JPS6230601A - Method of supplying methanol cracking device with heat - Google Patents
Method of supplying methanol cracking device with heatInfo
- Publication number
- JPS6230601A JPS6230601A JP16741185A JP16741185A JPS6230601A JP S6230601 A JPS6230601 A JP S6230601A JP 16741185 A JP16741185 A JP 16741185A JP 16741185 A JP16741185 A JP 16741185A JP S6230601 A JPS6230601 A JP S6230601A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- methanol
- heating medium
- gas
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はメタノールを触媒下で分解して水素ガスあるい
は水素と一酸化炭素の混合ガスを製造するメタノール分
解装置への熱の供給する方法に関する。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for supplying heat to a methanol decomposition apparatus that decomposes methanol under a catalyst to produce hydrogen gas or a mixed gas of hydrogen and carbon monoxide. .
(従来の技術)
現代産業における水素の重要性は今さら強調するまでも
ない。すなわち、アンモニア合成、メタノ−μ合成、石
油1!lv製工業などの低濃度多量消費型から、半導体
工業、宇宙産業などの高濃度少量消費型に到るまで、有
機・無機化学工業、食品、冶金、電気、原子カエネ〃ギ
ーなどの広い分野で水素は不可欠で、安価な水素の製造
法の必要性が叫ばれて久しい。(Conventional technology) There is no need to overstate the importance of hydrogen in modern industry. Namely, ammonia synthesis, methano-μ synthesis, petroleum 1! From low-concentration, large-volume consumption types such as the LV manufacturing industry to high-concentration, low-volume consumption types such as the semiconductor industry and the space industry, it is used in a wide range of fields such as organic and inorganic chemical industries, food, metallurgy, electricity, and atomic energy. Hydrogen is indispensable, and the need for an inexpensive method to produce hydrogen has been voiced for a long time.
しかし、安価な水素製造法の新規な技術開発は容易では
なく、少量の場合には水の電気分解、大量の場合にはブ
タン、ナフサなどの炭化水素の接触改質によって製造さ
れている。However, it is not easy to develop new techniques for producing hydrogen at low cost, and hydrogen is produced in small quantities by electrolysis of water, and in large quantities by catalytic reforming of hydrocarbons such as butane and naphtha.
一方、−酸化炭素は有機化学工業でのカルボ二μ化反応
やオキソ反応、酢酸やエチレングリコ−μ製造に使われ
るほか、最近は特にC工化学の原料として注目されてい
る。On the other hand, -carbon oxide is used in the carbodimu reaction and oxo reaction in the organic chemical industry, and in the production of acetic acid and ethylene glyco-mu, and has recently attracted particular attention as a raw material for carbon engineering chemistry.
しかし、この−酸化炭素も安価に製造するのは困難で、
ブタンあるいは重質油等の炭化水素の部分酸化反応、あ
るいは製鉄所廃ガスなどの一酸化炭素を含むガスからの
回収などにより製造しているが、工程が複雑なため、水
素よりもむしろ高価なガスとなっている。However, it is difficult to produce this carbon oxide at low cost.
It is produced by a partial oxidation reaction of hydrocarbons such as butane or heavy oil, or by recovery from gases containing carbon monoxide such as steel mill waste gas, but because the process is complicated, it is more expensive than hydrogen. It is gas.
さらに、水素と一酸化炭素の混合ガスを扉々の比率で必
要とする場合も多いが、この場合も重質油、石炭などの
部分酸化で製造しており、これもまた高価なものである
。Furthermore, mixed gases of hydrogen and carbon monoxide are often required at door-to-door ratios, but these are also produced by partial oxidation of heavy oil, coal, etc., which is also expensive. .
このような従来の水素、−酸化炭素、あるいはその混合
ガスを製造する方法にかわるものとして、メタノールの
改質、あるいは分解の反応を利用する方法が脚光をあび
るようになってきている。As an alternative to such conventional methods for producing hydrogen, carbon oxide, or a mixed gas thereof, methods that utilize methanol reforming or decomposition reactions have been attracting attention.
