JPS6230379B2 - - Google Patents

Info

Publication number
JPS6230379B2
JPS6230379B2 JP9130279A JP9130279A JPS6230379B2 JP S6230379 B2 JPS6230379 B2 JP S6230379B2 JP 9130279 A JP9130279 A JP 9130279A JP 9130279 A JP9130279 A JP 9130279A JP S6230379 B2 JPS6230379 B2 JP S6230379B2
Authority
JP
Japan
Prior art keywords
creatinine
bilirubin
added
periodic acid
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9130279A
Other languages
Japanese (ja)
Other versions
JPS5614949A (en
Inventor
Kan Kasahara
Kuniaki Tokuda
Yasushi Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd filed Critical Wako Pure Chemical Industries Ltd
Priority to JP9130279A priority Critical patent/JPS5614949A/en
Publication of JPS5614949A publication Critical patent/JPS5614949A/en
Publication of JPS6230379B2 publication Critical patent/JPS6230379B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、体液中のクレアチニンを定量する
際、共存するビリルビンの影響を全く受けること
なく迅速、正確に測定できる、クレアチニンの定
量方法に関する。 クレアチンは筋肉の常成分で、リン酸と結合し
て筋収縮のエネルギー源となり、その代謝産物と
してクレアチニンを生ずる。クレアチニンはクレ
アチンの無水物で、腎糸球体で過され、その後
再吸収されることなく尿中に排泄される。したが
つてクレアチニンの定量は、糸球体の高度の病変
に起因する腎不全、腎炎等の腎疾患、尿毒症なら
びに筋萎縮症などの診断、治療経過の観察に有用
な情報を提供する。 生体試料中のクレアチニンの定量法としては数
種の定量法が発表されているが、アルカリ性ピク
リン酸によるJaffe´の反応を用いたクレアチニン
の定量法は操作の簡易性と感度が他法に比べて高
い等の理由により広く日常臨床検査にとり入れら
れている。このアルカリ性ピクリン酸法は1904
年、Folinが尿中クレアチニンの定量法として発
表して以来、Jaffe´反応を利用した体液中のクレ
アチニンの定量法が検討され各種の変法が考案さ
れてきた。近年自動分析機が広く普及するにつれ
て、体液中のクレアチニンの自動分析用試薬とし
てJaffe´反応を応用した試薬が広く使われてい
る。 しかし、Jaffe´反応によるクレアチニン定量に
おける最大の欠点は、体液中に共存するビリルビ
ンの影響が大きいことである。即ちJaffe´反応に
よる呈色は、試薬ブランクを対照として480nm付
近に極大吸収を有するが、ビリルビンは400〜
550nmに広い吸収があるため正誤差を与える。し
かしビリルビンはアルカリ性で経時的に分解する
ためビリルビンによる正誤差は経時的に減少す
る。この現象はクレアチニンとアルカリ性ピクリ
ン酸との反応速度測定にもとづきクレアチニンを
定量する場合は負誤差を与え、ビリルビン含有量
の大きい試料では、ビリルビンの分解による測定
波長(490〜570nm)での吸光度の低下がクレア
チニンとアルカリ性ピクリン酸との反応による吸
光度の増加を上廻る場合があり、クレアチニン量
として負値を与えることさえある。このような誤
差を無くすために、体液を予め過酸化水素とペル
オキシダーゼで処理し、ビリルビンを酸化分解し
た後、アルカリ性ピクリン酸でクレアチニンを定
量する方法や、体液を予めヨウ素で酸化しエーテ
ルで抽出除去した後、アルカリ性ピクリン酸でク
レアチニンを定量する方法、体液を予め硫酸セレ
ンで酸化した後アルカリ性ピクリン酸でクレアチ
ニンを定量する方法等が開発されている。しかし
いずれも体液の前処理を必要とするため、多数検
体を処理することが要求される日常臨床検査に採
用されるには至つていない。 ビリルビンは酸化剤によりビリベルジン又はそ
の他の物質に変化し本来の黄色が失われることは
公知であるが、クレアチニン自身が酸化され易い
性質を有し且つ血清中にはアルカリ性下で酸化剤
によりピクリン酸と着色性の縮合化合物を生成す
る物質が存在するため、体液を予めビリルビン分
解処理をすることなくアルカリ性ピクリン酸を加
えて発色させる方法でビリルビンの影響を除くこ
とは困難とされていた。Jaffe´反応はアルカリ性
で進行完結するので、アルカリ性でビリルビンを
酸化分解しクレアチニンに何等作用しない酸化剤
があり、且つビリルビンを酸化分解したのち、残
留する酸化剤を分解除去できれば、ビリルビン分
解操作と発色操作とを連続的に行えるので、試料
について、特別なビリルビン前処理は必要でなく
なり、通常の自動分析機にも容易に適用すること
ができる。 本発明者らは、上記目的に合致した酸化剤と過
剰(残留)の酸化剤の分解剤を見出すべく種々検
討した結果、酸化剤としては、過ヨウ素酸又はそ
の可溶性の塩が本目的に適しており、過剰の過ヨ
ウ素酸又はその可溶性の塩を除去するものとして
はアルコール類が適していることを見出し本発明
を完成するに至つた。 即ち、本発明はJaffe´反応を用いて、体液中の
クレアチニンを定量する際、試料を過ヨウ素酸又
はその可溶性の塩で酸化処理し、過剰の過ヨウ素
酸又はその可溶性の塩をアルコール類で処理する
ことを特徴とするクレアチニンの定量方法であ
る。 本発明に於いて酸化剤として使用される過ヨウ
素酸又はその可溶性の塩としては、例えば過ヨウ
素酸、過ヨウ素酸カリウム、過ヨウ素酸アンモニ
ウム、過ヨウ素酸ナトリウム等が挙げられるが、
アルカリ溶液に添加して使用する場合はカリウム
塩、アンモニウム塩の使用が溶解度の面から好ま
しい。 アルコール類としては、メチルアルコール、エ
チルアルコール、プロピルアルコール、ブチルア
ルコール、エチレングリコールモノメチルエーテ
ル等、又はグリセリン、エチレングリコール等の
多価アルコール類等あるいはこれらの混合物が使
用される。 アルコール類の必要量は使用する過ヨウ素酸又
はその可溶性の塩の量によつて異つてくるが、過
ヨウ素酸又はその可溶性の塩の量の5重量倍程度
の使用で充分である。 試料とは、体液中の、血液、血漿、血清、尿等
を示す。 本発明の方法を実施するには、例えば過ヨウ素
酸又はその可溶性の塩を通常3〜15mM含む、水
酸化アルカリ溶液、炭酸アルカリ溶液又は/及び
ホウ酸若しくはリン酸塩のアルカリ性緩衝液を試
料に加え、5分間以上37℃恒温槽中に放置した
後、アルコール類を0.05〜5%を含むピクリン酸
溶液を加え、37℃恒温槽中で490〜570nmのいず
れかの波長での吸光度変化を測定する(Rate
法)か、又は37℃恒温槽中で5分間以上放置した
後、490〜570nmのいずれかの波長での吸光度を
測定する(End法)。さらにRate法、End法共、
標準を用いて同一操作を行つて得られた検量線か
ら試料中のクレアチニン量を求める。 過ヨウ素酸又はその可溶性の塩とアルカリ溶液
又はアルカリ性緩衝液は別々に、さらにアルコー
ル類とピクリン酸は別々に試料へ加えても何ら問
題なく実施できる。 本発明の方法を実施するための試薬としては、
例えば水酸化アルカリ溶液、炭酸アルカリ溶液又
は/及びホウ酸若しくはリン酸塩のアルカリ性緩
衝液、過ヨウ素酸又はその可溶性の塩を含む水溶
液、又はこれらを含有する溶液、ピクリン酸を含
む水溶液、アルコール類又はこれらを含有する溶
液、およびクレアチニン標準液よりなる。 本発明の酸化剤としての過ヨウ素酸又はその可
溶性の塩の効果を図―1、図―2に示す。 図―1はビリルビン10mg/dlを含む試料100μ
に夫々各種酸化剤を含むアルカリ性緩衝液2.5
mlを加えて、37℃恒温槽中で放置し一定時間毎の
460nmにおけるビリルビンの吸光度を測定し、そ
の値をプロツトしたものである。 図中、縦軸は吸光度、横軸は時間(分)を夫々
