JPS62298778A - Insulation abnormality detection for cable line - Google Patents

Insulation abnormality detection for cable line

Info

Publication number
JPS62298778A
JPS62298778A JP61141434A JP14143486A JPS62298778A JP S62298778 A JPS62298778 A JP S62298778A JP 61141434 A JP61141434 A JP 61141434A JP 14143486 A JP14143486 A JP 14143486A JP S62298778 A JPS62298778 A JP S62298778A
Authority
JP
Japan
Prior art keywords
insulation
cable
cable line
insulation abnormality
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61141434A
Other languages
Japanese (ja)
Inventor
Naotaka Ichiyanagi
一柳 直隆
Masaharu Kasuya
粕谷 正春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP61141434A priority Critical patent/JPS62298778A/en
Publication of JPS62298778A publication Critical patent/JPS62298778A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To always detect insulation abnormality without fetching a signal from a high voltage section, by comparing ground currents on both sides of an insulating connection part of a cable to judge abnormality in the insulation when either thereof increases relatively. CONSTITUTION:Ground currents flow to leads 9A and 9B linked to an insulating connection part 3C as measuring point from cables 1C and 3D on both sides thereof and then, to first and second coils 12A and 12B respectively. An insulation abnormality detector 10 is adjusted with a tap changer 13 beforehand so that a magnetic flux in a circular core 11 is zero when a cable line 4 is normal. A charge current Ic of the ground currents depends on the electrostatic capacitance of the cables while the effective current IR thereof depends on the insulation resistance thereof. If a change is caused in the dielectric constant insulation resistance of one cable 1C or 1D, current flows to a third coil 13C and an alarm 15 sounds as it exceeds a specified level normal.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明はケーブル線路の絶縁異常を検出するケーブル線
路の絶縁異常検出方法に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a cable line insulation abnormality detection method for detecting insulation abnormality of a cable line.

(従来技術) 第3図に示すようにケーブル1が普通接続部2及び絶縁
接続部3で接続されて構成されているケーブル線路4に
おいては、ケーブル1の異常を表わす指標の1つとして
tanδの増加現象があるため、実線路では定期的にt
anδの測定を行っている。この場合、従来は課電を一
時停止して標準コンデンサ5をケーブルヘッド6の高圧
部に接続し、標準コンデンサ5とケーブル1の接地電流
をtanδ測定器7で比較することによりケーブル1の
【anδを測定していた。この場合、絶縁接続部3はア
クスター8で対地間と絶縁しておく。
(Prior art) As shown in FIG. 3, in a cable line 4 in which a cable 1 is connected by a normal connection part 2 and an insulated connection part 3, tan δ is one of the indicators of abnormality in the cable 1. Due to the increasing phenomenon, t is periodically increased on real lines.
An δ is being measured. In this case, conventionally, the charging is temporarily stopped, the standard capacitor 5 is connected to the high voltage part of the cable head 6, and the ground current of the standard capacitor 5 and the cable 1 is compared with the tan δ measuring device 7. was being measured. In this case, the insulating connection part 3 is insulated from ground by the axter 8.

(発明が解決しようとする問題点) しかしながら、このようなケーブル線路の絶縁異常検出
方法では、tanδの常時監視ができず、またtanδ
測定時にケーブル線路4の課電を一時停止する必要があ
る問題点があった。
(Problems to be Solved by the Invention) However, with such a cable line insulation abnormality detection method, tan δ cannot be constantly monitored, and tan δ
There was a problem in that it was necessary to temporarily stop charging the cable line 4 during measurement.

本発明の目的は、活線状態でケーブル線路の絶縁異常を
検出できるケーブル線路の絶縁異常検出方法を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for detecting an insulation abnormality in a cable line that can detect an insulation abnormality in a cable line in a live line state.

(問題点を解決するための手段) 上記の目的を達成するためには本発明の手段を、実施例
に対応する第1図及び第2図を参照して説明すると、本
発明は適宜間隔で絶縁接続部3A。
(Means for Solving the Problems) In order to achieve the above object, the means of the present invention will be explained with reference to FIGS. 1 and 2 corresponding to the embodiments. Insulated connection part 3A.

3B、3C,・・・を設けてケーブル線路4を構成して
いるケーブル線路の絶縁異常検出方法において、或る絶
縁接続部3Cの両側の絶縁接続部3B、3Dをアレスタ
ー8.8で対地間とそれぞれ絶縁し、前記酸る絶縁接続
部3Cの両側のケーブルIC。
3B, 3C, . . . are provided to form the cable line 4, the insulation connection portions 3B and 3D on both sides of a certain insulation connection portion 3C are grounded with an arrester 8.8. and cable ICs on both sides of the insulated connection portion 3C.