この反応工程は以下のとおりである。The reaction steps are as follows.
すなわち、製品として水素を得る場合には、メタノ−p
の水蒸気改質反応により次式が進行する。That is, when obtaining hydrogen as a product, methanol-p
The following equation progresses due to the steam reforming reaction.
CH30E + I(2”→3H,+CO,・・・・・
・(1)また、製品として水素と一酸化炭素の混合ガス
を得る場合には、メタノ−μの分解反応で次式が進行す
る。CH30E + I (2”→3H, +CO,...
-(1) Furthermore, when obtaining a mixed gas of hydrogen and carbon monoxide as a product, the following equation proceeds in the decomposition reaction of methanol-μ.
CH,OH→2H,+ Co・・・・・・(2)このい
ずれの反応も触媒下での反応で、反応温度は300〜4
00℃での吸熱反応であり、(1)式では1t s k
ca11モルメタノール、(2)式では21.4 kc
al/七μメタノ−〜の反応熱を必要とする。CH, OH → 2H, + Co... (2) All of these reactions are reactions under a catalyst, and the reaction temperature is 300 to 4
It is an endothermic reaction at 00℃, and in equation (1), 1t s k
ca11 mol methanol, 21.4 kc in formula (2)
Requires reaction heat of ~al/7μ methanol.
この従来の技術を第2図に示し、その内容を簡単に説明
する。This conventional technique is shown in FIG. 2, and its contents will be briefly explained.
所定の流量比に調整されたメタノ−〜と水は、メタノ−
μ供給ライン1、および純水供給フィン2から供給し、
原料予熱器5で、反応器7からの出口ガスと熱交換を行
った後、蒸発加熱器4にて反応器入口温度まで外温し、
反応器7へ供給する。反応′a7は一般には管式タイプ
で、反応管内の触媒を充填した層にメタノールを通す。Methanol and water adjusted to a predetermined flow rate ratio are
Supplied from μ supply line 1 and pure water supply fin 2,
After exchanging heat with the outlet gas from the reactor 7 in the raw material preheater 5, it is externally heated to the reactor inlet temperature in the evaporative heater 4,
Supplied to reactor 7. Reaction 'a7' is generally of the tubular type, in which methanol is passed through a bed filled with catalyst in the reaction tube.
この胴側には、熱媒加熱炉16において、燃料供給フィ
ン20からの燃料を焚いて加熱した熱媒を流し、反応管
を外部から加熱してメタノ−p分解に必要な熱を供給す
る。熱媒加熱炉16からの熱媒の一部は蒸発加熱器4へ
も供給され、降温した後熱媒循環ポンプ18によシ熱媒
もどりフィン19を経て熱媒加熱炉16へもどる。反応
器7でメタノールは分解し、水素ガス、あるいは水素と
一酸化炭素の混合ガスが生成するが、この高温ガスは原
料予熱器5で原料に熱を与えた後、冷却器9において常
温付近までさらに冷却し、気液分離器10で未反応メタ
ノールを含む凝縮液を分離し、この凝縮液を未分解メタ
ノール循環フィン12により返送し、ガス分のみをガス
フィン11からガスvI11!ユニット13に供給する
。ガス精製ユニット15では、不純物の除去、あるいは
水素/−一酸化炭素ガス比調整を行った後、製品ガス取
出しライン14から製品ガスを取出す。A heating medium heated by burning fuel from the fuel supply fins 20 is passed through the heating medium heating furnace 16 to heat the reaction tube from the outside to supply the heat necessary for methano-p decomposition. A part of the heating medium from the heating medium heating furnace 16 is also supplied to the evaporative heater 4, and after cooling down, it is returned to the heating medium heating furnace 16 via the heating medium return fin 19 by the heating medium circulation pump 18. In the reactor 7, methanol is decomposed and hydrogen gas or a mixed gas of hydrogen and carbon monoxide is generated.This high-temperature gas is heated to the raw material in the raw material preheater 5, and then cooled to around room temperature in the cooler 9. After further cooling, the condensate containing unreacted methanol is separated in the gas-liquid separator 10, and this condensate is returned through the undecomposed methanol circulation fin 12, and only the gas component is transferred from the gas fin 11 to the gas vI11! Supply to unit 13. In the gas purification unit 15, after removing impurities or adjusting the hydrogen/-carbon monoxide gas ratio, the product gas is taken out from the product gas take-out line 14.
