JPS6230604B2 - - Google Patents
Info
- Publication number
- JPS6230604B2 JPS6230604B2 JP55170621A JP17062180A JPS6230604B2 JP S6230604 B2 JPS6230604 B2 JP S6230604B2 JP 55170621 A JP55170621 A JP 55170621A JP 17062180 A JP17062180 A JP 17062180A JP S6230604 B2 JPS6230604 B2 JP S6230604B2
- Authority
- JP
- Japan
- Prior art keywords
- lens
- object side
- axis
- positive
- surface facing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000005499 meniscus Effects 0.000 claims description 10
- 239000011521 glass Substances 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 claims description 3
- 230000004075 alteration Effects 0.000 description 28
- 201000009310 astigmatism Diseases 0.000 description 8
- 206010010071 Coma Diseases 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/60—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Description
本発明は写真用撮影レンズに関するものであ
る。
従来から標準的な画角を有する撮影レンズにお
いて、撮影レンズの第1面から像面までの長さを
短縮して、撮影レンズの小型化を図るには、特公
昭44−10831に記載されているようにレンズ前群
に強い屈折力を持たせて、レンズ後群の最終レン
ズに負の屈折力を持たせたメニスカスレンズを配
置した構成が有効であることが知られている。
一方、例えば自動焦点機構を有するカメラにお
いては、カメラ構造上の簡素化及びフオーカシン
グ操作を機械的又は電気的に行う為に、フオーカ
シングにより繰り出されるレンズ群はなるべく軽
量かつ小型で更に絞りシヤツター機構をフオーカ
シングに対して不動にすることが好ましい。
従来、この種の撮影レンズではテツサータイプ
のレンズとし絞りをレンズの後方に配置した構成
で、フオーカシングの際レンズ系全体を絞り出す
か又は物体側の第1レンズだけ繰り出す方式で撮
影レンズの小型化及び操り出しレンズの軽量化を
図つてきた。
しかしながら最終レンズ以降に絞りを配置する
構成をとると、軸外主光線が最終レンズの負レン
ズ面の周辺部を通過することがないので、撮影レ
ンズの小型化を図る為に前述のようにレンズ前群
に強い屈折力を与えると共にレンズ後群の最終レ
ンズに負のメニスカスレンズを配置したレンズ構
成では非点収差、歪曲収差等を良好に補正するこ
とが困難になつてくる。
又、レンズ間に絞りを配置し、絞りの前方レン
ズ群の全部又は一部を繰り出してフオーカシング
する構成は、物体距離が近ずくと一般に球面収差
は補正不足になりがちとなり、特に前述のように
レンズの小型化を図る為に絞りの前方レンズ群に
強い屈折力を与えた場合には、球面収差は著るし
く補正不足となる。
本発明の目的は小型で高性能の撮影レンズを提
供することにあり、更にフオーカシングを、絞り
の前方に配したレンズ群を全部絞り出して行い、
物体距離の差によつても収差変動の少ない良好に
収差補正がなされた極めて小型化された撮影レン
ズ提供することである。
後述の数値実施例ではFナンバー2.8で撮影画
角58度の収差補正された撮影レンズを提供してい
る。
本発明の撮影レンズの特徴は物体側より順に物
体側に凸面を向けた正のメニスカスの第1レン
ズ、両凸面の第2レンズ、両凹面の第3レンズ、
正の第4レンズ、像面側に凸面を向けた正のメニ
スカスの第5レンズそして像面側に凸面を向けた
負のメニスカスの第6レンズより成り、第2レン
ズと第3レンズは貼合せられており、第6レンズ
の物体側のレンズ面が非球面であつて、第1レン
ズから第4レンズを繰り出す事によりフオーカシ
ングを行い、第4レンズと第5レンズの間に絞り
を配置した構成を採つている。但し、本レンズは
全系操出しのフオーカシングも使用できる。
上述のレンズ構成において、収差補正上特徴と
するところは、フオーカシング用の、絞りより前
方のレンズ群から負の球面収差が発生するので、
この負の球面収剤を該レンズ群内で補正し、これ
によつて該レンズ群のフオーカスによる繰り出し
によつても球面収差が変動しないようにしている
ことである。その為に、正の屈折力を該レンズ群
中の第1レンズ及び第2レンズの第1面に分担さ
せて、球面収差の発生を極力抑制し、更に第2レ
ンズと第3レンズの貼合せ面に球面収差の強い補
正作用を持たせている。そして第3レンズの直後
に正の第4レンズを配して上記の貼合せ面で発生
する強い内向性コマ収差を補正するとともにフオ
ーカシングによるコマ収差、非点収差の変動を小
さく抑えることを可能ならしめている。
しかしながら上記のレンズ構成においては、絞
りより前方のレンズ群に強い正の屈折力を与えて
いる為に、正の歪曲収差が発生しこの歪曲収差を
補正することが困難になつてくる。そこで絞りよ
り後方の固定レンズ群中に像面側に凸面を向けた
正のメニスカスの第5レンズを配して歪曲収差を
補正し、更に像面側に凸面を向けた負のメニスカ
スの第6レンズを配し、その第1面を非球面形状
にすることによつて、歪曲収差を更に良好に補正
している。
又、第6レンズの第1面を非球面形状にするこ
とによつて高次の収差、特に周辺非点収差を良好
に補正することが可能になり、これは球面系のみ