示し、□―□は酸化剤無添加の場合、〇―〇は過
ヨウ素酸を0.01%添加した場合、△―△はクロラ
ミンTを0.01%添加した場合、×―×は次亜塩素
酸ナトリウムを0.2%添加した場合を夫々示す。 図―1から過ヨウ素酸、次亜塩素酸ナトリウム
がビリルビン分解効果が大きいことが解る。 図―2は血清100μに各種酸化剤を含むアル
カリ性緩衝液2.5mlを加え37℃恒温槽中に5分間
放置した後、ピクリン酸溶液2.5mlを加えて37℃
恒温槽中でのクレアチニン・ピクリン酸反応呈色
物の520nmにおける吸光度の増加を測定し、その
値をプロツトしたものである。 図中、縦軸は吸光度、横軸は時間(分)を夫々
示し、□―□は酸化剤無添加の場合、〇―〇は過
ヨウ素酸を0.01%添加した場合、△―△はクロラ
ミンTを0.01%添加した場合、×―×は次亜塩素
酸ナトリウムを0.2%添加した場合を夫々示す。 図―2から、クレアチニンとピクリン酸との呈
色反応において過ヨウ素酸とクロラミンTは反応
を阻害しないが次亜塩素酸ナトリウムは反応を阻
害することがわかる。 以上のことから、クレアチニンの定量の目的に
適したビリルビンの選択的分解剤としては過ヨウ
素酸が適していることが解る。 一方過ヨウ素酸は血清中の成分とピクリン酸と
で着色化合物を生成させる為、ピクリン酸と過ヨ
ウ素酸が混合される前か、混合と同時に過剰(残
留)の過ヨウ素酸を消去する必要がある。この目
的にアルコール類の添加が有効であり、その効果
を表―1に示す。 表―1は試料(血清)50μに水酸化ナトリウ
ムを1.41%、4ホウ酸ナトリウムを3.81%、過ヨ
ウ素酸を0.1%含む水溶液0.6mlを加えて37℃で10
分間放置した後、ピクリン酸を0.4%、各種アル
コールを2%含む水溶液0.6mlを加えて混和後
520nmの吸光度変化を測定し、あらかじめ作成し
た検量線と対比して得たクレアチニンの量を記載
したものである。尚、アルコール類を加えない場
合、過ヨウ素酸及びアルコール類を加えない場
合、さらにFolin―Wu法(除蛋白法)によるクレ
アチニンの測定値、Jendrassik Cleghorn法によ
るビリルビンの測定値を併せて記載する。
The present invention relates to a method for quantifying creatinine in body fluids, which enables rapid and accurate measurement without being affected by coexisting bilirubin. Creatine is a normal component of muscle, and combines with phosphate to become an energy source for muscle contraction, producing creatinine as a metabolite. Creatinine is an anhydrous form of creatine that is passed through the renal glomerulus and then excreted in the urine without being reabsorbed. Therefore, quantification of creatinine provides useful information for diagnosing renal failure, renal diseases such as nephritis, uremia, muscular atrophy, etc. caused by severe lesions in the glomerulus, and monitoring the progress of treatment. Several methods have been published for quantifying creatinine in biological samples, but the method for quantifying creatinine using Jaffe's reaction with alkaline picric acid is simpler and more sensitive than other methods. It is widely used in routine clinical tests due to its high cost and other reasons. This alkaline picric acid method was developed in 1904.
Since Folin published a method for quantifying urinary creatinine in 1999, methods for quantifying creatinine in body fluids using the Jaffe' reaction have been studied, and various modified methods have been devised. As automatic analyzers have become widespread in recent years, reagents applying the Jaffe' reaction have been widely used as reagents for automatic analysis of creatinine in body fluids. However, the biggest drawback in quantifying creatinine using the Jaffe' reaction is that it is greatly influenced by bilirubin, which coexists in body fluids. In other words, the coloring caused by the Jaffe' reaction has a maximum absorption around 480nm compared to the reagent blank, but bilirubin has a maximum absorption around 400nm.
It gives a correct error because there is a broad absorption at 550nm. However, since bilirubin is alkaline and decomposes over time, the correct error due to bilirubin decreases over time. This phenomenon gives a negative error when quantifying creatinine based on the reaction rate measurement of creatinine and alkaline picric acid, and in samples with a large bilirubin content, the absorbance at the measurement wavelength (490-570 nm) decreases due to the decomposition of bilirubin. may exceed the increase in absorbance due to the reaction between creatinine and alkaline picric acid, and may even give a negative value for the amount of creatinine. In order to eliminate such errors, there are two methods: pre-treating body fluids with hydrogen peroxide and peroxidase to oxidize and decompose bilirubin, and then quantifying creatinine with alkaline picric acid, or pre-oxidizing body fluids with iodine and extracting and removing them with ether. After that, methods have been developed