気液分離器10での凝縮成分は循環フィン12から純水
供給フィン2へもどす。なお15は起動用原料予熱器で
ある。The condensed components in the gas-liquid separator 10 are returned to the pure water supply fins 2 through the circulation fins 12. Note that 15 is a starting material preheater.
(発明が解決しようとする問題点) 第2図の従来法で問題となるのは原料予熱器3である。(Problem to be solved by the invention) The problem with the conventional method shown in FIG. 2 is the raw material preheater 3.
すなわち、正常運転に到達した後には反応器7から高温
ガスが得られるので原料予熱器3はその機能を果たすこ
とができるが、装置起動時には予熱の熱源がプロセスか
らは得られない。That is, after normal operation is reached, high-temperature gas is obtained from the reactor 7, so the raw material preheater 3 can perform its function, but when the device is started, the heat source for preheating is not obtained from the process.
この場合の一般的な方法としては、起動時にはごく少量
の原料を供給し、熱媒からの加熱は100チ行って、系
全体を徐々に昇温しながら負荷を上げてゆく方法である
が、この方法ではスタートアップに長時間を要し、短時
間起動の要求を満さない。そこでやむを得ず、第2図に
示すように起動用原料予熱器15を設置し、起動時、反
応器が所定の温度に昇温するまで起動用原料予熱器15
で原料を予熱する方法を取る。In this case, the general method is to supply a very small amount of raw material at startup, heat the heating medium for 100 degrees, and gradually increase the temperature of the entire system while increasing the load. This method takes a long time to start up and does not meet the requirement for short startup times. Therefore, we had no choice but to install a starting material preheater 15 as shown in Figure 2.
Take the method of preheating the raw materials.
この予熱器の熱源としては、スチーム、電気、あるいは
熱媒の一部が使用されるが、正常運転時にはこの予熱器
15はバイパスすることとなシ、起動時のみしか使用し
ない機器をかかえることとなる。As a heat source for this preheater, steam, electricity, or a part of a heating medium is used, but during normal operation, this preheater 15 is not bypassed, and there is a device that is used only during startup. Become.
あるいは蒸発過熱器4に起動時の高熱負荷を持たせるこ
とも可能であるが、正常運転時には熱負荷が下がるため
に、この熱交換器はオーパ−デザインとなる。Alternatively, it is possible to make the evaporative superheater 4 have a high heat load at startup, but since the heat load decreases during normal operation, this heat exchanger is over-designed.
本発明は従来法における上述の欠点を解消しうるメタノ
ール分解装置への熱の供給方法を提供しようとするもの
である。The present invention seeks to provide a method for supplying heat to a methanol decomposition unit that can overcome the above-mentioned drawbacks of the conventional methods.
(問題点を解決するだめの手段)
すなわち本発明はメタノールを触媒下で分解して水素ガ
ス、あるいは水素と一酸化炭素の混合ガスを製造する装
置において、装置起動時の高熱負荷時には熱媒の潜熱に
よって必要熱を供給し、正常運転時の低熱負荷時には熱
媒の顕熱によって必要熱を供給することを特徴とするメ
タノール分解装置の熱供給方法である。(Another Means to Solve the Problems) That is, the present invention provides an apparatus for decomposing methanol under a catalyst to produce hydrogen gas or a mixed gas of hydrogen and carbon monoxide, in which the heating medium is decomposed during a high heat load at the time of starting the apparatus. This is a heat supply method for a methanol decomposition apparatus characterized by supplying necessary heat by latent heat, and supplying necessary heat by sensible heat of a heating medium during low heat load during normal operation.
