JPS6229979A - Spherical immobilized microorganism using synthetic high polymer and production of immobilized enzyme - Google Patents

Spherical immobilized microorganism using synthetic high polymer and production of immobilized enzyme

Info

Publication number
JPS6229979A
JPS6229979A JP16898485A JP16898485A JPS6229979A JP S6229979 A JPS6229979 A JP S6229979A JP 16898485 A JP16898485 A JP 16898485A JP 16898485 A JP16898485 A JP 16898485A JP S6229979 A JPS6229979 A JP S6229979A
Authority
JP
Japan
Prior art keywords
spherical
solution
enzyme
immobilized
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16898485A
Other languages
Japanese (ja)
Other versions
JPH042233B2 (en
Inventor
Takehiko Osawa
大沢 武彦
Akira Hirose
朗 廣瀬
Seiichi Yabe
誠一 矢部
Hiroko Nishimoto
西本 浩子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP16898485A priority Critical patent/JPS6229979A/en
Publication of JPS6229979A publication Critical patent/JPS6229979A/en
Publication of JPH042233B2 publication Critical patent/JPH042233B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

PURPOSE:To control the size of spheres and obtain the titled enzyme in a large amount at a low cost by a simple step, by dripping a monomer solution containing an enzyme, etc., into a specific solution and carrying out the polymerization reaction in floating and formed spherical dripped solution masses. CONSTITUTION:A monomer solution (M) containing 5-30% high polymer, e.g. acrylamide, 0.1-1% crosslinking agent methylenebisacrylamide and <=50% microorganism or enzyme, etc., and a polymerization initiator (I) are put in a syringe dripping container 3. An organic solvent mixture solution 2 having a higher specific gravity than the monomer solution (M) is then introduced into a polymerization reaction vessel 1. The tip of the container 3 is then dipped in the mixture solution 2, and the solution (M) and polymerization initiator (I) are rapidly dripped and injected into the mixture solution 2 to form a spherical mixture solution 4, which is then polymerized at 0-50 deg.C. The specific gravity of the mixture solution 2 is adjusted to settle the resultant spherical materials 5 after polymerization in the bottom of the vessel 1 and complete the gelation. The resultant gelatinized spherical materials 5 are then pulled up and recovered to afford the aimed spherical immobilized microorganism and immobilized enzyme, having >=1mm diameter and using the high polymer.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は合成高分子を用いた球型の固定化微生物及び
固定化酵素の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" This invention relates to a method for producing spherical immobilized microorganisms and immobilized enzymes using synthetic polymers.

「従来の技術] 近年、微生物あるいは酵素など生理活性を有する物質を
安定口、つ長期間に渡って繰り返し使用するだめに水に
不溶な担体に固定化する目的で、様々な固定化方法ある
いr、を固定化用担体が開発されている。これらの固定
化物&J: 、食品1発酵、医薬品などの製造業、医療
機器、環境保全機器などの分析機器あるいは環境浄化な
ど広い分野にわたり。
``Prior art'' In recent years, various immobilization methods and methods have been developed to immobilize biologically active substances such as microorganisms or enzymes onto water-insoluble carriers in order to stabilize them and prevent their repeated use over long periods of time. Carriers have been developed for immobilizing r.

バイオリアクターあるいはバイオセンサーとして将来活
用される事が期待され、また一部の製造業ではすでに工
業的Gこ利用されている。
It is expected that it will be used as a bioreactor or biosensor in the future, and it is already being used industrially in some manufacturing industries.

固定化用([1体とし′ζは生体高分子1合成高分子。For immobilization ([1 body, ′ζ is biopolymer 1 synthetic polymer.

無機物など様々な物質が用いられているが、安価で合成
や成型のしやすい合成高分子−を用いた例が多い。
Although various substances such as inorganic substances have been used, synthetic polymers, which are inexpensive and easy to synthesize and mold, are often used.

バイオリアクターとして用いられる固定化担体は力学的
強度の強さ、単位重量当たりの表面積の広さから来る反
応iJr率の良さなどから嵩えて、一般に球型のものが
多い。
Immobilization carriers used as bioreactors are generally spherical in shape due to their high mechanical strength and good reaction iJr rate resulting from a large surface area per unit weight.

