JPS6230609A - Manufacture of sodium triphosphonate - Google Patents

Manufacture of sodium triphosphonate

Info

Publication number
JPS6230609A
JPS6230609A JP60276196A JP27619685A JPS6230609A JP S6230609 A JPS6230609 A JP S6230609A JP 60276196 A JP60276196 A JP 60276196A JP 27619685 A JP27619685 A JP 27619685A JP S6230609 A JPS6230609 A JP S6230609A
Authority
JP
Japan
Prior art keywords
sodium
ammonia
phosphoric acid
ammonium phosphate
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60276196A
Other languages
Japanese (ja)
Other versions
JPH0351649B2 (en
Inventor
尹 昌求
金 容杓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Institute of Science and Technology KIST
Original Assignee
Korea Institute of Science and Technology KIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Institute of Science and Technology KIST filed Critical Korea Institute of Science and Technology KIST
Publication of JPS6230609A publication Critical patent/JPS6230609A/en
Publication of JPH0351649B2 publication Critical patent/JPH0351649B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/38Condensed phosphates
    • C01B25/40Polyphosphates
    • C01B25/41Polyphosphates of alkali metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/38Condensed phosphates
    • C01B25/40Polyphosphates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Fertilizers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は湿式燐酸からトリ燐酸ナトリウム(Na5P3
01o)を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a method for converting wet phosphoric acid into sodium triphosphate (Na5P3).
01o).

1・り燐酸ナトリウムは合成洗剤の原料として使用され
1通常、工業用燐酸を苛性ソーダ(NaOH)又はソー
ダ灰(Na2CO3)の如きナトリウム塩基で中和させ
たのちに乾燥、焼成工程を経て製造する。
1. Sodium polyphosphate is used as a raw material for synthetic detergents, and is usually produced by neutralizing industrial phosphoric acid with a sodium base such as caustic soda (NaOH) or soda ash (Na2CO3), followed by a drying and calcination process.

ここで使用する燐酸は燐鉱石を硫酸で処理して製造した
廉価な湿式燐酸を代用することが望ましいが、湿式燐酸
には鉄(Fe)、アルミニウム(A1)、マグネシウム
(Mg)、弗素(F)、酸化値H(S04または503
)等の不純物が相当量含有されている。このため、これ
から工業用のトリ燐酸ナトリウムを製造するには精製工
程の複雑化による経済性の問題、精製の困難性による純
度の問題、分離された不純物の再活用の問題が阻害要素
として知られていた。また、一般に、湿式燐酸は複合肥
料工場で生産されるので、分離された不純物を肥料製造
に使用し得るかどうかは製造の経済性に大きな影響を及
ぼす。
It is preferable to use an inexpensive wet phosphoric acid produced by treating phosphate ore with sulfuric acid as a substitute for the phosphoric acid used here. ), oxidation value H (S04 or 503
) and other impurities are contained in considerable amounts. Therefore, in order to produce sodium triphosphate for industrial use in the future, there are economic problems due to the complexity of the purification process, purity problems due to the difficulty of purification, and problems with the reuse of separated impurities. was. In addition, since wet phosphoric acid is generally produced in a compound fertilizer factory, whether the separated impurities can be used in fertilizer production has a great influence on the economics of production.

例えば、アメリカ特許第3,423,170号では湿式
燐酸をナトリウム塩基で中和させながら、一部不純物の
沈澱を濾過したのち、硝酸又は硝酸のアルカリ金属塩を
添加して60℃以上に加熱する。
For example, in U.S. Patent No. 3,423,170, wet phosphoric acid is neutralized with a sodium base, some impurity precipitates are filtered, and then nitric acid or an alkali metal salt of nitric acid is added and heated to 60°C or higher. .