で構成した場合に不可避の負の非点収差を全画面
にわたり良好に補正することを可能ならしめてい
る。そして第6レンズを所謂アクリル樹脂で成形
することによつて非球面形状の自由度を増し又安
価に製作することを可能にしている。
本発明は以上のような特徴を有し、初期の目的
を達成しているが更に性能向上を図る為に次の諸
条件を与えるのが好ましい。撮影レンズの焦点距
離をf、物体側より数えて第i番号のレンズ面の
曲率半径をRi、物体側より数えて第i番目のレ
ンズ厚及び空気間隔をDi、物体側より数えて第
i番目のレンズのガラスの屈折率をNi、非球面
形状を面頂点を原点とし、Rを近軸頂点曲率半
径、光軸上で光の進行方向をX軸、X軸と直角方
向をY軸としたとき、
と表現し、A、B、C、D、Eを各各非球面係数
としたとき
(1) −1.2f<R4<−0.5f
(2) 0.2<N3−N2<0.3
(3) −1.6f<R7<−0.7f
(4) 0.06f<D7<0.12f
(5) 5<f|2・A+1/R10|<6.5
なる条件を満足する事である。
次に上記諸条件の数値範囲について説明する。
条件(1)、条件(2)はフオーカシング用のレンズ群の
球面収差を補正する為の条件であつて、条件(1)及
び条件(2)の下限値を越えると第2レンズと第3レ
ンズの貼合せのR4面での球面収差補正作用が弱
くなり、その結果被写体距離の差による球面収差
の変動が大きくなり、又上限値は内向性コマ収差
の発生を抑制するもので上限値を越えると内向性
コマ収差の補正が困難となる。
条件(3)は被写体距離の差による非点収差の変動
を少なくする為の条件であつて、条件(3)の上限値
を越えると近距離物体にフオーカスした時に画面
周辺で負の非点収差が過大となり、又下限値を越
えると近距離物体にフオーカス時に画面中間で正
の非点収差が過大となり好ましくない。
条件(4)は歪曲収差の補正量と最終レンズである
第6レンズの大きさとの調整を図る為の条件であ
つて、条件(4)の下限値を越えると正の歪曲収差の
補正が困難となり、又上限値を越えると第6レン
ズの有効径が大きくなり、レンズの大型化を招
き、又第6レンズの第1面の有効部の最大径付近
での面の接線が光軸と平行に近い傾斜、即ち水平
に近くなりレンズの製作が非常に困難となる。
条件(5)は第6レンズ第1面のR10面の頂点屈折
力に関する為の条件であつて、条件(5)の上限値を
越えると画面中間での負の非点収差を補正するこ
とが困難となり、又下限値を越えると歪曲収差の
補正が困難となる。
本発明は以上のようなレンズ構成及び諸条件を
満足することによつてFナンバー2.8、撮影画角
58度の良好に収差補正がなされた極めて小型化さ
れた撮影レンズを達成することを可能とするもの
である。
数値実施例1においてそのレンズ断面図を第1
図に、物体が無限遠のときの諸収差を第2図に、
焦点距離をfとしたとき物体が像面より26fのと
きの諸収差を第3図に示す。
数値実施例2においてそのレンズ断面図を第4
図に、物体が無限遠のときの諸収差を第5図に、
物体が像面より26fのときの諸収差を第6図に示
す。
数値実施例3においてそのレンズ断面図を第7
図に、物体が無限遠のときの諸収差を第8図に、
物体が像面より26fのときの諸収差を第9図に示
す。
次に本発明の数値実施例を示す。数値実施例に
おいてRiは物体側より順に第i番目のレンズ面
の曲率半径、Diは物体側より順に第i番目のレ
ンズ厚及び空気間隔、Niとνiは夫々物体側よ
り順に第i番目のレンズのガラスの屈折率とアツ
ベ数、A、B、C、D、Eは前述の非球面形状を
表わす式での非球面係数である。
数値実施例1と数値実施例3では非球面形状を
非球面係数のみで表わし、数値実施例2では非球
面形状を近軸頂点曲率半径と非球面係数で表わし
た。
又、数値実施例1の3次収差係数を表1に示
す。
The present invention relates to a photographic lens. Conventionally, in a photographic lens having a standard angle of view, in order to shorten the length from the first surface of the photographic lens to the image plane and thereby reduce the size of the photographic lens, there is a method described in Japanese Patent Publication No. 10831-1971. It is known that a configuration in which the front lens group has strong refractive power and the final lens in the rear lens group includes a meniscus lens with negative refractive power is effective. On the other hand, for example, in a camera with an automatic focusing mechanism, in order to simplify the camera structure and perform the focusing operation mechanically or electrically, the lens group that is extended during focusing is as light and small as possible, and the aperture shutter mechanism is also focused. It is preferable to remain immobile. Conventionally, this type of photographic lens is a Tetsusar-type lens with an aperture placed at the rear of the