一般に、固定化された微牛物又C:1酵素は、担体表面
近くで高い活性を有することが分っており。
In general, it has been found that immobilized C:1 enzymes have high activity near the surface of the carrier.

担体の中位重量当たりの有効微生物保持量は球型のもの
が最大であり、又基質分解の効率が1]がる。
The effective amount of microorganisms retained per medium weight of the carrier is maximum in the spherical carrier, and the efficiency of substrate decomposition is increased by 1].

さらに球型の担体は他の型状のものと比較し′(均一に
力かかかる為、ケルか割れに< < 、 l’E力や力
学的な衝撃にり・1して強い安定刊を有する。
Furthermore, compared to other shapes, spherical carriers are more resistant to cracking and cracking than other types of carriers, so they are less susceptible to cracking and cracking, and are more resistant to force and mechanical impact, resulting in stable printing. have

しかし、架橋したポリアクリルアミ[ケルを代表とする
架橋剤を含む3次元網1」構造を持つ高分子心、1.ポ
リエチレン、ボリプ11ピレンなと直!Ni型の分子構
造を持ち、重合後も特定の溶9!l!に溶解したり熱に
より変形する高分子と違い重合後の溶解成型が不可能で
あり9球型に成型する事が田ゲトである。特に微η物や
酵素を権柄固定化するJlj体として用いられる架橋性
高分子−(は、ペレット扶。
However, a polymer core having a three-dimensional network structure containing a cross-linking agent such as cross-linked polyacrylamide (1). Polyethylene, volip 11 pyrene! It has a Ni-type molecular structure, and even after polymerization, it has a specific solubility9! l! Unlike polymers, which can be dissolved in water or deformed by heat, it is impossible to melt and mold the polymer after polymerization, so it is best to mold it into a 9-sphere shape. In particular, a crosslinkable polymer used as a Jlj body to immobilize small amounts of substances and enzymes.

粉末状、角型などの型で用いられ、ポリアクリルアミ[
の例では今までi¥の大きな球型で用いられた例はない
It is used in powder form, square shape, etc., and is made of polyacrylamide [
In the example above, there has never been an example in which a large spherical shape of i\ has been used.

すなわち2架橋剤を含む3次元紺■」+fA造を有する
℃11分子に徹イ[物又は酵素を権柄固定したものの代
表としてメチレンヒスアクリルアミド (BIS )で
架1高じたポリアクリルアミF(Pへへ)を(夕I目こ
とってみると、固定化微生物又は固定化酵素を製造する
には次のよ・うな工程で剋j告されている。アクリルア
ミ1及び旧Sを含む水溶液と微生物あるい(、l酵素を
混合し1、二の混合液中に重合11C進刑としてβ−ジ
メチルアミツブ「1ビオニトリルと重合開始剤として過
硫酸カリウJ・を加えるごとによりラジカル共Φ合を行
ない,3次元網]1構造を持つ担体内に(’i1 )1
物あるいは酵素を固定化している。合成の際Gこ用いら
れる容器としー(は、 lIJil状や角型のものて重
合が終了した(多,11成したケルを切断あるい(1目
5)砕し゛(成2fl,Iしている。、二の方法−(球
型の111体を作るとずり.c.+:.  一度合成し
た角型あるいはペレノ1状のリールを削るか又は球型の
鋳型を作り,その中で重合を行なわなiJれば2,Hら
ず,いずれの場合も1゛稈が面倒で,完全′li:球型
の(]1体を督ること(3(田ゲ11で実用的で41′
いものである。
In other words, polyacrylamide F (P), which has a three-dimensional navy blue + fA structure containing two cross-linking agents, has a polyacrylamide F (P (Hehe) (If you look at it in the evening, the following process is recommended for producing immobilized microorganisms or immobilized enzymes. An aqueous solution containing acrylamide 1 and old S Microorganisms or enzymes were mixed, and β-dimethylamitube was added to the mixed solution of 1 and 2 to proceed with polymerization, and 1 bionitrile and potassium persulfate J. 3-dimensional network] ('i1)1 in a carrier with 1 structure
It immobilizes substances or enzymes. The container used during the synthesis is a Jil-shaped or square-shaped container, and the polymerization is completed (multi, 11). The second method - (Shear when making a spherical 111 body. c. +:. Cut the square or Pereno 1-shaped reel that has been synthesized, or make a spherical mold, and polymerize in it. If you don't do it, it's 2, H, but in both cases, 1 culm is troublesome, and complete 'li: to control 1 spherical () (3 (practical and 41' with Tage 11)
It's a good thing.

