, ejector, gas-liquid separator,
In a refrigeration cycle in which second evaporators are sequentially connected, and a first evaporator is arranged in parallel via a throttle device between the suction port of the ejector and the refrigerant liquid retention part of the gas-liquid separator, 1. A refrigeration cycle characterized in that the ratio of the refrigerant circulation amount g passing through the evaporator and the refrigerant circulation amount G passing the condenser is set within the following range. K≦g/G<(1-Xd) However, K is the pressure loss in the second evaporator Δ
P 2 , pressure loss in the first evaporator is ΔP 1 , pressure loss in the throttle device is ΔP c , ΔP 2 = ΔP 1 +
The value of the above flow rate ratio (g/G) when ΔP c is reached, and Xd is the dryness at the ejector outlet.
JP1981010628U 1981-01-27 1981-01-27 Expired JPS6230696Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981010628U JPS6230696Y2 (en) 1981-01-27 1981-01-27

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981010628U JPS6230696Y2 (en) 1981-01-27 1981-01-27

Publications (2)

Publication Number Publication Date
JPS57124086U JPS57124086U (en) 1982-08-02
JPS6230696Y2 true JPS6230696Y2 (en) 1987-08-06

Family

ID=29808785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981010628U Expired JPS6230696Y2 (en) 1981-01-27 1981-01-27

Country Status (1)

Country Link
JP (1) JPS6230696Y2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051833A (en) * 2005-08-18 2007-03-01 Denso Corp Ejector type refrigeration cycle
JP4591413B2 (en) * 2006-06-26 2010-12-01 株式会社デンソー Ejector refrigeration cycle
JP2008075904A (en) * 2006-09-19 2008-04-03 Denso Corp Evaporator unit and ejector type refrigerating cycle
JP4715797B2 (en) * 2007-04-03 2011-07-06 株式会社デンソー Ejector refrigeration cycle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218242A (en) * 1975-08-01 1977-02-10 Sharp Corp Refrigerating cycle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218242A (en) * 1975-08-01 1977-02-10 Sharp Corp Refrigerating cycle

Also Published As

Publication number Publication date
JPS57124086U (en) 1982-08-02

Similar Documents

Publication Publication Date Title
US6622518B2 (en) Cryogenic refrigerating system
CN106225319A (en) A kind of double evaporating temperatures refrigeration and heat pump air conditioner unit and the method for back-heating type non-azeotropic mixed working medium
CN105180492A (en) Pressure wave supercharging auxiliary twin-stage vapor compression refrigeration system and working method thereof
CN110822755B (en) Heat pump system utilizing non-azeotropic refrigerant mixture
CN108895694A (en) A kind of improvement self-cascade refrigeration system system and its control method
JPH1019418A (en) Refrigerator with deep freezer
JPH0423185B2 (en)
JP2838917B2 (en) Refrigeration cycle
JPS6230696Y2 (en)
CN210951965U (en) Heat pump system for drying and dehumidifying
Jonsson Performance simulations of twin-screw compressors with economizer
CN105650922B (en) A kind of overlapping refrigerating cycle system coupled with injector
CN114739037A (en) Double-ejector multi-loop evaporation vapor compression circulation system and working method
CN107576096A (en) Compressor unit and air-conditioning system
CN111503938A (en) Gas-liquid separator jet air-supplementing heat pump system
CN201106976Y (en) Mixed cooling system for refrigerator
CN212457493U (en) Marine energy-saving self-overlapping refrigerating system
JP2711879B2 (en) Low temperature refrigerator
CN110701806A (en) Double-process microchannel evaporator refrigerating system with liquid level control and bypass air guide tube
JPS5822064Y2 (en) turbo refrigerator
CN205300017U (en) Doublestage vapor compression refrigerating system is assisted in wave pressure boost
JPS6255583B2 (en)
CN212253223U (en) Gas-liquid separator jet air-supplementing heat pump system
ZHANG et al. Performance Analysis of Vapor Compression Refrigeration Systems with Oil-free Linear Compressor Vapor Injection and Regeneration
CN115013996B (en) Low-temperature refrigeration cycle system adopting ejector to increase efficiency