その後、再び一回濾過して不純物沈澱を濾過、除去した
のち、加熱濃縮し、塩素又はアルカリ金属の過塩素酸を
添加し、残余不純物沈殿を分離し、溶液を乾燥したのち
焼成し、トリ燐酸ナトリウムを製造している。しかしな
がら、この方法は装置に対する硝酸と塩素等による腐食
性が甚しいばかりでなく、高価な化工薬品を使用し、数
回に亘る精製過程を経ても不純物を完全に除去すること
が困難であるという問題点があった。
After that, the impurity precipitate was filtered and removed by filtration once again, and then heated and concentrated, chlorine or alkali metal perchloric acid was added to separate the remaining impurity precipitate, the solution was dried and then calcined, and the triphosphoric acid Manufactures sodium. However, this method is not only extremely corrosive to equipment due to nitric acid and chlorine, but also uses expensive chemicals and is difficult to completely remove impurities even after several purification processes. There was a problem.

また、英国特許第 1,177.589号では湿式燐酸
をアンモニア及び母液と中和反応をさせながら不純物沈
澱を除去したのち、ナトリウム塩基と反応させ、燐酸ア
ンモニウムナトリウム(NaNH4HPO4・4H20
)を製造し、この燐酸アンモニウムナトリウム溶液を冷
却し、殆ど純粋な燐酸アンモニウムナトリウム結晶を得
、母液は前述の如く燐酸と反応させる。そして、燐酸ア
ンモニウムナトリウム結晶は、水に溶かしてナトリウム
塩基と混合し、蒸留してアンモニアを回収し、残余生成
物である混合燐酸ナトリウム (殆ど2Na2HPO4
+ NaH2PO4の組成)を乾燥したのち、焼成して
トリ燐酸ナトリウムを製造している。しかしながらこの
方法は、アンモニアを蒸留工程で回収するので熱損失が
大きく、また、母液、アンモニア及び湿式燐酸の反応か
ら生じる不純物沈澱には粒状肥料の製造を妨害するヘキ
サフルオロ珪酸ナトリウム(Na2SiF6)等のフッ
化ナトリウム化合物が、湿式燐酸中に最初から含有され
ているフッ化物含有量に近く包含されているので不純物
沈澱を肥料製造に使用するには困難が大きい。
Furthermore, in British Patent No. 1,177.589, wet phosphoric acid is neutralized with ammonia and mother liquor to remove impurity precipitates, and then reacted with sodium base to form sodium ammonium phosphate (NaNH4HPO4.4H20).
), the sodium ammonium phosphate solution is cooled to obtain nearly pure sodium ammonium phosphate crystals, and the mother liquor is reacted with phosphoric acid as described above. Then, the sodium ammonium phosphate crystals are dissolved in water, mixed with sodium base, distilled to recover ammonia, and the remaining product is mixed sodium phosphate (mostly 2Na2HPO4
+ Composition of NaH2PO4) is dried and then calcined to produce sodium triphosphate. However, in this method, ammonia is recovered in the distillation process, which causes a large heat loss, and impurity precipitates resulting from the reaction of mother liquor, ammonia, and wet phosphoric acid include sodium hexafluorosilicate (Na2SiF6), which interferes with the production of granular fertilizer. The impurity precipitate is very difficult to use in fertilizer production because the sodium fluoride compound is included close to the fluoride content originally contained in the wet phosphoric acid.

本発明は、公知の製造方法の上記の如き問題点を改善す
る新しいトリ燐酸ナトリウムの製造方法に関するもので
1本発明方法は、連続式又は回分式で操業することがで
き、大体において、湿式燐酸と塩基の中和反応及び不純
物の沈澱分離、燐酸アンモニウムナトリウムの結晶化及
び不純物の最終分離、燐酸アンモニウムナトリウムとナ
トリウム塩基との反応と生成物の乾燥及びアンモニアの
回収、焼成の4部分に区別することができる。
The present invention relates to a new method for producing sodium triphosphate, which improves the above-mentioned problems of known production methods.1 The method of the present invention can be operated in a continuous or batch manner, and is generally a method for producing wet phosphoric acid. It is divided into four parts: neutralization reaction with base and precipitation separation of impurities, crystallization of sodium ammonium phosphate and final separation of impurities, reaction of sodium ammonium phosphate with sodium base, drying of the product, recovery of ammonia, and calcination. be able to.