lens, and when focusing, the entire lens system is stopped or only the first lens on the object side is extended, making the photographic lens more compact. In addition, efforts have been made to reduce the weight of the steering lens. However, if the aperture is placed after the final lens, the off-axis principal ray will not pass through the periphery of the negative lens surface of the final lens, so in order to make the photographic lens more compact, the lens In a lens configuration in which strong refractive power is given to the front group and a negative meniscus lens is arranged as the final lens in the rear lens group, it becomes difficult to satisfactorily correct astigmatism, distortion, etc. Additionally, in a configuration in which a diaphragm is placed between the lenses and all or part of the lens group in front of the diaphragm is extended for focusing, spherical aberration tends to be under-corrected as the object distance approaches, especially as mentioned above. If strong refractive power is given to the lens group in front of the diaphragm in order to make the lens more compact, spherical aberration will be significantly undercorrected. An object of the present invention is to provide a compact and high-performance photographic lens, and furthermore, focusing is performed by focusing all of the lens groups arranged in front of the diaphragm.
To provide an extremely compact photographic lens in which aberrations are well corrected with little variation in aberrations even due to differences in object distance. In the numerical examples described later, an aberration-corrected photographic lens with an F number of 2.8 and a photographic field angle of 58 degrees is provided. The photographic lens of the present invention is characterized by, in order from the object side, a positive meniscus first lens with a convex surface facing the object side, a biconvex second lens, a biconcave third lens,
It consists of a positive fourth lens, a positive meniscus fifth lens with a convex surface facing the image side, and a negative meniscus sixth lens with a convex surface facing the image side, and the second and third lenses are bonded together. The lens surface on the object side of the sixth lens is an aspherical surface, focusing is performed by extending the fourth lens from the first lens, and an aperture is arranged between the fourth lens and the fifth lens. are being taken. However, this lens can also be used for focusing using the entire system. The above-mentioned lens configuration is characterized in terms of aberration correction because negative spherical aberration is generated from the lens group in front of the focusing aperture.
