JPS62299909A - Optical fiber cable - Google Patents

Optical fiber cable

Info

Publication number
JPS62299909A
JPS62299909A JP61145118A JP14511886A JPS62299909A JP S62299909 A JPS62299909 A JP S62299909A JP 61145118 A JP61145118 A JP 61145118A JP 14511886 A JP14511886 A JP 14511886A JP S62299909 A JPS62299909 A JP S62299909A
Authority
JP
Japan
Prior art keywords
optical fiber
cooling
light rays
face
end faces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61145118A
Other languages
Japanese (ja)
Inventor
Kazuhiro Kayashima
萱島 一弘
Tadahiro Fukui
福井 忠弘
Fumikazu Tateishi
立石 文和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61145118A priority Critical patent/JPS62299909A/en
Publication of JPS62299909A publication Critical patent/JPS62299909A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To sharply improve cooling capacity for optical fiber end faces as compared to the ordinary cooling method directly utilizing the heat transmission of cooling gas for the optical fiber end face parts by utilizing heat transmission based on the face contact of a solid transmitting member for the cooling of the cooling optical fiber end faces. CONSTITUTION:An optical fiber cable system is constituted of energy light rays 1, an optical fiber 2 for leading the energy light rays 1 up to a radiating portion, solid transmitting members 11, 12 arranged in contact with the end faces of the optical fiber 2 and consisting of a transparent material for the energy light rays 1, and a cooling means for cooling the members 11, 12. A cooling function consists of a heat radiating plates arranged on the members 11, 12 and a cooling medium 16 for cooling the heat radiating plates and the energy light rays are infrared rays having >=2mum wavelength. Since the transparent solid transmitting members 11, 12 having the cooling function are arranged in contact with the end faces of the optical fiber 2, the optical fiber end face parts having a large heating value can be effectively cooled.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明はレーザメスやレーザ加工機の導光路に2 ベー
Detailed Description of the Invention 3. Detailed Description of the Invention Field of Industrial Application The present invention is applicable to a light guide path of a laser scalpel or a laser processing machine.

用いられる光ファイバを収納した光ファイバケーブルに
関するものである、 従来の技術 近年、レーザメスやレーザ加工機において炭酸ガスレー
ザやYAGレーザ等のエネルギ光線を光ファイバケーブ
ルで目的部位1で導き、手術や加工が行なわれている。
Conventional technology related to optical fiber cables that house optical fibers used In recent years, in laser scalpels and laser processing machines, energy beams such as carbon dioxide lasers and YAG lasers are guided to the target area 1 using optical fiber cables to perform surgery and processing. It is being done.

大パワーのエネルギ光を光ファイバで導波する場合、光
ファイバのエネルギ伝送能力を制限する要因として次の
2つが挙げられる。
When guiding high-power energy light through an optical fiber, the following two factors limit the energy transmission ability of the optical fiber.

一つは、ファイバ材料固有の不純物、格子欠陥や光ファ
イバの内部散乱2表面散乱による吸収であり、光フアイ
バ全長にわたって温度上昇を生じる。この温度上昇は、
KH2−5光フアイバを例にした場合、3度程度である
One is absorption due to impurities inherent in the fiber material, lattice defects, internal scattering, and surface scattering of the optical fiber, which causes a temperature increase over the entire length of the optical fiber. This temperature rise is
In the case of KH2-5 optical fiber as an example, it is about 3 degrees.

もう一つは、端面反射や端面研磨層による吸収であり、
局所的な端面部の温度上昇を生じる。この場合、百数十
度程度もある。
The other is absorption by edge reflection and edge polishing layer.
This causes a local temperature rise at the end surface. In this case, the temperature is about 100-odd degrees.

すなわち、端面部を効果的に冷却方法を行なうことによ
ってよりエネルギ伝送能力番増加すると3 ベー。
In other words, by effectively cooling the end face, the energy transmission capacity can be increased by 3 bases.

とが可能であると考えられる。It is thought that this is possible.