前述のように、起動時には必要熱量が大きく正常運転時
には熱負荷が低下するメタノール分解装置において、本
発明は正常運転時の仕様で設計した機器を用い、熱媒の
運転操作条件のみを変更することにより、効果的に熱負
荷変動に対応するものである。As mentioned above, in a methanol decomposition device that requires a large amount of heat at startup and a reduced heat load during normal operation, the present invention uses equipment designed with specifications for normal operation and changes only the operating conditions of the heating medium. This effectively copes with heat load fluctuations.
熱交換器の伝熱係数は、相変化を伴わない場合よりも、
蒸発、凝縮という相変化を伴う場合のほうが値が大きく
なるのは衆知の事実である。The heat transfer coefficient of a heat exchanger is greater than that without phase change.
It is a well-known fact that the value becomes larger when phase changes such as evaporation and condensation are involved.
一般に第2図の熱媒系は液相で運転され、従って蒸発過
熱器4の熱媒側は常に液相で、この熱交換器の伝熱係数
は200〜400 kcal/−・Hr・℃である。こ
れに対し、蒸発過熱器で熱媒を凝縮されることによって
熱を供給すると熱媒側の伝熱係数が大きく増大し、従っ
て総括伝熱係数として800〜1000kca]/rr
L2・Hr・℃の値を取ることが可能となる。この現象
を利用し、正常運転時の低熱負荷向けの仕様にて設計し
た機器を用いて、起動時の高熱負荷運転も可能にするの
が本発明の狙いとするところである。Generally, the heat medium system shown in Fig. 2 is operated in the liquid phase, so the heat medium side of the evaporative superheater 4 is always in the liquid phase, and the heat transfer coefficient of this heat exchanger is 200 to 400 kcal/-・Hr・℃. be. On the other hand, when heat is supplied by condensing the heating medium in an evaporative superheater, the heat transfer coefficient on the heating medium side increases significantly, and therefore the overall heat transfer coefficient is 800 to 1000 kca]/rr.
It becomes possible to take the values of L2・Hr・℃. The aim of the present invention is to take advantage of this phenomenon and enable high heat load operation at startup using equipment designed with specifications for low heat load during normal operation.
本発明の一夾施態様を第1図に従って詳述する。One embodiment of the present invention will be described in detail with reference to FIG.
メタノールと水は所定比に流景を調整した後、メタノ−
μ供給フィン1および純水供給フィン2よシ系に供給し
、予熱器3、蒸発過熱器4により反応器入口温度まで昇
温し、チューブ内に触媒を充填した反応器7に供給する
。反応器7へは図示していない高温熱媒あるいは電気加
熱によシ反応の進行に必要な熱を供給し、メタノールが
分解して水素ガス、あるいは水素と一酸化炭素の混合ガ
スを生成する。正常運転時にはこの高温ガスは原料予熱
器5で冷却され、さらに冷却器9で常温まで冷却された
後、再循環用の未分解メタノ−pを気液分離器10で分
離し、これを未分゛解メタノーμ循環ライン12により
系入口に返送し、ガス分のみをガス精製ユニット13を
通して、製品ガス取出しラインより製品ガスとして取り
出す。After adjusting the flow of methanol and water to a predetermined ratio,
The water is supplied to the μ supply fin 1 and the pure water supply fin 2 system, heated to the reactor inlet temperature by a preheater 3 and an evaporator superheater 4, and then supplied to a reactor 7 whose tube is filled with a catalyst. Heat necessary for the reaction to proceed is supplied to the reactor 7 by a high-temperature heating medium or electric heating (not shown), and methanol is decomposed to produce hydrogen gas or a mixed gas of hydrogen and carbon monoxide. During normal operation, this high-temperature gas is cooled in the raw material preheater 5, and further cooled to room temperature in the cooler 9, after which undecomposed methanol for recirculation is separated in the gas-liquid separator 10, and this is unseparated. It is returned to the system inlet through the decomposed methanol μ circulation line 12, and only the gas component passes through the gas purification unit 13 and is taken out as product gas from the product gas take-out line.