本発明を下記の工程図により、段階別に詳細に説明する
と次の通りである。
The present invention will be explained in detail step by step with reference to the following process diagrams.

湿式燐酸 ↓ トリ燐酸ナトリウム (1)段階:沈澱により損失される分のアンモニアを補
充し湿式燐酸と反応させる。この際(7)段階から生成
される母液の一部をこの段階に返送することもできる。
Wet phosphoric acid ↓ Sodium triphosphate (1) step: Replenish the amount of ammonia lost through precipitation and react with wet phosphoric acid. At this time, a part of the mother liquor produced from step (7) can also be returned to this step.

これは母液の中に含有される酸化硫黄等の過多な濃縮を
調節する必要がある時に限る。
This is only used when it is necessary to control excessive concentration of sulfur oxides, etc. contained in the mother liquor.

(2)段階:湿式燐酸中の鉄、アルミニウム、カルシウ
ム等不純物の化合物がアンモニアと反応して生ずる沈澱
物を沈澱槽、7濾過機等の分離装置を利用して分離する
(2) Step: Impurity compounds such as iron, aluminum, and calcium in the wet phosphoric acid react with ammonia, and the resulting precipitate is separated using a separation device such as a sedimentation tank and a 7-filter.

(3)段階=(S)段階の乾燥工程で回収したアンモニ
アを含有した熱い空気と (2)段階で溢れて来た溶液
を、スクラバー又はガス注入式攪拌槽中で反応すせ、大
体N/P−1であるモル比の燐酸アンモニウム溶液とな
るようにする。この際反応式は次の通りである。
(3) Stage = The hot air containing ammonia recovered in the drying process of the (S) stage and the solution overflowing in the (2) stage are reacted in a scrubber or a gas-injected stirring tank, and approximately N/ The molar ratio of ammonium phosphate solution is P-1. At this time, the reaction formula is as follows.

H3PO4+ NH3→N)14H2PO4(4)段階
:燐酸中の残余不純物とアンモニアが反応して追加生成
された沈澱物を (2)段階に明記した方法で分離する
H3PO4+ NH3→N)14H2PO4 Step (4): The precipitate additionally produced by the reaction between the remaining impurities in the phosphoric acid and ammonia is separated by the method specified in Step (2).

(5)段階=(4)段階の生成溶液にナトリウム塩基と
 (7)段階で回収した母液を加えて、大体Na/P−
1のモル比の燐酸アンモニウムナトリウム溶液になるよ
うに反応させる。ナトリウム塩基として苛性ソーダを使
用した場合の反応式は次の通りである。
(5) Step = Add a sodium base and the mother liquor collected in Step (7) to the solution produced in Step (4), and roughly Na/P−
The reaction is carried out to form a sodium ammonium phosphate solution with a molar ratio of 1. The reaction formula when caustic soda is used as the sodium base is as follows.

NH4H2PO4+ NaOH+ 3H,20= Na
NH4HPO4・4H20(6)段階:湿式燐酸中の不
純物とナトリウムが反応して生じる沈澱物、主にヘキサ
フルオロ珪酸ナトリウムを沈澱槽、濾過機等の装置を利
用して分離する。
NH4H2PO4+ NaOH+ 3H,20= Na
NH4HPO4.4H20 (6) Step: Separate the precipitate produced by the reaction of impurities in the wet phosphoric acid with sodium, mainly sodium hexafluorosilicate, using equipment such as a precipitation tank and a filter.