This negative spherical aberration is corrected within the lens group, thereby preventing the spherical aberration from changing even when the lens group is moved out due to focus. For this purpose, the positive refractive power is shared between the first surface of the first lens and the second lens in the lens group to suppress the occurrence of spherical aberration as much as possible, and the second and third lenses are bonded together. The surface has a strong correction effect for spherical aberration. Then, if it is possible to arrange a positive fourth lens immediately after the third lens to correct the strong inward coma aberration that occurs on the bonded surface, and to suppress fluctuations in coma and astigmatism due to focusing to a small value. It's tight. However, in the above lens configuration, since a strong positive refractive power is given to the lens group in front of the aperture, positive distortion occurs and it becomes difficult to correct this distortion. Therefore, a fifth positive meniscus lens with a convex surface facing the image side is arranged in the fixed lens group behind the aperture to correct distortion, and a sixth lens with a negative meniscus with a convex surface facing the image side is arranged. By arranging the lens and making its first surface aspherical, distortion can be corrected even better. In addition, by making the first surface of the sixth lens aspherical, it is possible to better correct higher-order aberrations, especially peripheral astigmatism, which is better when configured only with spherical lenses. This makes it possible to satisfactorily correct unavoidable negative astigmatism over the entire screen. By molding the sixth lens with so-called acrylic resin, the degree of freedom in shaping the aspherical surface is increased and it is possible to manufacture the lens at low cost. The present invention has the above-mentioned characteristics and has achieved the initial objectives, but in order to further improve the performance, it is preferable to provide the following conditions. The focal length of the photographing lens is f, the radius of curvature of the i-th lens surface counting from the object side is Ri, the thickness and air gap of the i-th lens counting from the object side is Di, the i-th lens surface counting from the object side The refractive index of the glass of the lens is Ni, the aspherical shape has the apex of the surface as the origin, R is the paraxial apex radius of curvature, the traveling direction of light on the optical axis is the X axis, and the direction perpendicular to the X axis is the Y axis. When, and when A, B, C, D, and E are each aspheric coefficient, (1) −1.2f<R 4 <−0.5f (2) 0.2<N 3 −N 2 <0.3 (3) -1.6f< R7 <-0.7f (4) 0.06f< D7 <0.12f (5) 5<f|2・A+1/ R10 |<6.5. Next, the numerical ranges of the above conditions will be explained.
Conditions (1) and (2) are conditions for correcting the spherical aberration of the focusing lens group, and if the lower limit of conditions (1) and (2) is exceeded, the second and third lenses The spherical aberration correction effect on the R4 surface of the bonding becomes weaker, and as a result, the fluctuation of spherical aberration due to the difference in subject distance increases, and the upper limit value exceeds the upper limit value because it suppresses the occurrence of inward coma aberration. This makes it difficult to correct inward coma aberration. Condition (3) is a condition to reduce fluctuations in astigmatism due to differences in subject distance; if the upper limit of condition (3) is exceeded, negative astigmatism will occur at the periphery of the screen when focusing on a close object. If the value exceeds the lower limit, positive astigmatism will become excessive in the middle of the screen when focusing on a close object, which is undesirable. Condition (4) is a condition for adjusting the amount of distortion correction and the size of the sixth lens, which is the final lens.If the lower limit of condition (4) is exceeded, it is difficult to correct positive distortion. If the upper limit is exceeded, the effective diameter of the sixth lens becomes large, leading to an increase in the size of the lens, and the tangent to the surface of the first surface of the sixth lens near the maximum diameter becomes parallel to the optical axis. The lens has an inclination close to , that is, close to horizontal, making it extremely difficult to manufacture the lens. Condition (5) is a condition regarding the apex refractive power of the R10 surface of the first surface of the sixth lens, and if the upper limit of condition (5) is exceeded, negative astigmatism in the middle of the screen cannot be corrected. Moreover, if the lower limit value is exceeded, it becomes difficult to correct distortion aberration. The present invention achieves an F number of 2.8 and an angle of view by satisfying the above lens configuration and various conditions.