この装置において、起動時には反応器出口ガスフィン8
にガスがないか、あるいはと(少量のため原料予熱器3
の熱源がない。従って、正常運転時の、原料予熱器3と
蒸発過熱器4の熱負荷の合計を起動時には蒸発過熱器4
でまかなわなければならない。In this device, at startup, the reactor outlet gas fin 8
There is no gas in the
There is no heat source. Therefore, during normal operation, the total heat load of the raw material preheater 3 and the evaporative superheater 4 is
It has to be covered.
この方法として、熱媒加熱器6で加熱された熱媒の循環
により熱供給を行うのであるが、まず、起動時の高熱負
荷時には、熱媒加熱器6で熱媒は蒸発し、蒸気となって
熱媒供給ライン5から蒸発過熱器4へ送られる。この蒸
発過熱器4ではメタノールに熱を与えて熱媒は凝縮し、
液となって熱媒加熱器6へもどされる。In this method, heat is supplied by circulating the heat medium heated by the heat medium heater 6. First, during a high heat load at startup, the heat medium evaporates in the heat medium heater 6 and becomes steam. The heat medium is then sent from the heat medium supply line 5 to the evaporative superheater 4. In this evaporative superheater 4, heat is given to methanol and the heating medium is condensed.
It becomes a liquid and is returned to the heat medium heater 6.
このように熱媒は、熱媒加熱器6での蒸発、蒸発過熱器
4での凝縮をくり返し相変化による潜熱によって高熱負
荷をまかなう。In this way, the heat medium repeatedly undergoes evaporation in the heat medium heater 6 and condensation in the evaporator superheater 4, thereby covering a high heat load with the latent heat generated by the phase change.
一方、正常運転となり、反応器の出口ガスを用いて予熱
器3において原料予熱が行われ始めたら、蒸発過熱器4
の熱負荷は低下する。この場合には、熱媒は相変化をせ
ず、常に液の状態で蒸発過熱器4と熱媒加熱器60間を
循環し、熱媒の顕熱によってメタノールの加熱に必要な
熱を与える。On the other hand, when normal operation starts and the preheater 3 starts to preheat the raw material using the outlet gas of the reactor, the evaporative superheater 4
The heat load will be reduced. In this case, the heating medium does not undergo a phase change and always circulates between the evaporative superheater 4 and the heating medium heater 60 in a liquid state, and the sensible heat of the heating medium provides the heat necessary for heating the methanol.
このような操作において、蒸発過熱器4、熱媒加熱器6
の仕様、熱媒循環址はいずれの場合も同じでよく、変え
るのは#AIJX操作圧力と熱媒加熱器6からの熱供給
量である。すなわち、高熱負荷時には正常運転時に比べ
て熱媒操作圧力を少し下げて相変化を起こさせ、また熱
媒加熱器6での熱供給量を増大させる操作を行う。なお
、熱媒加熱器6での熱供給法は、電気式、燃料焚き式そ
の他があシ、特に限定されるものではない。In such an operation, the evaporative superheater 4, the heat medium heater 6
The specifications and heat medium circulation site may be the same in either case, and what is changed is the #AIJX operating pressure and the amount of heat supplied from the heat medium heater 6. That is, during high heat load, the operating pressure of the heating medium is slightly lowered compared to during normal operation to cause a phase change, and the amount of heat supplied by the heating medium heater 6 is increased. Note that the heat supply method in the heat medium heater 6 may be an electric type, a fuel-fired type, or the like, and is not particularly limited.