(7)段階:(6)段階の生成溶液を冷却して燐酸アン
モニウムナトリウムの結晶を析出させ母液と分離する。
Step (7): The solution produced in step (6) is cooled to precipitate crystals of sodium ammonium phosphate and separated from the mother liquor.

この段階の操作を多段式にすることにより、高い純度の
結晶を得ることができる。母液は主に(5)段階に循環
し、不純物濃度調節の必要によっては(1)段階に一部
循環させることもできる。
High purity crystals can be obtained by carrying out this multistage operation. The mother liquor is mainly circulated to step (5), and can also be partially circulated to step (1) depending on the need for adjustment of impurity concentration.

(8)段階:(7)段階で得た燐酸アルミニウムナi・
リウムをなるべく少量の熱水に溶かして、高圧反応機中
でナトリウム塩基と反応させる。この際ナトリウム塩基
の量はNa/Pのモル比が573程度になるように入れ
る。反応温度は80〜350℃、圧力は 1〜200気
圧、反応時間は5〜30分間である。苛性ソーダとソー
ダ灰をナトリウム塩基として使用した場合の反応式は各
々次の通りである。
(8) Step: Aluminum phosphate obtained in step (7)
Lium is dissolved in as little hot water as possible and reacted with a sodium base in a high-pressure reactor. At this time, the amount of sodium base is added so that the Na/P molar ratio is about 573. The reaction temperature is 80 to 350°C, the pressure is 1 to 200 atm, and the reaction time is 5 to 30 minutes. The reaction formulas when caustic soda and soda ash are used as sodium bases are as follows.

3NaNH4HPO4番 4H20+  2NaOH→
2Na2HPO4+ NaH2PO4+ 3NH3+ 
24H203NaNH4HPO4・4H20+ Na2
C:03= 2Na2)IPO4+ NaH2PO4+
 3NH3+ GO2+ 13H20(9)段11)’
r+(8)段階で得た反応液を反応機の圧力を利用して
噴霧乾燥機に送り、反応で生成されたアンモニアとt&
 aガス及び瞬間的に発生する水蒸気で噴霧すると同時
に、導入した空気で乾燥させ、回収したアンモニアを含
有する混合ガスを (3)段階の中和反応へ返送する。
3NaNH4HPO No.4 4H20+ 2NaOH→
2Na2HPO4+ NaH2PO4+ 3NH3+
24H203NaNH4HPO4・4H20+ Na2
C:03= 2Na2)IPO4+ NaH2PO4+
3NH3+ GO2+ 13H20 (9) stage 11)'
The reaction solution obtained in step r+(8) is sent to a spray dryer using the pressure of the reactor, and the ammonia produced in the reaction and t&
A mixed gas containing ammonia is sprayed with a gas and instantaneously generated water vapor, and simultaneously dried with introduced air, and the recovered ammonia-containing gas is returned to the neutralization reaction in step (3).

(10)段階:(8)段階で得た乾燥された燐酸ナトリ
ウムを公知の焼成技術によって焼成し、トリ燐酸ナトリ
ウムを製造する。
(10) Step: The dried sodium phosphate obtained in step (8) is calcined using a known calcining technique to produce sodium triphosphate.