in which creatinine is determined using alkaline picric acid, and methods in which body fluids are oxidized in advance with selenium sulfate and then creatinine is determined using alkaline picric acid. However, since both require pretreatment of body fluids, they have not yet been adopted for routine clinical tests that require processing a large number of specimens. It is known that bilirubin changes into biliverdin or other substances when exposed to oxidizing agents, and loses its original yellow color. However, creatinine itself has the property of being easily oxidized, and in serum, it is converted to biliverdin or other substances under alkaline conditions. Because there are substances that produce colored condensation compounds, it has been difficult to eliminate the effects of bilirubin by adding alkaline picric acid to the body fluids to develop color without first decomposing bilirubin. Since the Jaffe' reaction progresses to completion in alkaline conditions, if there is an oxidizing agent that oxidizes and decomposes bilirubin in alkaline conditions and does not have any effect on creatinine, and if the remaining oxidizing agent can be decomposed and removed after bilirubin is oxidized and decomposed, bilirubin decomposition operation and color development are possible. Since the operations can be performed continuously, there is no need for special pre-treatment of the sample with bilirubin, and it can be easily applied to ordinary automatic analyzers. The present inventors have conducted various studies to find an oxidizing agent that meets the above objectives and a decomposing agent for excess (residual) oxidizing agent. As a result, periodic acid or a soluble salt thereof is suitable as an oxidizing agent for this purpose. The present inventors have discovered that alcohols are suitable for removing excess periodic acid or its soluble salts, and have completed the present invention. That is, in the present invention, when quantifying creatinine in body fluids using the Jaffe' reaction, a sample is oxidized with periodic acid or its soluble salt, and excess periodic acid or its soluble salt is oxidized with alcohol. This is a method for quantifying creatinine, which is characterized by processing. Examples of periodic acid or a soluble salt thereof used as an oxidizing agent in the present invention include periodic acid, potassium periodate, ammonium periodate, sodium periodate, etc.
When used by adding to an alkaline solution, potassium salts and ammonium salts are preferably used from the viewpoint of solubility. As the alcohol, methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol, ethylene glycol monomethyl ether, etc., polyhydric alcohols such as glycerin, ethylene glycol, etc., or mixtures thereof are used. The required amount of alcohol varies depending on the amount of periodic acid or its soluble salt used, but it is sufficient to use about 5 times the weight of periodic acid or its soluble salt. The sample refers to blood, plasma, serum, urine, etc. in body fluids. To carry out the method of the present invention, a sample is treated with an alkaline hydroxide solution, an alkaline carbonate solution, or/and an alkaline buffer of boric acid or phosphate, usually containing 3 to 15mM of periodic acid or a soluble salt thereof. In addition, after leaving it in a 37℃ constant temperature bath for 5 minutes or more, add a picric acid solution containing 0.05 to 5% alcohol, and measure the change in absorbance at any wavelength between 490 and 570 nm in a 37℃ constant temperature bath. (Rate
method), or after leaving it in a 37°C constant temperature bath for 5 minutes or more, measure the absorbance at any wavelength from 490 to 570 nm (End method). Furthermore, both the Rate method and the End method,