光フアイバ端面冷却法の従来例を第3図に示す。A conventional example of the optical fiber end face cooling method is shown in FIG.

第3図に示すように、エネルギ光1を導光する光ファイ
バ2の端部3又は全体に向けて、流量調節された液化ガ
ス4を毛細管端6より噴出ガス化させ、端部3を冷却す
る(特公昭67−133406号公報参照)。
As shown in FIG. 3, liquefied gas 4 with a controlled flow rate is ejected from the capillary end 6 toward the end 3 or the entire optical fiber 2 that guides the energy light 1 and is gasified, and the end 3 is cooled. (Refer to Japanese Patent Publication No. 67-133406).

発明が解決しようとする問題点 第一に、エネルギ伝送に使用される光ファイバの径はφ
1闘以下であり、冷却媒体を光フアイバ端面に集中して
吹き付ける仁とは難しい。
Problems to be solved by the invention First, the diameter of the optical fiber used for energy transmission is φ
This is less than one stroke, which is difficult to achieve by spraying the cooling medium in a concentrated manner onto the end face of the optical fiber.

第二に、赤外を透過する光ファイバは、強度的に弱く1
放熱係数を増加する為の冷却媒体の吹き付は圧力を増加
するにも限界がある。
Second, the optical fiber that transmits infrared light has a weak intensity of 1
There is a limit to how much pressure can be increased by spraying a cooling medium to increase the heat dissipation coefficient.

第三に、冷却媒体吹き付けによる放熱係数の増加は、第
一と第二の問題により、静止空気中の放熱係数に比べて
1せいぜい、数倍程度である。
Thirdly, due to the first and second problems, the increase in the heat dissipation coefficient due to cooling medium spraying is at most one or several times the heat dissipation coefficient in still air.

問題点を解決するだめの手段 本発明は、上記従来の問題点を解決するもので、エネル
ギ光線と、エネルギ光線を照射部位にまで導く光ファイ
バと、この光ファイバの端面に面接触して配置され、エ
ネルギ光線に対して透明な材料からなる固体透過部材と
、この固体透過部材を冷却する冷却手段とからなる光フ
ァイバケーブルである。
Means for Solving the Problems The present invention solves the above-mentioned problems of the conventional art. This is an optical fiber cable consisting of a solid transmission member made of a material transparent to energy beams, and a cooling means for cooling the solid transmission member.

作用 本発明の光フアイバ冷却法の作用は、冷却機能を有する
透明な固体透過部材を光ファイバの端面に面接触して配
置することによって発熱の大きい光フアイバ端面部を効
果的に冷却を行なうものである。
Function The optical fiber cooling method of the present invention effectively cools the end face of the optical fiber, which generates a large amount of heat, by arranging a transparent solid transmission member having a cooling function in surface contact with the end face of the optical fiber. It is.

実施例 以下本発明の実施例を図面を参照して説明する。Example Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例における光ファイバケーブル
の構成図である。第1図に示すように。
FIG. 1 is a configuration diagram of an optical fiber cable in an embodiment of the present invention. As shown in Figure 1.

赤外光ファイバ2は、熱間押し出したKH2−5赤外透
過材料からなり、光ファイバケーブル6に収納されてい
る。炭酸ガスレーザ光線1は、赤外透過材料Zn5eか
らなるレンズ7を通して、赤外光ファイバの入射端面3
に集光される。赤外光フロ ヘー/ アイバ2を導波したレーザ光線は、出射端面8から出射
し、出射レンズ9により加工部10に集光され、切断、
溶接、熱処理が行なわれる。
The infrared optical fiber 2 is made of hot extruded KH2-5 infrared transparent material and is housed in the optical fiber cable 6. The carbon dioxide laser beam 1 passes through a lens 7 made of an infrared-transmissive material Zn5e to an incident end face 3 of an infrared optical fiber.
The light is focused on. Infrared light flow / The laser beam guided through the eyeglass 2 is emitted from the output end face 8, is focused on the processing section 10 by the output lens 9, and is cut,
Welding and heat treatment are performed.