This makes it possible to achieve an extremely compact photographic lens with well-corrected aberrations of 58 degrees. In Numerical Example 1, the cross-sectional view of the lens is shown in the first
Figure 2 shows various aberrations when the object is at infinity.
Figure 3 shows various aberrations when the object is 26f from the image plane, where f is the focal length. In Numerical Example 2, the cross-sectional view of the lens is shown in the fourth example.
Figure 5 shows various aberrations when the object is at infinity.
Figure 6 shows various aberrations when the object is 26f from the image plane. In Numerical Example 3, the cross-sectional view of the lens is shown in the seventh figure.
Figure 8 shows various aberrations when the object is at infinity.
Figure 9 shows various aberrations when the object is 26f from the image plane. Next, numerical examples of the present invention will be shown. In the numerical examples, Ri is the radius of curvature of the i-th lens surface from the object side, Di is the thickness and air gap of the i-th lens from the object side, and Ni and νi are the i-th lens surface from the object side, respectively. The refractive index and Abbe number of the glass, A, B, C, D, and E are the aspherical coefficients in the formula expressing the aspherical shape described above. In Numerical Example 1 and Numerical Example 3, the aspherical shape was expressed only by an aspherical coefficient, and in Numerical Example 2, the aspherical shape was expressed by a paraxial apex radius of curvature and an aspherical coefficient. Further, Table 1 shows the third-order aberration coefficients of Numerical Example 1.
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】【table】
第1図は本発明の数値実施例1のレンズ断面
図、第2図、第3図は本発明の数値実施例1の諸
収差図、第4図は本発明の数値実施例2のレンズ
断面図、第5図、第6図は本発明の数値実施例2
の諸収差図、第7図は本発明の数値実施例3のレ
ンズ断面図、第8図、第9図は本発明の数値実施
例3の諸収差図である。
図中、Sはサジタル像面、Mはメリデイオナル
像面である。
FIG. 1 is a cross-sectional view of a lens according to Numerical Example 1 of the present invention, FIGS. 2 and 3 are various aberration diagrams of Numerical Example 1 of the present invention, and FIG. 4 is a cross-sectional view of a lens according to Numerical Example 2 of the present invention. Figures 5 and 6 are numerical example 2 of the present invention.
FIG. 7 is a sectional view of a lens according to Numerical Example 3 of the present invention, and FIGS. 8 and 9 are various aberration diagrams of Numerical Example 3 of the present invention. In the figure, S is a sagittal image plane, and M is a meridional image plane.