このような本発明方法は、湿式燐酸を一部アンモニアと
反応させて不純物を大部分沈澱させ分離したのち、燐酸
アンモニウムナトリウムを結晶化させて精製するという
点に於ては、公知の製造方法と類似で、蒸留工程がなく
アンモニアを乾燥機で直接回収するという点、混合燐酸
ナトリウムが形成される反応に大部分を高圧反応機中で
高温条件下で進行させ、その圧力を利用して反応物を噴
霧乾燥機で噴霧させ中和熱を最大に利用するという点、
アンモニアによる反応沈澱物とナトリウムとの反応から
生じる沈澱物を分離して除去する点および回収されたア
ンモニアと原料である湿式燐敢をスクラバで反応させる
ことによって乾燥機に於ける発生熱を燐酸の予熱及び溶
液のe縮に活用する点に於て本発明の特徴がある。
The method of the present invention is different from known production methods in that wet phosphoric acid is partially reacted with ammonia to precipitate and separate most of the impurities, and then sodium ammonium phosphate is purified by crystallization. It is similar in that there is no distillation step and ammonia is directly recovered in a dryer, and the reaction that forms mixed sodium phosphate is mostly carried out in a high-pressure reactor under high temperature conditions, and the pressure is used to reduce the reactants. By spraying with a spray dryer and making maximum use of the neutralization heat,
By separating and removing the precipitate resulting from the reaction between ammonia reaction precipitate and sodium, and by reacting the recovered ammonia with wet phosphoric acid, which is a raw material, in a scrubber, the heat generated in the dryer can be transferred to phosphoric acid. The present invention is characterized in that it is utilized for preheating and e-condensation of solutions.

即ち、公知の方法では、燐酸アンモニウムナトリウムと
ナトリウム塩基を混合して反応させ、蒸留工程を通じて
アンモニアを回収しているが、本発明者が研究の結果、
燐酸アンモニウムナトリウムとナトリウム塩基を80 
”C以上の温度で、5分以上高圧反応機中で反応させる
とアンモニアと燐酸ナトリウムが殆ど分離することを発
見した。
That is, in the known method, sodium ammonium phosphate and a sodium base are mixed and reacted, and ammonia is recovered through a distillation process, but as a result of research by the present inventor,
80% sodium ammonium phosphate and sodium base
It was discovered that ammonia and sodium phosphate were almost completely separated when the reaction was carried out in a high-pressure reactor at a temperature of 5°C or higher for more than 5 minutes.

従って、別途の蒸留工程をなくしても乾燥機で燐酸ナト
リウムとアンモニアを分離することができ、特に高圧反
応機の圧力と温度が反応熱で維持されるばかりでなく、
その圧力を噴霧乾燥機での噴霧圧に利用することができ
、このため別途の圧力発生装置が不要となり、工程と装
置が単純化され乾燥空気の所要温度が低下する等、エネ
ルキー側面に於ても長所がある。
Therefore, sodium phosphate and ammonia can be separated in the dryer without a separate distillation step, and the pressure and temperature of the high-pressure reactor can be maintained by the heat of reaction.
This pressure can be used for the spray pressure in the spray dryer, which eliminates the need for a separate pressure generator, simplifies the process and equipment, and lowers the required temperature of drying air, resulting in energy-saving benefits. There are also advantages.

また、他の長所としては湿式燐酸の中和に於てアンモニ
アによる予備反応と、燐酸アンモニウムナトリウムの結
晶を析出し分離された母液に依る反応が、互いに他の段
階で生じるので粒状肥料製造の妨害になるヘキサフルオ
ロ珪酸ナトリウム等のフッ化ナトリウムが、大部分別途
に回収されるため、アンモニアと湿式燐酸の予備反応に
よって生成される沈澱物を、肥料製造に別に問題なく利
用することができるということである。また、他の長所
としては、乾燥機で空気と一緒に回収されるアンモニア
がスクラバー中で原料燐酸と反応するのでアンモニアの
損失を殆ど無くし、反応熱による燐酸の一部濃縮を期す
ることができるということである。
Another advantage is that the pre-reaction with ammonia in wet phosphoric acid neutralization and the reaction with the mother liquor separated by precipitation of sodium ammonium phosphate crystals occur at different stages, which interferes with the production of granular fertilizer. Most of the sodium fluoride, such as sodium hexafluorosilicate, is recovered separately, so the precipitate produced by the preliminary reaction of ammonia and wet phosphoric acid can be used for fertilizer production without any problems. It is. Another advantage is that the ammonia recovered together with the air in the dryer reacts with the raw phosphoric acid in the scrubber, so there is almost no loss of ammonia, and the phosphoric acid can be partially concentrated due to the heat of reaction. That's what it means.