The amount of creatinine in the sample is determined from the calibration curve obtained by performing the same procedure using a standard. Periodic acid or a soluble salt thereof and an alkaline solution or alkaline buffer may be added to the sample separately, and alcohols and picric acid may be added separately to the sample without any problem. Reagents for carrying out the method of the present invention include:
For example, an alkaline hydroxide solution, an alkaline carbonate solution or/and an alkaline buffer of boric acid or phosphate, an aqueous solution containing periodic acid or a soluble salt thereof, or a solution containing these, an aqueous solution containing picric acid, alcohols. or a solution containing these, and a creatinine standard solution. The effects of periodic acid or a soluble salt thereof as an oxidizing agent in the present invention are shown in Figures 1 and 2. Figure 1 shows a 100 μ sample containing 10 mg/dl of bilirubin.
alkaline buffer containing various oxidizing agents 2.5
ml and leave it in a constant temperature bath at 37°C.
The absorbance of bilirubin at 460 nm was measured and the values were plotted. In the figure, the vertical axis shows absorbance and the horizontal axis shows time (minutes), □-□ is when no oxidizing agent is added, 〇-〇 is when 0.01% periodic acid is added, △-△ is chloramine T When 0.01% of sodium hypochlorite was added, ×-× indicates the case when 0.2% of sodium hypochlorite was added, respectively. From Figure 1, it can be seen that periodic acid and sodium hypochlorite have a large bilirubin decomposition effect. Figure 2 shows that 2.5ml of alkaline buffer solution containing various oxidizing agents was added to 100μ of serum, and the mixture was left in a constant temperature bath at 37°C for 5 minutes, then 2.5ml of picric acid solution was added and the temperature was raised to 37°C.
The increase in absorbance at 520 nm of a colored product reacted with creatinine and picric acid was measured in a constant temperature bath, and the values were plotted. In the figure, the vertical axis shows absorbance and the horizontal axis shows time (minutes), □-□ is when no oxidizing agent is added, 〇-〇 is when 0.01% periodic acid is added, △-△ is chloramine T When 0.01% of sodium hypochlorite was added, ×-× indicates the case when 0.2% of sodium hypochlorite was added, respectively. Figure 2 shows that periodic acid and chloramine T do not inhibit the color reaction between creatinine and picric acid, but sodium hypochlorite does. From the above, it can be seen that periodic acid is suitable as a selective bilirubin decomposing agent suitable for the purpose of quantifying creatinine. On the other hand, periodic acid produces a colored compound with picric acid and components in serum, so it is necessary to eliminate excess (residual) periodic acid before or at the same time as picric acid and periodic acid are mixed. be. Addition of alcohol is effective for this purpose, and its effects are shown in Table 1. Table 1 shows that 0.6ml of an aqueous solution containing 1.41% sodium hydroxide, 3.81% sodium tetraborate, and 0.1% periodic acid was added to 50μ of the sample (serum), and the mixture was heated at 37℃ for 10 minutes.
After leaving for a minute, add 0.6ml of an aqueous solution containing 0.4% picric acid and 2% various alcohols and mix.
The change in absorbance at 520 nm was measured and the amount of creatinine obtained was recorded in comparison with a calibration curve prepared in advance. In addition, when no alcohol is added, when neither periodic acid nor alcohol is added, the measured value of creatinine by the Folin-Wu method (protein removal method) and the measured value of bilirubin by the Jendrassik Cleghorn method are also described.