リールが球〕(ソにイ1.成し?11ろ技術とし7ては
,酵素。
The reel is a ball] (So I 1. Do? 11 Lo technique and 7 are enzymes.

アクリルアミド及び旧Sを含む水l合液に過硫酸カリウ
ムを加え,ただt)にW面活性剤(TF)IE口とSp
an85)を含む有機溶クシ中に乳化させ1窒素気流中
攪拌しつつ光照射ずろごとにより.ピース状の固定化酵
素を得る方法が知られている。
Potassium persulfate was added to the aqueous solution containing acrylamide and old S, and then the W surfactant (TF) IE port and Sp
An85) was emulsified in an organic solution and irradiated with light in stages while stirring in a nitrogen stream. A method for obtaining piece-shaped immobilized enzymes is known.

「発明が解決しようとする問題点」 し7かし,叙」−の球型ゲルイ]:成方法では5粒i¥
か50〜500メ7m内にあり,それ以上大きな径を持
つ球型はiqゲ「<、用途に応じて種々の粒径が求めら
れる現状に対応しくすないという&’lt点がある。
``Problems to be solved by inventions'' - Spherical Gelui]: The method of production is 5 grains i ¥
It is within the range of 50 to 500 m and 7 m, and a spherical shape with a larger diameter has the disadvantage that it is not compatible with the current situation where various particle sizes are required depending on the application.

1問題点を解決するための1段」1 [作用1本発明は
叙上の事情に鑑みなされたもので,その要旨とするとご
ろは,架橋剤,微生物又は酵素を含む合成高分子のモノ
マー溶液を,これと混り合わず11つ比重の大きな液体
中に,重合開始剤を予しめ混合若しくは滴下後の注入混
合にて,所定量滴下させ,当該lrν体−ヒに球型を保
って岸かふ滴下溶液境内にて重合反応を行なわせゲル化
するとして,微生物又は酵素を球型担体内に権柄固定化
する方法において,工程が簡11で球の大きさを自由に
丁1ントロールできる新規な製造方法を提供した点にあ
る。
1 [Action 1] The present invention has been made in view of the above circumstances, and its gist is that A predetermined amount of the polymerization initiator is dropped into a liquid that does not mix with this and has a high specific gravity, either by pre-mixing or by injection mixing after dropping, and the lrν body maintains a spherical shape and is placed on the shore. This is a method of immobilizing microorganisms or enzymes in a spherical carrier by performing a polymerization reaction within the confines of a droplet solution, and the size of the spheres can be freely controlled. The point is that it provides a new manufacturing method.

「実施例」 12J−ト’.  JZれを図に基づいて詳細に説明す
る。
"Example"12J-t'. JZ deviation will be explained in detail based on the drawings.

第1図a − cは本発明の実施要領を示す全体説明図
,山合開始剤混合要領説明図である。
FIGS. 1a to 1c are overall explanatory diagrams showing the implementation procedure of the present invention and explanatory diagrams of the procedure for mixing the heaping initiator.

図11川ill市合反応容器で,これは、比較的底が浅
く面積の広いものが好ましく2材質は疎水性で且つ収容
の有tJlti媒に溶解しにくいものが良いが。
Figure 11 is a commercial reaction vessel, preferably one with a relatively shallow bottom and a wide area, and the two materials preferably are hydrophobic and difficult to dissolve in the contained medium.

内面を疎水性で有機溶媒に難溶性の物質でコーティング
したものでも良い。
The inner surface may be coated with a substance that is hydrophobic and poorly soluble in organic solvents.

疎水性し1滴下モノマーが接触した場合に球型が維持で
きなくなるためである。
This is because it is hydrophobic and cannot maintain its spherical shape when one drop of the monomer comes into contact with it.

2は該容器1に満たされたモノマー溶液に対して比重の
大きな液体としての有機溶媒混合液,3はシリンジ、キ
ャピラリー専売の尖った滴下容器で,これにモノマー溶
?&Mと重合開始剤Iを入れ。
2 is an organic solvent mixture as a liquid with a high specific gravity relative to the monomer solution filled in the container 1, and 3 is a syringe and a sharp dropping container exclusive to Capillary, into which the monomer solution is added. Add &M and polymerization initiator I.

