JPS6230397B2 - - Google Patents

Info

Publication number
JPS6230397B2
JPS6230397B2 JP54093270A JP9327079A JPS6230397B2 JP S6230397 B2 JPS6230397 B2 JP S6230397B2 JP 54093270 A JP54093270 A JP 54093270A JP 9327079 A JP9327079 A JP 9327079A JP S6230397 B2 JPS6230397 B2 JP S6230397B2
Authority
JP
Japan
Prior art keywords
boric acid
concentration
tank
pure water
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54093270A
Other languages
Japanese (ja)
Other versions
JPS5618792A (en
Inventor
Masahiro Hozumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP9327079A priority Critical patent/JPS5618792A/en
Publication of JPS5618792A publication Critical patent/JPS5618792A/en
Publication of JPS6230397B2 publication Critical patent/JPS6230397B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】 本発明は原子炉冷却水または減速材中に溶解し
たホウ酸濃度の制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for controlling the concentration of boric acid dissolved in nuclear reactor cooling water or moderator.

加圧水型原子炉、重水減速型原子炉ではそれぞ
れ冷却水、減速材中に溶解したホウ酸濃度を変化
させることにより原子炉の反応度を制御してい
る。従来、原子炉冷却水または減速材中のホウ酸
濃度制御装置として特公昭51―14675号公報記載
の如き装置が知られている。この従来装置はイオ
ン交換樹脂が充填されたイオン交換器およびこの
イオン交換器に通される冷却水または減速材(以
下これを冷却水等という)の温度を昇降するため
の熱交換器を具え、これにより冷却水等の温度に
対応するイオン交換樹脂の吸着容量の変化を利用
して冷却水等のホウ酸濃度を制御するものであ
る。
In pressurized water reactors and heavy water-moderated reactors, the reactivity of the reactor is controlled by changing the concentration of boric acid dissolved in the cooling water and moderator, respectively. Conventionally, a device as described in Japanese Patent Publication No. 51-14675 has been known as a boric acid concentration control device in reactor cooling water or moderator. This conventional device includes an ion exchanger filled with ion exchange resin and a heat exchanger for raising and lowering the temperature of cooling water or moderator (hereinafter referred to as cooling water, etc.) passed through the ion exchanger, This allows the concentration of boric acid in the cooling water to be controlled by utilizing changes in the adsorption capacity of the ion exchange resin that correspond to the temperature of the cooling water.

第1図はホウ酸除去用樹脂の吸着特性を示すも
のであり、この図を参照して上記の従来装置を用
いてホウ酸濃度を変化させる場合を説明すると次
の通りである。すなわち、(1)冷却水等のホウ酸濃
度が1000ppmの状態ではイオン交換樹脂は入口
濃度1000ppm、温度は70℃、イオン交換樹脂1
当りのホウ酸吸着量は約29gで飽和され、出口
濃度も1000ppmとなつている。(2)冷却水等のホ
ウ酸濃度を下げる場合は入口温度を5℃にすると
樹脂の吸着容量が大きくなり、冷却水等のホウ酸
が除去される。冷却水等の量に対する樹脂量を適
当に選んであればイオン交換樹脂1当りの吸着
量が33g、入口濃度500ppm、温度5℃で飽和
し、出口濃度も500ppmとなつて平衡に達する。
(3)冷却水等のホウ酸濃度を上げる場合には入口温
度を70℃に上げることにより(2)および(1)の逆の現
象が起り、1000ppmまで上げることができる。
(4)途中の濃度にする場合は入口温度を適当な値に
すれば任意に調節できる。以上のように、この従
来装置ではイオン交換樹脂を常に入口ホウ酸濃度
と温度に対応したホウ酸の飽和状態にして使用す
るものである。以上のようにこの従来装置では熱
交換器を必須の構成要件とし、これにより運転温
度を広範囲に調節する必要があり、しかも樹脂を
常に飽和状態で使用しているためホウ酸濃度の調
節が速やかに行えず、しかも樹脂1当りの有効
吸着量が4g/と少く、いまだ充分に効率がよ
いものとはいえないものであつた。
FIG. 1 shows the adsorption characteristics of the resin for removing boric acid, and the case where the concentration of boric acid is changed using the above-mentioned conventional apparatus will be explained with reference to this figure as follows. In other words, (1) When the boric acid concentration in cooling water, etc. is 1000 ppm, the ion exchange resin has an inlet concentration of 1000 ppm, a temperature of 70°C, and an ion exchange resin of 1
The amount of boric acid adsorbed per unit is saturated at about 29g, and the outlet concentration is also 1000ppm. (2) When lowering the concentration of boric acid in cooling water, etc., setting the inlet temperature to 5°C will increase the adsorption capacity of the resin and remove boric acid from cooling water, etc. If the amount of resin is appropriately selected relative to the amount of cooling water, etc., the amount of adsorption per ion exchange resin will be 33 g, the inlet concentration will be 500 ppm, the temperature will be saturated at 5° C., and the outlet concentration will also be 500 ppm, reaching equilibrium.
(3) When increasing the concentration of boric acid in cooling water, etc., by increasing the inlet temperature to 70°C, the opposite phenomenon of (2) and (1) occurs, and the concentration can be increased to 1000 ppm.
(4) If you want the concentration to be somewhere in the middle, you can adjust it as you like by setting the inlet temperature to an appropriate value. As described above, in this conventional apparatus, the ion exchange resin is always used in a saturated state with boric acid corresponding to the inlet boric acid concentration and temperature. As mentioned above, this conventional equipment requires a heat exchanger as an essential component, which makes it necessary to adjust the operating temperature over a wide range.Moreover, since the resin is always used in a saturated state, the boric acid concentration can be adjusted quickly. Moreover, the effective amount of adsorption per resin was as small as 4 g/resin, and it could not be said to be sufficiently efficient.