実jL例」2 次の如き組成(以下、全て重量%)の湿式粗燐酸 34、OQ   Oo  0 0.15 0.88 0
.52  +、351.481gにアンモニア145g
を入れ常圧下、 100℃で反応させた。この際、不純
物の沈澱が生成したが、この沈澱物を濾過分離して、次
の如き組成の溶液1,310gを得た。
Practical Example 2 Wet crude phosphoric acid 34, OQ Oo 0 0.15 0.88 0 with the following composition (all percentages by weight)
.. 52 +, 145g of ammonia in 351.481g
was added and reacted at 100°C under normal pressure. At this time, a precipitate of impurities was formed, but this precipitate was separated by filtration to obtain 1,310 g of a solution having the following composition.

30.58    0   8.44  0.08  
0.03  0.02  1.20この溶液に苛性ソー
ダ250gと母液930gを加え、70℃で反応させ、
生成した沈澱物を遠心分離機で分離したのち、溶液を2
0℃で冷却し、燐酸アンモニウムナトリウムの結晶を得
た。この結晶を再び220gの水で洗浄し、結晶1,2
08gと母液1,480gを得た。この母液は前述した
通り苛性ソーダと一緒に燐酸塩と反応させ、燐酸アンモ
ニウムナトリウムを製造した。結晶と母液の組成は次の
通りであった。
30.58 0 8.44 0.08
0.03 0.02 1.20 Add 250 g of caustic soda and 930 g of mother liquor to this solution, react at 70°C,
After separating the generated precipitate using a centrifuge, the solution was
The mixture was cooled to 0°C to obtain crystals of sodium ammonium phosphate. This crystal was washed again with 220 g of water, and crystals 1 and 2 were
08 g and 1,480 g of mother liquor were obtained. This mother liquor was reacted with phosphate together with caustic soda to produce sodium ammonium phosphate as described above. The compositions of the crystals and mother liquor were as follows.

P2O5Na    NH3F    Fe     
AI    SO3結晶+  30.80 10.18
  ?、60 0,01 0.001 0.001 0
.01m滴:  4.35 2.843.210.04
 0.0?  0.05 2.90この結晶を熱水に溶
かして苛性ソーダ150gを加え、密閉された高圧・反
応機中で120℃、3.2気圧の条件で10分間反応さ
せた。この際アンモニアの分離は97%以上であった。
P2O5Na NH3F Fe
AI SO3 crystal + 30.80 10.18
? ,60 0,01 0.001 0.001 0
.. 01m drop: 4.35 2.843.210.04
0.0? 0.05 2.90 These crystals were dissolved in hot water, 150 g of caustic soda was added, and the mixture was reacted for 10 minutes at 120° C. and 3.2 atm in a sealed high-pressure reactor. At this time, the separation of ammonia was 97% or more.

反応物を噴霧乾燥機で乾燥しながらアンモニアを気体状
態で回収した。乾燥された燐酸ナトリウム混合物を焼成
炉中で400’Oで30分間焼成し、トリ燐酸すトリウ
ム650gを得た。
Ammonia was recovered in a gaseous state while the reaction product was dried in a spray dryer. The dried sodium phosphate mixture was calcined in a calcining oven at 400'O for 30 minutes to obtain 650 g of thorium triphosphate.

見上遣」 次の如き組成の湿式粗燐酸 28.00  0  0 0.30 0.90 0.6
5 1.851.250gにアンモニア105gを入れ
常圧下、 100°Cで反応させると不純物の沈澱物が
発生した。この沈澱を濾過分離し次の組成の如き溶液1
,071gを得た。
Wet crude phosphoric acid with the following composition 28.00 0 0 0.30 0.90 0.6
5 When 105g of ammonia was added to 1.851.250g and reacted at 100°C under normal pressure, a precipitate of impurities was generated. This precipitate was separated by filtration and a solution 1 having the following composition was obtained.
,071g was obtained.