該有機溶剤2中に一定は注入するくa図)。A constant amount is injected into the organic solvent 2 (Figure a).

注入する際,シリンジ3の先端を有機溶媒2中に入れず
に,モノマー溶液を滴下する形でも良いが,球の径を一
定にする為には図示の如(、先端を混合液2中に浸した
カーが好ましい。
When injecting, the monomer solution may be dropped without placing the tip of the syringe 3 into the organic solvent 2, but in order to keep the diameter of the syringe constant, the tip should be placed in the mixture 2 as shown in the figure. Soaked car is preferred.

a[ツ1の場合は重合開始剤lが予じめ混合されるので
素甲く滴下することが必要である。
a[In the case of 1, the polymerization initiator 1 is mixed in advance, so it is necessary to drop it dropwise.

重合開始剤Iの混合はす,  cし1に示される如く。Mixing of polymerization initiator I, as shown in c-1.

6一 容2:′iの先端あるいは容器の途中でモノマーl’6
 ?& Mと重合開始剤IをlIA合させても良い。
6 volume 2: Monomer l'6 at the tip of 'i or in the middle of the container
? &M and polymerization initiator I may be combined with lIA.

ごの場合にi:l’、、 1lf1合が滴下l−前若し
く(31滴下後なのでa図の4>T、3fハソ千方式と
↑!5ニス5′す、多望連続注入が可能である。
In the case of i:l',, 1lf1 is before dropping l-(31 drops), so 4>T in figure a, 3f is 1,000 method and ↑!5 varnish 5', multi-purpose continuous injection is possible. It is.

b図での一例を述べると次の如くである。An example in figure b is as follows.

[アクリルアミ[Sモノマー5〜30%、架橋剤として
旧SO,1〜1%、敞41−物又り、i酵素を〜50%
含む水冷液を比重1.0以−1−に、l&]製した有機
溶媒の混合液中に滴下し1球状の微生物又は酵素を含む
モノマーl容府中に5%のII M A P Nと過硫
酸カリウム2〜59チの溶液をJl大することにより重
合を行なう。
[Acrylamide [5-30% S monomer, 1-1% old SO as cross-linking agent, ~50% I-enzyme
A water-cooled liquid containing spherical microorganisms or enzymes was added dropwise to a mixed solution of an organic solvent prepared with a specific gravity of 1.0 or more. Polymerization is carried out by increasing the solution of potassium sulfate by 2 to 59 liters.

ご・二で使用する有機相は、比重が1より大きく水とl
I’J合しないハロゲン化物等の自機溶媒と比重力月よ
り小さく−(水と混ざり合わない自機溶媒を混合し、有
機溶媒の比重を適当に調製する。」モノマー溶液には滴
下した(多、会合が起こりにくくなるように水溶性のポ
モポリマーを予しめ含んでいる方が好ましい。重合温度
は0〜50℃内が適当である。
The organic phase used in step 2 has a specific gravity greater than 1 and is equal to water.
Mix organic solvents such as halides that do not mix with I'J and organic solvents that have a specific gravity smaller than the moon (Mix organic solvents that do not mix with water to adjust the specific gravity of the organic solvent appropriately.) Add dropwise to the monomer solution ( It is preferable to include a water-soluble pomopolymer in advance so that polymer association is less likely to occur.The polymerization temperature is suitably within the range of 0 to 50°C.

l商t′あるいは11”大した球状lI1合液4は重合
か完了後も有機溶媒2−1−に浮かんでいるが、有機溶
媒2の比重を二1ンロ′〕−ルする事によりf9合後の
球状物5131容器の底に沈ませる)Jlもできるので
、ゲル化完了物とゲル化未完−r物とを自vJ的に仕分
けすることが「1能となり、製造2回収)―極めて好適
である。
The spherical lI1 mixture 4, which has a quotient t' or 11", remains floating in the organic solvent 2-1- even after the polymerization is completed, but by controlling the specific gravity of the organic solvent 2, f9 Since the spherical material (5131) can sink to the bottom of the container afterward, it is possible to automatically sort the gelled product from the ungelled product (1 function, production 2 recovery) - extremely suitable. It is.