しかして本発明は、未飽和のイオン交換樹脂に
よるホウ酸の吸着除去、温純水によるイオン交換
樹脂の再生、再生液の蒸発および凝縮による温純
水および高濃度ホウ酸の再生、高濃度ホウ酸の注
入の組合せにより簡単に冷却水等のホウ酸濃度を
効率よく制御し得る装置を提供するものである。
Therefore, the present invention is capable of adsorbing and removing boric acid using an unsaturated ion exchange resin, regenerating the ion exchange resin using warm pure water, regenerating warm pure water and high-concentration boric acid by evaporating and condensing the regenerating liquid, and injecting high-concentration boric acid. The object of the present invention is to provide a device that can easily and efficiently control the concentration of boric acid in cooling water, etc. by combining the following methods.

以下に、本発明をその一例を示す添付図面を参
照して説明する。
In the following, the present invention will be explained with reference to the accompanying drawings showing an example thereof.

第2図に示されるように、本発明装置は基本的
に、ホウ酸濃度調節用ポンプ1、イオン交換樹脂
が充填され少くとも一方の樹脂が未飽和の状態に
ある2基のホウ酸除去塔2、高濃度ホウ酸槽3、
ホウ酸供給ポンプ4、純水槽5、純水槽ポンプ
6、ホウ酸濃縮槽7、ホウ酸濃縮槽ポンプ8、蒸
発器9および凝縮器10で構成される。
As shown in FIG. 2, the apparatus of the present invention basically includes a pump 1 for adjusting boric acid concentration, and two boric acid removal towers filled with ion exchange resin, at least one of which is unsaturated. 2. High concentration boric acid tank 3.
It is composed of a boric acid supply pump 4, a pure water tank 5, a pure water tank pump 6, a boric acid concentration tank 7, a boric acid concentration tank pump 8, an evaporator 9, and a condenser 10.

このような装置において、冷却水等のホウ酸濃
度を変更する必要のない場合は、第2図の太線で
示されるように原子炉(図示せず)から冷却水等
を系内に供給する供給管11、その途中に設けら
れたホウ酸濃度調節用ポンプ1および戻り管12
を経て冷却水等をそのまま原子炉へ循環する。こ
の場合、ホウ酸濃度調節用ポンプ1の入口におけ
る冷却水等の温度は50℃程度以下に適宜の手段に
より保持するようにする。
In such equipment, if there is no need to change the concentration of boric acid in the cooling water, etc., supply cooling water, etc. from the reactor (not shown) into the system as shown by the thick line in Figure 2. Pipe 11, boric acid concentration adjustment pump 1 and return pipe 12 provided in the middle thereof
After that, cooling water, etc. is circulated directly to the reactor. In this case, the temperature of the cooling water or the like at the inlet of the boric acid concentration adjusting pump 1 is maintained at about 50° C. or lower by appropriate means.