赤外透過材料Geからなる固体透過部材11゜12は、
赤外光ファイバ2の両端面部3.8に面接触しており、
端面部から発生した発熱を熱伝導によって取り除く。こ
の固体透過部材11の内部を透過するレーザ光線13が
当たらない外周部14に、放熱用のフィン16が設けら
れ、外部から供給されてくる冷却ガス16によりフィン
16部で熱交換を行なうととによって、固体透過部材は
、冷却される。
The solid transmitting members 11 and 12 made of the infrared transmitting material Ge are as follows:
It is in surface contact with both end surfaces 3.8 of the infrared optical fiber 2,
Heat generated from the end face is removed by heat conduction. Heat dissipation fins 16 are provided on the outer periphery 14 where the laser beam 13 that passes through the interior of the solid transmission member 11 does not hit, and the fins 16 exchange heat with the cooling gas 16 supplied from the outside. The solid permeable member is cooled by this.

以上の熱の流れをまとめると、端面研磨層で発生した熱
量を固体の熱伝導で固体透過部材に伝熱し、伝熱した熱
量を固体透過部材にあるフィンにより冷却ガスと熱交換
をおこない、外部に放熱する事によって、光フアイバ端
面の効果的な冷却がなされる。
To summarize the above heat flow, the amount of heat generated in the end face polishing layer is transferred to the solid permeable member through solid heat conduction, and the transferred heat is exchanged with cooling gas by the fins on the solid permeable member. By dissipating heat, the end face of the optical fiber can be effectively cooled.

この冷却法は、光フアイバ端面部を直接に冷却ガスの熱
伝達によって冷却を行なう従来の方法に6 べ−7・ 比へて、固体の熱伝導を利用しているので、光フアイバ
端面に対する冷却能力は、2桁以上あると考えられ、格
段に効果的である。
Compared to the conventional method of cooling the optical fiber end face directly by heat transfer of cooling gas, this cooling method utilizes solid heat conduction, so cooling the optical fiber end face is possible. It is thought that the ability is more than two orders of magnitude, and it is extremely effective.

また、この実施例では、固体透明部材材料として、 z
nseを用いたが1熱伝導が良好なGo 、Siを使用
しても良い。
In addition, in this example, as the solid transparent member material, z
nse was used, but Go and Si, which have good thermal conductivity, may also be used.

また、固体透明部材の冷却方法として、放熱フィンと冷
却ガスによる方法を用いたが、第2図に示すように、固
体透明材料11の外周部14に熱交換器17を設け、冷
却水18を循環する方法を用いても良い。
In addition, as a cooling method for the solid transparent member, a method using radiation fins and cooling gas was used, but as shown in FIG. A circulating method may also be used.

発明の詳細 な説明したように1本発明は、冷却光フアイバ端面の冷
却を、固体透過部材を面接触による熱伝導を利用して行
なっているので、光フアイバ端面部を直接冷却ガスの熱
伝達を利用した従来の冷却に比べて1光ファイバ端面に
対する冷却能力は格段に高い。
DETAILED DESCRIPTION OF THE INVENTION As described above, the present invention cools the end face of a cooling optical fiber by using heat conduction through surface contact with a solid transmission member. The cooling capacity for one optical fiber end face is much higher than that of conventional cooling using .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における光ファイバ71−一
> ケーブルの断側面図、第2図は同地の実施例における光
ファイバケーブルの固体透過部材の冷却手段の断側面図
、第3図は従来の光フアイバ端面の冷却手段を示す図で
ある。 1・・・・・・レーザ光線、2・・・・・・光ファイバ
、3・・・・・・入射端面、6・・・・・・光ファイバ
ケーブル、7・・・・・・レンズ、8・・・・・・出射
端面、9・・・・・・出射レンズ、11゜12・・・・
・・固体透過部材、15・・・・・・フィン116・・
・・・・冷却ガス、17・・・・・・熱交換器118・
・・・・・冷却水。
FIG. 1 is a cross-sectional side view of an optical fiber 71-1> cable in one embodiment of the present invention, FIG. 2 is a cross-sectional side view of a cooling means for a solid transmission member of an optical fiber cable in the same embodiment, and FIG. The figure shows a conventional cooling means for the end face of an optical fiber. DESCRIPTION OF SYMBOLS 1... Laser beam, 2... Optical fiber, 3... Incident end face, 6... Optical fiber cable, 7... Lens, 8... Output end face, 9... Output lens, 11°12...
...Solid transmission member, 15...Fin 116...
... Cooling gas, 17 ... Heat exchanger 118.
·····Cooling water.