Claims (1)
ニスカスの第1レンズ、両凸面の第2レンズ、両
凹面の第3レンズ、正の第4レンズ、像面側に凸
面を向けた正のメニスカスの第5レンズそして像
面側に凸面を向けた負のメニスカスの第6レンズ
より成り、前記第2レンズと前記第3レンズは貼
合せられており、前記第6レンズの物体側のレン
ズ面が非球面であつて、全系の焦点距離をf、物
体側より数えて第i番目のレンズ面の曲率半径を
Ri、物体側より数えて第i番目のレンズ厚及び
空気間隔をDi、物体側より数えて第i番目のレ
ンズのガラスの屈折率をNi、非球面形状を面頂
点を原点とし、Rを近軸頂点曲率半径、光軸上で
光の進行方向をX軸、X軸と直角方向をY軸とし
たとき、 と表現し、A、B、C、D、Eを各々非球係数と
したとき、 −1.2f<R4<−0.5f 0.2<N3−N2<0.3 −1.6f<R7<−0.7f 0.06f<D7<0.12f 5<f|2・A+1/R10|<6.5 なる条件を満足し、第1レンズから第4レンズを
一体として繰り出す事によりフオーカシングを行
うことを特徴とする小型撮影レンズ。[Claims] 1. In order from the object side, a positive meniscus first lens with a convex surface facing the object side, a biconvex second lens, a biconcave third lens, a positive fourth lens, and a positive fourth lens with a convex surface facing the object side. It consists of a positive meniscus fifth lens with a convex surface facing and a negative meniscus sixth lens with a convex surface facing the image plane side, the second lens and the third lens are bonded together, and the sixth lens The lens surface on the object side is aspheric, the focal length of the entire system is f, and the radius of curvature of the i-th lens surface counting from the object side is
Ri, the thickness and air gap of the i-th lens counting from the object side, Di, the refractive index of the glass of the i-th lens counting from the object side, Ni, the aspherical shape with the apex of the surface as the origin, and R as the approximate Axis apex radius of curvature, when the direction of light travels on the optical axis is the X axis, and the direction perpendicular to the X axis is the Y axis, When A, B, C, D, and E are each aspheric coefficients, −1.2f<R 4 <−0.5f 0.2<N 3 −N 2 <0.3 −1.6f<R 7 <−0.7 A compact device that satisfies the following conditions: f 0.06f<D 7 <0.12f 5<f|2・A+1/R 10 |<6.5 and performs focusing by extending the first lens to the fourth lens as one unit. Photography lens.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17062180A JPS5793310A (en) | 1980-12-02 | 1980-12-02 | Small sized photographic lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17062180A JPS5793310A (en) | 1980-12-02 | 1980-12-02 | Small sized photographic lens |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5793310A JPS5793310A (en) | 1982-06-10 |
JPS6230604B2 true JPS6230604B2 (en) | 1987-07-03 |
Family
ID=15908261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17062180A Granted JPS5793310A (en) | 1980-12-02 | 1980-12-02 | Small sized photographic lens |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5793310A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4787721A (en) * | 1984-08-18 | 1988-11-29 | Minolta Camera Kabushiki Kaisha | Photographic lens system |
TWI574040B (en) | 2016-04-15 | 2017-03-11 | 大立光電股份有限公司 | Optical imaging lens assembly, image capturing device and electronic device |
-
1980
- 1980-12-02 JP JP17062180A patent/JPS5793310A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5793310A (en) | 1982-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3769373B2 (en) | Bright wide-angle lens | |
JP3369654B2 (en) | Wide-angle lens | |
US8970968B2 (en) | Photographing lens system | |
JP3725284B2 (en) | Compact wide-angle lens | |
JPH05157965A (en) | Wide-angle lens | |
US20200073096A1 (en) | Imaging lens and imaging apparatus | |
JP4233062B2 (en) | Imaging lens | |
JP3925748B2 (en) | Small lens | |
JP4098586B2 (en) | Zoom lens | |
JP3005905B2 (en) | Shooting lens | |
JP2572237B2 (en) | Wide angle lens with long back focus | |
JP3072157B2 (en) | Zoom finder | |
JP3360779B2 (en) | High zoom lens system | |
JPS6117114A (en) | Converter lens | |
JPH11211978A (en) | Retro-focus type lens | |
JP3203566B2 (en) | Wide-angle lens | |
JP2782720B2 (en) | Zoom lens | |
JPH0772382A (en) | Wide-angle lens | |
JP2006308789A (en) | Imaging lens | |
JP3038974B2 (en) | Small wide-angle lens | |
JP4214726B2 (en) | Imaging optics | |
JPS6230604B2 (en) | ||
JP3055790B2 (en) | Photographic lens | |
JPH0581008B2 (en) | ||
JPH06242370A (en) | Large aperture lens |