(実施例)
実施例1
メタノ−/1/938モ/L//時、水94モ/L//
時の原料を供給して装置を起動し、20℃の原料を蒸発
過熱器に送って、新日本製鉄化学工業の熱媒サームエス
300を熱媒加熱器で加熱して380〜400℃のガス
状熱媒として約6kg/a112・Gで循環させ、この
熱媒の凝縮によりメタノ−μを加熱した。メタノールを
加熱したガス状熱媒は、200〜600℃の液状熱媒に
なり、熱媒加熱器にもどり再度上記温度のガス状熱媒と
なって蒸発過熱器に循環された。この結果、メタノ−p
は350℃に加熱され、この時の蒸発加熱器の熱負荷は
14500 kcal/時であった。(Example) Example 1 Methanol/1/938 mo/L//hour, water 94 mo/L//
The raw material at 20°C is supplied to start the equipment, and the raw material at 20°C is sent to the evaporation superheater, and the heat medium Therm-S 300 from Nippon Steel Chemical Industry is heated in the heat medium heater to produce a gaseous state at 380 to 400°C. It was circulated as a heating medium at a rate of about 6 kg/a112·G, and the methanol-μ was heated by condensation of this heating medium. The gaseous heating medium that heated methanol became a liquid heating medium at 200 to 600°C, returned to the heating medium heater, became a gaseous heating medium at the above temperature again, and was circulated to the evaporation superheater. As a result, methano-p
was heated to 350° C., and the heat load on the evaporative heater at this time was 14,500 kcal/hour.
この結果蒸発したメタノールを反応器に供給して分解し
、毎時水素1576七μ、−酸化炭素694モμ、二酸
化炭素94七〜、メタン94モル、未反応メタノ−/L
’56モルのガスが得られた。The resulting evaporated methanol is supplied to the reactor and decomposed, producing 15767 μm of hydrogen, 694 μμ of carbon oxide, 947 μm of carbon dioxide, 94 moles of methane, and unreacted methanol per hour.
'56 moles of gas were obtained.
実施例2
実施例1と同じ条件での正常運転時、原料加熱器でメタ
ノールは20℃から170℃に加熱され、一方ガスは3
50℃から110℃に降温し、熱負荷はa a o o
kcal/時であった。Example 2 During normal operation under the same conditions as Example 1, methanol was heated from 20°C to 170°C in the feedstock heater, while gas was heated at 3°C.
The temperature drops from 50℃ to 110℃, and the heat load is a a o o
It was kcal/hour.
メタノ−pは蒸発加熱器において、約9ゆ/ls”参G
で操作される液状サームエス300によシ加熱によシ3
50℃に加熱され、この時の熱負荷はt 700 kc
al/時であった。また、反応器でメタノールが分解し
てできたガス性状は実施例1と同じであった。In the evaporative heater, methanol is heated at a rate of about 9 yu/ls”
The liquid THERM-S 300 operated by the heating system 3
It is heated to 50℃, and the heat load at this time is t 700 kc.
al/hour. Furthermore, the properties of the gas produced by decomposing methanol in the reactor were the same as in Example 1.
実施例3
メタノ−A/687モ/L//時、水687モ/L//
時の原料を供給して装置を起動し、20℃の原料を蒸発
過熱器に送って、新日本製鉄化学工業の熱媒サームエス
50Gを熱媒加熱器で加熱して380〜400℃のガス
状熱媒として約6ゆ/12・Gで循環させ、との熱媒の
凝縮によりメタノ−μを加熱した。この結果、メタノ−
pけ350℃に加熱され、この時の蒸発加熱器の熱負荷
は18600kcal/時であった。Example 3 Methanol A/687 mo/L//hour, water 687 mo/L//
The raw material at 20°C is supplied to start the device, and the raw material at 20°C is sent to the evaporation superheater, and the heat medium THERM-S 50G from Nippon Steel Chemical Industry is heated in the heat medium heater to produce a gaseous state at 380-400°C. It was circulated as a heating medium at a rate of about 6 Y/12.G, and the methanol-μ was heated by condensation of the heating medium. As a result, methanol
It was heated to 350° C., and the heat load on the evaporative heater at this time was 18,600 kcal/hour.
蒸発したメタノールを反応器に供給して分解し、毎時水
素1154モル、−酸化炭素508モル、二酸化炭素6
9モル、メタン69モル、未反応メタノ−A/41モp
のガスが得られた。The evaporated methanol is fed into the reactor and decomposed, producing 1154 moles of hydrogen, -508 moles of carbon oxide, and 6 moles of carbon dioxide per hour.
9 moles, 69 moles of methane, unreacted methano-A/41 mop
of gas was obtained.