【表】 表―1からアルコール類を添加した場合にはこ
れらが極めて迅速に残留過ヨウ素酸と反応し、過
ヨウ素酸の酸化力を消去すること、又得られるク
レアチニンの定量値はFolin―Wu法(除蛋白法)
によるクレアチニンの定量値とよく一致している
ことが解る。さらにアルコール類をピクリン酸の
溶液に加えて使用しても過ヨウ素酸はアルコール
類との反応速度が極めて速い為、ピクリン酸およ
び血液成分との酸化縮合反応は殆どゼロとして無
視できることが解る。 かくして本発明によるクレアチニンの定量方法
は、ビリルビンの影響を全く受けることなく、迅
速、正確に測定できる方法であり、斯界に貢献す
るところ大なるものである。 次に実施例を述べ、本発明をさらに具体的に説
明する。 実施例 1 試液 A 水酸化ナトリウムを2.82%、4ホウ酸ナトリウ
ムを7.62%含む水溶液を調製する。 試液 B 0.2%過ヨウ素酸水溶液を調製する。 試液 C 0.4%ピクリン酸水溶液を調製する。 試液 D 8%エチレングリコール水溶液を調製する。 人血清50μに試液A、Bを各々0.3ml加え
て、37℃で10分間放置後、試液Dを0.3ml加え、
さらに試液Cを0.3ml加えて混和後520nmの吸光
度変化を測定し、あらかじめ作成した検量線と対
比してクレアチニン濃度を求める。 実施例 2 試液 A 水酸化ナトリウムを1.41%、4ホウ酸ナトリウ
ムを3.81%、過ヨウ素酸カリウムを0.1%含む水
溶液を調製する。 試液 B ピクリン酸を0.2%、グリセリンを2%含む水
溶液を調製する。 人血清20μに試液Aを0.6ml加え37℃で5分
間放置した後、試液Bを0.6ml加え37℃で10分間
放置する。この溶液の546nm、570nmの吸光度差
を求め、あらかじめ作成した検量線より試料中の
クレアチニン濃度を求める。
[Table] Table 1 shows that when alcohols are added, they react extremely quickly with residual periodic acid and eliminate the oxidizing power of periodic acid, and the quantitative value of creatinine obtained is Folin-Wu. method (protein removal method)
It can be seen that this value is in good agreement with the quantitative value of creatinine determined by the method. Furthermore, even if alcohols are added to the picric acid solution, the reaction rate of periodic acid with alcohols is extremely fast, so the oxidative condensation reaction with picric acid and blood components is almost negligible and can be ignored. Thus, the method for quantifying creatinine according to the present invention is a method that allows rapid and accurate measurement without being affected by bilirubin at all, making a great contribution to this field. Next, examples will be described to further specifically explain the present invention. Example 1 Test Solution A An aqueous solution containing 2.82% sodium hydroxide and 7.62% sodium tetraborate is prepared. Test solution B Prepare a 0.2% periodic acid aqueous solution. Test solution C Prepare a 0.4% picric acid aqueous solution. Test solution D Prepare an 8% ethylene glycol aqueous solution. Add 0.3 ml each of test solutions A and B to 50μ of human serum, leave at 37°C for 10 minutes, then add 0.3 ml of test solution D.
Furthermore, 0.3 ml of test solution C is added, and after mixing, the change in absorbance at 520 nm is measured, and the creatinine concentration is determined by comparing it with a calibration curve prepared in advance. Example 2 Test Solution A An aqueous solution containing 1.41% sodium hydroxide, 3.81% sodium tetraborate, and 0.1% potassium periodate is prepared. Test Solution B Prepare an aqueous solution containing 0.2% picric acid and 2% glycerin. Add 0.6 ml of test solution A to 20μ of human serum and leave at 37°C for 5 minutes, then add 0.6 ml of test solution B and leave at 37°C for 10 minutes. Determine the difference in absorbance of this solution at 546 nm and 570 nm, and determine the creatinine concentration in the sample from the calibration curve prepared in advance.