2B、80   Q  7.19 0.14 0.05
 0.03 1.35この溶液にソーダ灰242g及び
母液?00gを加えて反応させ、生成沈澱物を遠心分離
機で分離した。
2B, 80 Q 7.19 0.14 0.05
0.03 1.35 242g of soda ash and mother liquor in this solution? 00g was added to react, and the resulting precipitate was separated using a centrifuge.

次いで、溶液を15°Cに冷却し、燐酸アンモニウムナ
トリウムの結晶を析出させたのち、結晶と母液を分離し
て、結晶887gと母液1,012gを得た。各々の組
成は次の通りである。
Next, the solution was cooled to 15°C to precipitate crystals of sodium ammonium phosphate, and the crystals and mother liquor were separated to obtain 887 g of crystals and 1,012 g of mother liquor. The composition of each is as follows.

結晶:  29.713 10.23 7.44 0.
02 0.002 0.002 0.050母液:  
8.73  2.5Q  3.21 0.12 0.1
3  0.09  4.47結晶を熱水に溶かし、ソー
ダ灰133gを加え高圧反応機中で140℃、4.6気
圧の条件で5分間反応させた。この際アンモニアの分離
は88%以上であった0反応物を噴霧乾燥機で乾燥し、
アンモニアを気体状態で回収し、乾燥された燐酸ナトリ
ウム混合物を焼成炉中で350℃で60分間焼成しトリ
燐酸ナトリウム448gを得た。
Crystal: 29.713 10.23 7.44 0.
02 0.002 0.002 0.050 Mother liquor:
8.73 2.5Q 3.21 0.12 0.1
3 0.09 4.47 The crystals were dissolved in hot water, 133 g of soda ash was added, and the mixture was reacted in a high-pressure reactor at 140° C. and 4.6 atm for 5 minutes. At this time, the ammonia separation was 88% or more. The 0 reactant was dried in a spray dryer,
Ammonia was recovered in a gaseous state, and the dried sodium phosphate mixture was calcined in a calcining furnace at 350°C for 60 minutes to obtain 448 g of sodium triphosphate.

Claims (5)

【特許請求の範囲】[Claims] (1)湿式燐酸にアンモニアとナトリウム塩基を反応さ
せ、燐酸アンモニウムナトリウムを製造し、さらに、燐
酸アンモニウムナトリウムからトリ燐酸ナトリウムを製
造する方法において、燐酸アンモニウムナトリウムとナ
トリウム塩基を高圧反応機で連続式または回分式で反応
させ、反応生成物を噴霧乾燥機で乾燥させると同時に、
アンモニアを気体状態で回収・再使用することを特徴と
するトリ燐酸ナトリウムの製造方法。
(1) In the method of reacting wet phosphoric acid with ammonia and a sodium base to produce sodium ammonium phosphate, and further producing sodium triphosphate from sodium ammonium phosphate, sodium ammonium phosphate and a sodium base are reacted continuously or in a high-pressure reactor. The reaction is carried out batchwise, and the reaction product is dried in a spray dryer at the same time.
A method for producing sodium triphosphate, characterized by recovering and reusing ammonia in a gaseous state.
(2)回収されたアンモニアを湿式燐酸とスクラバーま
たはガス注入式攪拌槽中で接触反応させる特許請求の範
囲第1項記載の方法。
(2) The method according to claim 1, in which the recovered ammonia is catalytically reacted with wet phosphoric acid in a scrubber or a gas injection type stirring tank.
(3)湿式リン酸とアンモニアを先に反応させ、沈澱物
を分離除去した溶液に、母液とナトリウム塩基を加えて
不純物を沈澱させ分離したのち、燐酸アンモニウムナト
リウムの結晶を製造する特許請求の範囲第1項記載の方
法。
(3) Claims that wet phosphoric acid and ammonia are first reacted, and a precipitate is separated and removed. Mother liquor and a sodium base are added to a solution to precipitate and separate impurities, and then crystals of sodium ammonium phosphate are produced. The method described in paragraph 1.
(4)高圧反応機中における反応条件が、80〜350
℃、圧力1〜200気圧である特許請求の範囲第1項記
載の方法。
(4) The reaction conditions in the high pressure reactor are 80 to 350
The method according to claim 1, wherein the temperature is 1 to 200 atm.
(5)ナトリウム塩基が苛性ソーダ(NaOH)、ソー
ダ灰(Na_2CO_3)もしくはこれらの混合物であ
る特許請求の範囲第1項記載の方法。
(5) The method according to claim 1, wherein the sodium base is caustic soda (NaOH), soda ash (Na_2CO_3) or a mixture thereof.
JP60276196A 1985-06-29 1985-12-10 Manufacture of sodium triphosphonate Granted JPS6230609A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR4717/1985 1985-06-29
KR1019850004717A KR870001995B1 (en) 1985-06-29 1985-06-29 Preparation process fo sodium tripolyphosphate