Claims (3)

【特許請求の範囲】[Claims] (1)エネルギ光線と、前記エネルギ光線を照射部位に
まで導く光ファイバと、この光ファイバの端面に面接触
して配置された前記エネルギ光線に対して透明な材料か
らなる固体透過部材と、この固体透過部材を冷却する冷
却手段とからなる光ファイバケーブル。
(1) An energy beam, an optical fiber that guides the energy beam to the irradiation site, a solid transmission member made of a material transparent to the energy beam and arranged in surface contact with the end surface of the optical fiber, and An optical fiber cable comprising a cooling means for cooling a solid transmission member.
(2)冷却機能は、前記固体透過部材に設けた放熱板と
、この放熱板の冷却を行なう冷却媒体とからなる特許請
求の範囲第1項記載の光ファイバケーブル。
(2) The optical fiber cable according to claim 1, wherein the cooling function includes a heat sink provided on the solid transmission member and a cooling medium that cools the heat sink.
(3)エネルギ光線は、2μm以上の波長の赤外光線で
ある特許請求の範囲第2項記載の光ファイバケーブル。
(3) The optical fiber cable according to claim 2, wherein the energy beam is an infrared beam having a wavelength of 2 μm or more.
JP61145118A 1986-06-20 1986-06-20 Optical fiber cable Pending JPS62299909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61145118A JPS62299909A (en) 1986-06-20 1986-06-20 Optical fiber cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61145118A JPS62299909A (en) 1986-06-20 1986-06-20 Optical fiber cable

Publications (1)

Publication Number Publication Date
JPS62299909A true JPS62299909A (en) 1987-12-26

Family

ID=15377809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61145118A Pending JPS62299909A (en) 1986-06-20 1986-06-20 Optical fiber cable

Country Status (1)

Country Link
JP (1) JPS62299909A (en)

Similar Documents

Publication Publication Date Title
KR100439620B1 (en) Optical fibre cable
US7099533B1 (en) Fiber optic infrared laser beam delivery system
EP1160940B1 (en) Optical amplifier comprising an end pumped zig-zag slab gain medium
US4842360A (en) High energy laser-to-waveguide coupling devices and methods
EP0652614B1 (en) Solid-state laser device
CN1482955A (en) Laser cutting method and apparatus for optical fibres or waveguides
CN205212167U (en) Optical fiber laser
JP4333342B2 (en) Laser processing equipment
JPS62299909A (en) Optical fiber cable
HU224854B1 (en) Method and device for the measuring of the optical power loss in a fiber optical contact means
JPS60108190A (en) Cooler for condenser lens of laser-applying machine
US5793012A (en) Fresnel reflection termination system for high powered laser systems
JPS62299908A (en) Optical fiber cable
JP2757649B2 (en) Laser processing head
JPS6271903A (en) Absorbing device for laser beam
JP2001000560A (en) Laser beam radiation probe
KR101667896B1 (en) Bilateral cooling type semiconductor laser system for medical beauty use
JP2002374031A (en) Convergence system for semiconductor laser
JPS6240405A (en) Incident end structure of light guide for power transmission
JPH0466326B2 (en)
JPS6383710A (en) Optical fiber cable
JPS63118104A (en) Optical fiber cable
JPH0533101U (en) Hollow waveguide structure
JPS63279210A (en) Optical fiber cable
JPS5942195A (en) Hand piece of laser working machine