【図面の簡単な説明】[Brief explanation of the drawing]

図―1は各種酸化剤によるビリルビンの分解効
果を示すもので、縦軸は吸光度を、横軸は時間
(分)を夫々示し、図―2はクレアチニンとピク
リン酸との呈色反応への各種酸化剤の阻害効果を
示すもので、縦軸は吸光度を、横軸は時間(分)
を夫々示す。図―1、図―2共に□―□は酸化剤
無添加の場合、〇―〇は過ヨウ素酸を0.01%添加
した場合、△―△はクロラミンTを0.01%添加し
た場合、×―×は次亜塩素酸ナトリウムを0.2%添
加した場合を夫々示す。
Figure 1 shows the decomposition effects of bilirubin by various oxidizing agents. The vertical axis shows absorbance and the horizontal axis shows time (minutes). Figure 2 shows various effects on the color reaction between creatinine and picric acid. This shows the inhibitory effect of oxidants, with the vertical axis representing absorbance and the horizontal axis representing time (minutes).
are shown respectively. In Figures 1 and 2, □-□ is when no oxidizing agent is added, 〇-〇 is when 0.01% periodic acid is added, △-△ is when 0.01% chloramine T is added, and ×-× is when 0.01% chloramine T is added. The cases in which 0.2% sodium hypochlorite was added are shown.