球状ケルのiYは滴下ひにより色々と変えることかでき
るが、11以上の径を持つものが製造でき。
Although the iY of the spherical shell can be varied depending on the dropping temperature, one with a diameter of 11 or more can be manufactured.

従来の技術で671青られない比較的大きなiYのビー
ズが製造できる為、大きなフロックを形成する微生物を
そのまま権柄固定する事ができる。
Since relatively large iY beads that do not 671 blue can be produced using conventional technology, microorganisms that form large flocs can be directly fixed.

本発明を用いることにより、固定化微生物又は固定化酵
素を型造する]−場において、連続的に安価で、均質な
球状の固定化微4F物又は固定化酵素を大量に製造する
ことができる。
By using the present invention, immobilized microorganisms or immobilized enzymes can be produced in large quantities continuously at low cost and in the form of homogeneous spherical immobilized micro-4F substances or immobilized enzymes. .

あるいは、工場内の生産玉稈又(J処理−「程の中で随
時製造し1反応槽中へ投入する事も可能である。
Alternatively, it is also possible to produce the culm at any time during production in the factory and charge it into one reaction tank.

又、実験室内において1球状の固定化微生物あるいは固
定化酵素を用いた研究を行なう場合2本発明による方法
を用いて小型の球状固定化物を製造する装置を作ること
ができる。この装置は全自動式にすることも可能である
か、簡単な操作を人の手に頼る装置であっても良い。
Furthermore, when conducting research using spherical immobilized microorganisms or immobilized enzymes in a laboratory, it is possible to create an apparatus for producing small spherical immobilized substances using the method according to the present invention. This device can be fully automatic or can be easily operated manually.

「発明の効果」 以−にの如く2本発明によるならば、架橋性の合成高分
子にあっても簡単な工程でもって9球型の大きさを自由
にコントl]−ルできて、微生物又は酵素を球型担体内
に権柄固定することが可能である。
``Effects of the Invention'' As described above, according to the present invention, the size of the spherical shape can be freely controlled with a simple process even in the case of cross-linked synthetic polymers, and microorganisms can be Alternatively, it is possible to immobilize the enzyme within a spherical carrier.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a −cは本発明の実施要領を示す全体説明図5
重合開始剤混合要領2態様説明図である。 ■・・・重合反応容器、2・・・有機溶媒lti合液、
3・・・シリンジ、4・・・球状混合液、5・・・球状
物1M・・・モノマー/8?pi、、■・・・重合開始
剤。 −9〜 フック、傅 q。 b、           c。 1〜 !沿改鳥容落 2−J滅1搏工)i之 3−  
シソフジ4−一−Jま社混今及5−・−球状物  M−
モ/7−シ溶表I−一一ψ公圀始剤
Figures 1a to 1c are overall explanatory diagrams 5 showing the implementation procedure of the present invention.
FIG. 2 is an explanatory diagram of two modes of polymerization initiator mixing procedure. ■...Polymerization reaction container, 2...Organic solvent lti mixture,
3...Syringe, 4...Spherical mixed liquid, 5...Spherical object 1M...Monomer/8? pi,, ■...Polymerization initiator. -9~ Hook, Fuq. b, c. 1~! 2-J Metsu 1 Riko) i 3-
Shisofuji 4-1-J Masha mixture and 5-・- Spherical object M-
Mo/7-Si Solubility Table I-11 ψ public initiator

Claims (1)

【特許請求の範囲】[Claims] 架橋剤、微生物又は酵素を含む合成高分子のモノマー溶
液を、これと混り合わず且つ比重の大きな液体中に、重
合開始剤を予じめ混合若しくは滴下後の注入混合にて、
所定量滴下させ、当該液体上に球型を保って浮かぶ滴下
溶液塊内にて重合反応を行なわせゲル化するとしてなる
ことを特徴とする合成高分子を用いた球型の固定化微生
物及び固定化酵素の製造方法。
A monomer solution of a synthetic polymer containing a crosslinking agent, a microorganism, or an enzyme is mixed with a polymerization initiator in a liquid that does not mix with the monomer solution and has a high specific gravity, or by injection mixing after dropping.
A spherical immobilized microorganism using a synthetic polymer characterized by dropping a predetermined amount of the solution and causing a polymerization reaction in the dropped solution mass floating on the liquid to form a gel. Method for producing enzyme.
JP16898485A 1985-07-31 1985-07-31 Spherical immobilized microorganism using synthetic high polymer and production of immobilized enzyme Granted JPS6229979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16898485A JPS6229979A (en) 1985-07-31 1985-07-31 Spherical immobilized microorganism using synthetic high polymer and production of immobilized enzyme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16898485A JPS6229979A (en) 1985-07-31 1985-07-31 Spherical immobilized microorganism using synthetic high polymer and production of immobilized enzyme