実施例4
実施例3と同じ条件での正常運転時、原料加熱器でメタ
ノールは20℃から180℃に加熱され、一方ガスは5
50℃から160℃に降温し、熱負荷は5700 kc
al/時であった。Example 4 During normal operation under the same conditions as Example 3, methanol was heated from 20°C to 180°C in the feedstock heater, while gas was heated at 5°C.
Temperature decreased from 50℃ to 160℃, heat load was 5700kc
al/hour.
メタノールは蒸発加熱器において、約qkg/aN2・
Gで操作される液状サームエス300によシ加熱により
350℃に加熱され、この時の熱負荷は12900 k
cal/時であった。また、反応器でメタノールが分解
してできたガス性状は実施例3と同じであった。Methanol is heated at approximately qkg/aN2 in the evaporative heater.
It is heated to 350°C by liquid THERM-S 300 operated by G, and the heat load at this time is 12900 k
It was cal/hour. Furthermore, the properties of the gas produced by decomposing methanol in the reactor were the same as in Example 3.
実施例5
前記実施例と同じ装置で、メタノ−/l/400モ/L
//時、水600モA//時の原料を供給し、加熱蒸発
後反応器に供給したところ、毎時水素1080モμ、二
酸化炭素360七p、−酸化炭素21モル、メタン15
モルと若干の未反応メタノ−pが得られた。起動運転時
および正常運転時の熱媒加熱操作は前記実施例と同様で
あった。Example 5 Using the same equipment as in the previous example, methanol/l/400 m/l
// hour, 600 moA//hour of water was supplied, and after being heated and evaporated, it was fed to the reactor. As a result, 1080 moμ of hydrogen, 3607 p of carbon dioxide, 21 mole of carbon oxide, and 15 mole of methane were produced per hour.
mol and some unreacted methanol were obtained. The heating medium heating operation during start-up operation and normal operation was the same as in the previous example.
(発明の効果)
前述のように特に起動時用の原料加熱器およびそれへの
熱媒配管を必要とせず、機器の数が少なくなって装置の
コストダウンに貢献する。(Effects of the Invention) As described above, there is no need for a raw material heater especially for startup and for heat medium piping thereto, which reduces the number of devices and contributes to reducing the cost of the device.
また、運転操作も容易で、運転費の低減につながる。Additionally, it is easy to operate, leading to lower operating costs.
第1図は本発明の一実施態様を説明する図、第2図は従
来のメタノール分解装置への熱供給方法を説明する−で
ある。図において、1 :メタノール供給ライン、2:
純水供給ライン、5:原料予熱器、4:メタノール蒸発
過熱器、5:熱媒循環フィン、6:熱媒加熱器、7:反
応器、8:反応器出口ガスライン、9:冷却器、10:
気液分離器、11:気液分離器ガスライン、12:未分
解メタノ−)V循環ライン、13:ガス積装ユニット、
14:1ψ品ガス取出しライン、15:起動?+1原料
予熱器、16:熱媒加熱器、17:熱媒供給ライン、1
8 :熱媒循環ポンプ、19 :熱媒もどりライン、2
0:燃料供給ライン
復代理人 内 1) 明
復代理人 萩 原 亮 −
復代理人 安 西 篤 夫
区 田
11+、 −を
;1頁の続き
)発 明 者 宮 入 嘉 夫 東京都千代田
区丸の内社内FIG. 1 is a diagram illustrating one embodiment of the present invention, and FIG. 2 is a diagram illustrating a conventional method of supplying heat to a methanol decomposition apparatus. In the figure, 1: methanol supply line, 2:
Pure water supply line, 5: Raw material preheater, 4: Methanol evaporation superheater, 5: Heat medium circulation fin, 6: Heat medium heater, 7: Reactor, 8: Reactor outlet gas line, 9: Cooler, 10:
Gas-liquid separator, 11: Gas-liquid separator gas line, 12: Undecomposed methanol) V circulation line, 13: Gas loading unit,
14: 1ψ product gas extraction line, 15: Start? +1 Raw material preheater, 16: Heat medium heater, 17: Heat medium supply line, 1
8: Heat medium circulation pump, 19: Heat medium return line, 2
0: Fuel supply line sub-agent 1) Meifuku agent Ryo Hagiwara - Sub-agent Atsuo Anzai Ward 11+, -; continued on page 1) Inventor Yoshio Miyairi Marunouchi, Chiyoda-ku, Tokyo Inside the company
Claims (1)
一酸化炭素の混合ガスを製造する装置において、装置起
動時の高熱負荷時には熱媒の潜熱によつて必要熱を供給
し、正常運転時の低熱負荷時には熱媒の顕熱によつて必
要熱を供給することを特徴とするメタノール分解装置の