Claims (1)

【特許請求の範囲】[Claims] 1 Jaffe´反応を用いて、体液中のクレアチニン
を定量する際、試料を過ヨウ素酸又はその可溶性
の塩で酸化処理し、過剰の過ヨウ素酸又はその可
溶性の塩をアルコール類で処理することを特徴と
するクレアチニンの定量方法。
1 When quantifying creatinine in body fluids using the Jaffe' reaction, it is recommended to oxidize the sample with periodic acid or its soluble salt, and then treat excess periodic acid or its soluble salt with alcohol. Characteristic method for quantifying creatinine.
JP9130279A 1979-07-18 1979-07-18 Measuring method of quantity of creatinine Granted JPS5614949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9130279A JPS5614949A (en) 1979-07-18 1979-07-18 Measuring method of quantity of creatinine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9130279A JPS5614949A (en) 1979-07-18 1979-07-18 Measuring method of quantity of creatinine

Publications (2)

Publication Number Publication Date
JPS5614949A JPS5614949A (en) 1981-02-13
JPS6230379B2 true JPS6230379B2 (en) 1987-07-02

Family

ID=14022661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9130279A Granted JPS5614949A (en) 1979-07-18 1979-07-18 Measuring method of quantity of creatinine

Country Status (1)

Country Link
JP (1) JPS5614949A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012163560A (en) * 2011-02-07 2012-08-30 Siemens Healthcare Diagnostics Products Gmbh Heparin-insensitive method for determining direct coagulation factor inhibitors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012163560A (en) * 2011-02-07 2012-08-30 Siemens Healthcare Diagnostics Products Gmbh Heparin-insensitive method for determining direct coagulation factor inhibitors

Also Published As

Publication number Publication date
JPS5614949A (en) 1981-02-13

Similar Documents

Publication Publication Date Title
Taras Phenoldisulfonic acid method of determining nitrate in water. Photometric study
Dutt et al. Determination of uric acid at the microgram level by a kinetic procedure based on a pseudo-induction period
Salter et al. Iodine in blood and thyroid of man and small animals
Ludzack et al. Determination of cyanides in water and waste samples
Connors Advances in chemical and colorimetric methods
JPS6230379B2 (en)
JP4151023B2 (en) Calcium measuring reagent and measuring method
US3894843A (en) Determination of serum creatinine
JPH0358467B2 (en)
JPS6310789B2 (en)
Verheyden et al. The estimation of fatty acid esters in serum by the hydroxamate method
Andersen et al. Direct Micropotentiometric Determination of Hypobromite and Bromite.
JP2894237B2 (en) Continuous water quality measuring device and continuous water quality measuring method
JP3220378B2 (en) Method and reagent for quantification of total protein
JP2004257916A (en) Method and instrument for measuring total phosphorus
US3511611A (en) Blood urea nitrogen test
EP0095302B1 (en) Improved specimen slide for occult blood testing
JP4123181B2 (en) Calcium measuring method and measuring reagent
RU2193773C2 (en) Method for determining quality of milk and diary produce
JP2002085052A (en) Tool for simple water analysis using enzymatic reaction
JP2001099826A (en) Method for developing color of complex, and reagent for developing color
US3345138A (en) Method for detecting pregnancy
GOTO et al. A New Spectrophotometric Determination of Titanium with Sodium Alizarinsulfonate
Minster The determination of silicon in nickel alloys
RU2102727C1 (en) Method of determination of 1,5-diazobicyclo-[3,1,0]-hexane in aqueous solutions