冷却水等のホウ酸濃度を増大したい場合には第
3図の太線で示されるように、ホウ酸濃度調節用
ポンプ1により供給管11および戻り管12を経
て原子炉へ循環される冷却水等に、高濃度ホウ酸
槽3からホウ酸供給ポンプ4によつて戻り管12
の途中から高濃度ホウ酸を供給する。高濃度ホウ
酸槽3には通常5%程度のホウ酸液が貯えられて
いる。
When it is desired to increase the concentration of boric acid in cooling water, etc., as shown by the thick line in FIG. Then, a return pipe 12 is supplied from the high concentration boric acid tank 3 by the boric acid supply pump 4.
Highly concentrated boric acid is supplied from the middle of the process. The high concentration boric acid tank 3 normally stores about 5% boric acid solution.

また、冷却水等のホウ酸濃度を下げる場合は、
第4図の太線で示されるように冷却水等を未飽和
の状態にあるホウ酸除去塔2へ供給し、そこで塔
内のイオン交換樹脂により冷却水等中のホウ酸を
吸着除去する。この際第1図からわかるように、
例えば入口濃度1000ppm、温度50℃の冷却水等
が塔内に通水された場合、未飽和の状態から樹脂
1当り32gまでホウ酸が樹脂に吸着されること
になる。ホウ酸が吸着されてホウ酸濃度が低下し
た冷却水等は戻り管12を経て原子炉へ循環され
る。
In addition, when lowering the concentration of boric acid in cooling water, etc.,
As shown by the thick line in FIG. 4, cooling water and the like are supplied to the unsaturated boric acid removal tower 2, where boric acid in the cooling water and the like is adsorbed and removed by the ion exchange resin in the tower. At this time, as can be seen from Figure 1,
For example, when cooling water with an inlet concentration of 1000 ppm and a temperature of 50° C. is passed through the tower, up to 32 g of boric acid per resin will be adsorbed from an unsaturated state to the resin. The cooling water, etc., in which boric acid has been adsorbed and the boric acid concentration has decreased, is circulated to the nuclear reactor via the return pipe 12.

本発明装置は2基のホウ酸除去塔を有し、その
うち少くとも一方は塔内の樹脂が未飽和の状態に
あるようにし、ホウ酸除去はこの未飽和の塔にて
行われる。一方のホウ酸除去塔が飽和した場合に
は第5図の太線で示されるように、純水槽5に貯
えられた70℃程度の温純水を純水槽ポンプ6によ
り飽和したホウ酸除去塔2へ送給する。これによ
り塔内の樹脂に吸着されたホウ酸は温度上昇およ
び入口濃度低下により樹脂から脱着され、塔下部
から流出しホウ酸濃縮槽7に入る。ホウ酸濃縮槽
7内の液はホウ酸濃縮槽ポンプ8により蒸発器9
に送られ、そこで一部は蒸発し、他は濃縮されて
ホウ酸濃縮槽7へ戻される。蒸発した水は凝縮器
10へ送られ、そこで70℃まで冷却されて温純水
となり、純水槽5に戻される。この操作を連続的
に行うことにより、ホウ酸除去塔内の樹脂は入口
濃度0ppm、温度70℃の飽和吸着量、すなわち第
1図でわかるようにほとんど樹脂1当り0gま
で脱着される。また、ホウ酸濃縮槽7内の液が規
定濃度の5%程度まで濃縮された場合にはホウ酸
濃縮槽ポンプ8により蒸発器ではなく高濃度ホウ
酸槽3に戻される。
The apparatus of the present invention has two boric acid removal columns, at least one of which keeps the resin in the column unsaturated, and boric acid removal is carried out in this unsaturated column. When one of the boric acid removal towers is saturated, as shown by the bold line in Figure 5, the pure water at a temperature of about 70°C stored in the pure water tank 5 is sent to the saturated boric acid removal tower 2 by the pure water tank pump 6. supply. As a result, the boric acid adsorbed on the resin in the column is desorbed from the resin due to the rise in temperature and the decrease in concentration at the inlet, and flows out from the lower part of the column and enters the boric acid concentrating tank 7. The liquid in the boric acid concentration tank 7 is transferred to an evaporator 9 by a boric acid concentration tank pump 8.
Some of it is evaporated there, and the other part is concentrated and returned to the boric acid concentration tank 7. The evaporated water is sent to the condenser 10, where it is cooled to 70°C to become warm pure water and returned to the pure water tank 5. By continuously performing this operation, the resin in the boric acid removal tower is desorbed to the saturated adsorption amount at an inlet concentration of 0 ppm and a temperature of 70°C, that is, as can be seen in FIG. 1, almost 0 g per resin. Further, when the liquid in the boric acid concentration tank 7 is concentrated to about 5% of the specified concentration, it is returned to the high concentration boric acid tank 3 instead of the evaporator by the boric acid concentration tank pump 8.