Publications (2)

Publication Number Publication Date
JPS6229979A true JPS6229979A (en) 1987-02-07
JPH042233B2 JPH042233B2 (en) 1992-01-16

Family

ID=15878195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16898485A Granted JPS6229979A (en) 1985-07-31 1985-07-31 Spherical immobilized microorganism using synthetic high polymer and production of immobilized enzyme

Country Status (1)

Country Link
JP (1) JPS6229979A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0313069A2 (en) * 1987-10-23 1989-04-26 Nippon Zeon Co., Ltd. Process for manufacturing spherical objects
US6311495B1 (en) 1999-09-08 2001-11-06 Suzuki Motor Corporation Composite power unit
US6424126B1 (en) 1999-09-06 2002-07-23 Suzuki Motor Corporation Propulsion system of a vehicle having two flywheels with different moments of inertia

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0313069A2 (en) * 1987-10-23 1989-04-26 Nippon Zeon Co., Ltd. Process for manufacturing spherical objects
US6424126B1 (en) 1999-09-06 2002-07-23 Suzuki Motor Corporation Propulsion system of a vehicle having two flywheels with different moments of inertia
US6311495B1 (en) 1999-09-08 2001-11-06 Suzuki Motor Corporation Composite power unit

Also Published As

Publication number Publication date
JPH042233B2 (en) 1992-01-16

Similar Documents

Publication Publication Date Title
US5015576A (en) Macroporous particles for cell cultivation or chromatography
JP4704039B2 (en) Porous beads and method for producing the same
Kokufuta Functional immobilized biocatalysts
CA2557107C (en) Process for production of ionically crosslinked polysaccharide microspheres
JPH02238033A (en) Manufacture of porous polymer beads
RU98114498A (en) PARTICLES WITH A POLYMERIC SHELL AND THEIR PRODUCTION
CN105073843A (en) Method of producing uniform, fine polymer beads by vibration jetting
JPH02238032A (en) Porous polymer beads and manufacture thereof
CN104762289B (en) The method that microporous membrane permeation emulsification prepares the gelatine microsphere of fixed alcohol dehydrogenase
CN106076214B (en) preparation method of calcium alginate microspheres with core-shell structure
He et al. Surfactant-free synthesis of covalent organic framework nanospheres in water at room temperature
CN106927951A (en) Based on water dispersion nano SiO2Modified water base polyacrylate film-coated controlled release fertilizer and preparation method thereof
RU2007137062A (en) METHOD FOR PRODUCING GRANULES FROM POLYETHRETHOROETHYLENE CONTAINING A FILLER
CN111285951B (en) Lipase/polyion liquid-styrene microsphere/hydrogel catalytic material and preparation method and application thereof
JPS6229979A (en) Spherical immobilized microorganism using synthetic high polymer and production of immobilized enzyme
Paljevac et al. Hierarchically porous poly (glycidyl methacrylate) through hard sphere and high internal phase emulsion templating
EP2195372A2 (en) Highly porous, large polymeric particles and methods of preparation and use
CN113234252B (en) Composite pore crystal glue medium and preparation method thereof
EP0994939B1 (en) Polymeric materials and their use
WO2004064971A2 (en) Process for preparing microcapsules having an improved mechanical resistance
CN108395504A (en) The method that emulsifier-free emulsion polymerization prepares double responsiveness polymer Janus microballoons
CN1053167C (en) Hydrated granular carrier for biological treatment apparatus and method for producing same
CN107474264B (en) Nano ferroferric oxide mediated free radical polymerization initiation system and method for preparing magnetic hydrogel by using same
WO2010129623A2 (en) Process for reducing residual surface material from porous polymers
CN112458075B (en) Method for strengthening microbial catalytic process by using double cross-linked particle gel packed column