Publications (2)

Publication Number Publication Date
JPS6230609A true JPS6230609A (en) 1987-02-09
JPH0351649B2 JPH0351649B2 (en) 1991-08-07

Family

ID=19241666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60276196A Granted JPS6230609A (en) 1985-06-29 1985-12-10 Manufacture of sodium triphosphonate

Country Status (2)

Country Link
JP (1) JPS6230609A (en)
KR (1) KR870001995B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101484302B1 (en) * 2013-11-29 2015-01-20 티엔에스(주) A gene amplifying container with valve, gene amplifying module and gene amplifying processing method using the same.
KR20200126808A (en) 2019-04-30 2020-11-09 김숙경 Insert nut for fixing synthetic resin products

Also Published As

Publication number Publication date
JPH0351649B2 (en) 1991-08-07
KR870000241A (en) 1987-02-17
KR870001995B1 (en) 1987-11-30

Similar Documents

Publication Publication Date Title
US4981664A (en) Method of production of high purity silica and ammonium fluoride
CN110642282A (en) Method for preparing calcium fluoride and potassium bicarbonate by using carbon dioxide
US3321275A (en) Process for recovering sulfur dioxide and ammonia from aqueous scrubbing solution obtained from ammonia scrubbing of gases containing sulfur oxides
US5165907A (en) Method of production of high purity silica and ammonium fluoride
US4144315A (en) Production of hydrogen fluoride
US4321244A (en) Process for the treatment of a calcium aluminophosphate
US4056604A (en) Production of hydrogen fluoride
US1752599A (en) Method of treating aluminous materials for the production of aluminum sulphate and alumina therefrom
US4777026A (en) Production of phosphates from alkali-processes phosphate rock
US3712942A (en) Method of producing vanadium compounds by alkaline leaching
US3382035A (en) Process for production of phosphoric acid
US4067957A (en) Process for producing hydrogen fluoride from an aqueous hydrofluorosilicic acid solution
US3455649A (en) Novel mixed alkali metal polyphosphates and methods of preparing them
JPS6230609A (en) Manufacture of sodium triphosphonate
US3803884A (en) Production of fertilizers
US4062929A (en) Production of hydrogen fluoride
US3661513A (en) Manufacture of alkali metal phosphates
US3595610A (en) Manufacture of ammonium phosphates
US2857245A (en) Method for the production of dicalcium phosphate
US2165948A (en) Preparation of soluble phosphates
IL46740A (en) Purification of phosphoric acid
US3000702A (en) Manufacture of sodium fluoride
US1845876A (en) Process for the production of alumina and alkali phosphates
CA1115483A (en) Preparation of monocalcium phosphate and phosphoric acid
US1948888A (en) Method of manufacturing alumina