このように本発明は、未飽和のイオン交換樹脂
によるホウ酸の吸着除去、温純水によるイオン交
換樹脂の再生、再生液の蒸発および凝縮による温
純水および高濃度ホウ酸の再生、高濃度ホウ酸の
注入の組合せにより冷却水等のホウ酸濃度を制御
するものである。従つて、従来装置の如く熱交換
器の使用は不要となり、第1図からわかるように
イオン交換樹脂1当りの有効吸着量が従来装置
に比べてはるかに大きくとれる。すなわち樹脂量
が少くてすむ。また本発明では樹脂は未飽和状態
で使用されるため、反応時間が短かく、ホウ酸濃
度調節が短時間にしかも効率よく行える。
As described above, the present invention is capable of adsorbing and removing boric acid using an unsaturated ion exchange resin, regenerating the ion exchange resin using warm pure water, regenerating warm pure water and high-concentration boric acid by evaporating and condensing the regenerating liquid, and injecting high-concentration boric acid. This combination controls the concentration of boric acid in cooling water, etc. Therefore, there is no need to use a heat exchanger as in the conventional apparatus, and as can be seen from FIG. 1, the effective adsorption amount per ion exchange resin can be much larger than in the conventional apparatus. In other words, the amount of resin can be reduced. Further, in the present invention, since the resin is used in an unsaturated state, the reaction time is short, and the boric acid concentration can be adjusted in a short time and efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は温度と樹脂1当りのホウ酸吸着量と
の関係図である。第2図〜第5図は本発明により
冷却水等のホウ酸濃度を制御する場合のフローシ
ートである。 1…ホウ酸濃度調節用ポンプ、2…ホウ酸除去
塔、3…高濃度ホウ酸槽、4…ホウ酸供給ポン
プ、5…純水槽、6…純水槽ポンプ、7…ホウ酸
濃縮槽、8…ホウ酸濃縮槽ポンプ、9…蒸発器、
10…凝縮器、11…供給管、12…戻り管。
FIG. 1 is a diagram showing the relationship between temperature and the amount of boric acid adsorbed per resin. FIGS. 2 to 5 are flow sheets for controlling the concentration of boric acid in cooling water, etc. according to the present invention. 1... Boric acid concentration adjustment pump, 2... Boric acid removal tower, 3... High concentration boric acid tank, 4... Boric acid supply pump, 5... Pure water tank, 6... Pure water tank pump, 7... Boric acid concentration tank, 8 ...boric acid concentration tank pump, 9...evaporator,
10... Condenser, 11... Supply pipe, 12... Return pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 ホウ酸濃度調節用ポンプ、イオン交換樹脂が
充填され少くとも一方の樹脂が未飽和の状態にあ
る2基のホウ酸除去塔、ホウ酸供給ポンプを有す
る高濃度ホウ酸槽、純水槽ポンプを有する純水
槽、ホウ酸濃縮槽ポンプを有するホウ酸濃縮槽、
蒸発器および凝縮器を具え、原子炉からの原子炉
冷却水または減速材を、所望のホウ酸濃度に応じ
て前記ホウ酸濃度調節用ポンプにより前記未飽和
のホウ酸除去塔に通してホウ酸を除去した後、も
しくは前記ホウ酸除去塔に通さずに、前記高濃度
ホウ酸槽内のホウ酸溶液を加えた後原子炉へ循環
してホウ酸濃度を制御し、前記ホウ酸除去塔の樹
脂が飽和した際には前記純水槽から温純水を該塔
内に通水して樹脂に吸着されたホウ酸を脱着して
前記ホウ酸濃縮槽に貯溜し、このホウ酸溶液を前
記蒸発器に供給し、濃縮液は前記ホウ酸濃縮槽に
戻し、蒸気は前記凝縮器により液化して前記純水
槽に戻し、前記ホウ酸濃縮槽のホウ酸濃度が所定
値に達した場合にはこれを前記高濃度ホウ酸槽へ
戻すようになつている原子炉冷却水または減速材
中のホウ酸濃度の制御装置。
1 A boric acid concentration adjustment pump, two boric acid removal towers filled with ion exchange resin and at least one of the resins is unsaturated, a high concentration boric acid tank with a boric acid supply pump, and a pure water tank pump. A pure water tank with a boric acid concentrator tank, a boric acid concentrator tank with a pump,
It is equipped with an evaporator and a condenser, and the reactor cooling water or moderator from the nuclear reactor is passed through the unsaturated boric acid removal column by the boric acid concentration adjusting pump according to the desired boric acid concentration to remove boric acid. After removing the boric acid, or without passing it through the boric acid removal tower, the boric acid solution in the high concentration boric acid tank is added and then circulated to the reactor to control the boric acid concentration, and the boric acid concentration in the boric acid removal tower is When the resin is saturated, hot pure water is passed through the column from the pure water tank to desorb the boric acid adsorbed on the resin and stored in the boric acid concentration tank, and this boric acid solution is sent to the evaporator. The concentrated liquid is returned to the boric acid concentration tank, the vapor is liquefied by the condenser and returned to the pure water tank, and when the boric acid concentration in the boric acid concentration tank reaches a predetermined value, it is returned to the boric acid concentration tank. A control device for the concentration of boric acid in the reactor cooling water or moderator that is returned to the high concentration boric acid tank.
JP9327079A 1979-07-24 1979-07-24 Control device for boric acid concentration in coolant or moderator Granted JPS5618792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9327079A JPS5618792A (en) 1979-07-24 1979-07-24 Control device for boric acid concentration in coolant or moderator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9327079A JPS5618792A (en) 1979-07-24 1979-07-24 Control device for boric acid concentration in coolant or moderator