熱供給方法。In equipment that produces hydrogen gas or a mixed gas of hydrogen and carbon monoxide by decomposing methanol under a catalyst, the required heat is supplied by the latent heat of the heating medium during the high heat load at startup, and the low heat during normal operation is supplied. A method for supplying heat to a methanol decomposition apparatus, characterized in that during load, necessary heat is supplied by sensible heat of a heating medium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16741185A JPS6230601A (en) | 1985-07-31 | 1985-07-31 | Method of supplying methanol cracking device with heat |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16741185A JPS6230601A (en) | 1985-07-31 | 1985-07-31 | Method of supplying methanol cracking device with heat |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6230601A true JPS6230601A (en) | 1987-02-09 |
Family
ID=15849196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16741185A Pending JPS6230601A (en) | 1985-07-31 | 1985-07-31 | Method of supplying methanol cracking device with heat |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6230601A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110791307A (en) * | 2019-12-03 | 2020-02-14 | 新榕能源(福建)有限公司 | Energy-saving temperature control heat exchange system for methanol-to-oil |
-
1985
- 1985-07-31 JP JP16741185A patent/JPS6230601A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110791307A (en) * | 2019-12-03 | 2020-02-14 | 新榕能源(福建)有限公司 | Energy-saving temperature control heat exchange system for methanol-to-oil |
CN110791307B (en) * | 2019-12-03 | 2023-08-22 | 新榕能源(福建)有限公司 | Energy-saving temperature-control heat exchange system for methanol-to-oil |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4130575A (en) | Process for preparing methane rich gases | |
US4865624A (en) | Method for steam reforming methanol and a system therefor | |
US4238403A (en) | Methanol synthesis process | |
EP1400489B1 (en) | Process and apparatus for autothermal reforming with recycle of a portion of the produced syngas | |
US3446747A (en) | Process and apparatus for reforming hydrocarbons | |
US6673845B2 (en) | Production of hydrocarbon products | |
WO2000009441A2 (en) | Steam reforming | |
JPH07126201A (en) | Methanol production process | |
JPH023614A (en) | Method for manufacturing methanol by single compression | |
JPS5883642A (en) | Methanol manufacture | |
US3097081A (en) | Production of synthesis gas | |
WO2007075160A1 (en) | Method of and apparatus for producing methanol | |
EP3983366A1 (en) | Process for synthesising methanol | |
CN111217331A (en) | Method for producing hydrogen by steam reforming and CO conversion | |
US4670187A (en) | Methanol reforming process and apparatus for practicing it | |
EA038145B1 (en) | Process and plant for the production of synthesis gas by means of catalytic steam reformation of a hydrocarbonaceous feed gas | |
US4045960A (en) | Process for producing energy | |
US3810975A (en) | Start-up procedure for catalytic steam reforming of hydrocarbons | |
JP4256013B2 (en) | Environmentally friendly hydrogen production method | |
JPS6230601A (en) | Method of supplying methanol cracking device with heat | |
JP2001097906A (en) | Method for producing methanol | |
RU2751112C2 (en) | Method involving an exothermic catalytic reaction of synthesis gas, and a corresponding installation | |
JPS61122102A (en) | Steam reforming of hydrocarbon | |
JPH11228973A (en) | Thermal hydrocracking process for coal | |
RU2088517C1 (en) | Method of two-step catalytic conversion of hydrocarbon raw material |