Publications (2)

Publication Number Publication Date
JPS5618792A JPS5618792A (en) 1981-02-21
JPS6230397B2 true JPS6230397B2 (en) 1987-07-02

Family

ID=14077762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9327079A Granted JPS5618792A (en) 1979-07-24 1979-07-24 Control device for boric acid concentration in coolant or moderator

Country Status (1)

Country Link
JP (1) JPS5618792A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10252921B1 (en) * 2016-06-09 2019-04-09 Paul Charles Wegner Process and apparatus for enhancing boron removal from water

Also Published As

Publication number Publication date
JPS5618792A (en) 1981-02-21

Similar Documents

Publication Publication Date Title
US4754805A (en) Method for transforming the temperature of heat and heat transformer
US4311019A (en) Process for producing cold and/or heat with use of an absorption cycle
US2896419A (en) Fresh water recovery process and apparatus for use in same
WO2010018390A1 (en) Purification of a gas stream
US3839159A (en) System for concentrating a moderating solution utilized in a pressurized water nuclear power plant
US2343165A (en) Process for recovering phenols from waste waters and apparatus for use in carrying same into effect
US3217466A (en) Recovery of ethylene oxide
JPH11276801A (en) Method and device for refining mixed liquid
JPS6230397B2 (en)
DE3408193A1 (en) Method for raising the temperature of heat and heat pump
JP7106474B2 (en) N-methyl-2-pyrrolidone purification method, purification device, recovery purification method, and recovery purification system
US3789577A (en) Thermal degassing of the primary coolant of nuclear reactors
EP0091095A3 (en) Storage heating plant with sorption reservoir
EP0630029B1 (en) Method for separating boric acid
JPH0337112A (en) Method for concentrating aqueous solution of hydroxyammonium salt
EP4039347A1 (en) Organic solvent purification method and purification system
EP3538237A1 (en) Method and device for cooling a fluid stream of an electrolysis unit and for obtaining water
JPH09125126A (en) Method for utilizing exhaust heat in converter and device for recovering exhaust heat in converter
JPH04346823A (en) Membrane method and device for evaporating and concentrating waste liquid
JP2601970B2 (en) Solvent recovery device
JPH0821405B2 (en) Fuel cell water treatment device
JPH0579715A (en) Helium refining device
JP3226604B2 (en) Condensate desalination equipment
KR102292770B1 (en) Hybrid seawater-desalination apparatus and method
JPS61286798A (en) Treater for radioactive waste liquor