1Dの接地電流を比較し、どちらかの接地電流が相対的
に増大した場合に絶縁異常と判定することを特徴とする
The feature is that the 1D ground currents are compared, and if either ground current increases relatively, it is determined that there is an insulation abnormality.

(作用) このようにして検出を行うと、高圧部から信号を取り出
さないので、課電状態で常時、絶縁異常の検出を行える
(Function) When detection is performed in this manner, no signal is extracted from the high-voltage section, so insulation abnormalities can be detected at all times in the energized state.

(実施例) 以下本発明の実施例を第1図及び第2図を参照して詳細
に説明する。図示のように、ケーブル1A、IB、IC
・・・が絶縁接続部3A、3B、3C。
(Example) Examples of the present invention will be described in detail below with reference to FIGS. 1 and 2. As shown, cable 1A, IB, IC
. . . are insulated connection parts 3A, 3B, and 3C.

・・・を介して接続されてケーブル線路4を構成してい
る場合に、その絶縁異常を各区間のケーブル1A、IB
・・・毎に検出する際には、1つおきの絶縁接続部3B
、3D、・・・をアレスター8で対地間と絶縁する。ア
レスター8を接続していない絶縁接続部3A、3C,3
E、・・・には、その両側のケーブルIA、IB、IC
,ID、IE、IFに流れる接地電流を取り出すためリ
ード線9A、9Bを接続し、これらリード線9A、9B
を絶縁異常検出器10に接続する。絶縁異常検出器10
は、環状鉄心11を有し、該環状鉄心11にはターン数
がN1 、N2 、Ndの第1〜第3のコイル12A。
... to form the cable line 4, the insulation abnormality can be detected by checking the cables 1A and IB in each section.
...When detecting every other insulation connection part 3B
, 3D, . . . are insulated from ground using an arrester 8. Insulated connection parts 3A, 3C, 3 to which arrester 8 is not connected
E,... have cables IA, IB, and IC on both sides.
, ID, IE, and IF, connect the lead wires 9A and 9B, and connect these lead wires 9A and 9B.
is connected to the insulation abnormality detector 10. Insulation abnormality detector 10
has an annular iron core 11, and the annular iron core 11 has first to third coils 12A each having a number of turns of N1, N2, and Nd.

12B、12Cがそれぞれ巻装され、リードl119A
はタップ切換器13を介して第1のコイル12Aの一端
に接続され、第1の]イル12Aの他端は接地され、リ
ード線9Bは第2のコイル12Bの一端に接続され、第
2のコイル1Bの他端は接地され、第3のコイル12C
は増幅器14に接続され、増幅器14は警報器15に接
続された構造になっている。なお、16A、16Bは、
絶縁異常検出器10を接続した絶縁接続部3A、3C。
12B and 12C are wound respectively, and the lead l119A
is connected to one end of the first coil 12A via the tap changer 13, the other end of the first coil 12A is grounded, the lead wire 9B is connected to one end of the second coil 12B, and the second The other end of the coil 1B is grounded, and the third coil 12C
is connected to an amplifier 14, and the amplifier 14 is connected to an alarm 15. In addition, 16A and 16B are
Insulation connection parts 3A and 3C to which the insulation abnormality detector 10 is connected.

3Eの両側の静電容量である。This is the capacitance on both sides of 3E.

このようにすると、測定をしようとする箇所の絶縁接続
部3Cにつながるリードl119A、9Bにはその両側
のケーブルIC,1Dからの接地電流が流れている。こ
の接地電流は、ケーブルIC。
In this case, the ground current from the cables IC and 1D on both sides flows through the leads 119A and 9B connected to the insulated connection portion 3C at the location to be measured. This ground current is connected to the cable IC.

1Dへの充電流1c  (−ωC■)と実効電流IR(
=V/R)とである。ここで、ωは課電電圧の周波数、
Cはケーブルの静電容量、■は課電電圧Rはケーブルの
絶縁抵抗である。各接地電流はリード線9A、9Bを経
て第1.第2の]イル12A、12Bに流れる。絶縁異
常検出器10は、ケーブル線路4の正常時に、環状鉄心
11内の磁束が零になるように第1.第2のコイル12
A、12Bのターン数N1 、N2の比をタップ切換器
13で予め調整しておく。かかる状態で、第3のコイル
12Gに流れる電流を常時監視する。接地電流のうち充
電流1cはケーブルの静電容量(又は誘電率)に依存し
ており、実効電流Inはケーブルの絶縁抵抗に依存して
いる。若し、片側のケーブルIC又はIDの誘電率又は
絶縁抵抗が何らかの理由で変化すると、環状鉄心11に
巻いである第1.第2のコイル12A、12Bに流れる
接地電流が変化し、これにより環状鉄心11に磁束が発
生し、第3のコイル12Gに電流が流れる。この電流を
増幅器14で増幅し、そのレベルが或るレベルを越えた
ら警報器15から警報を出すようにしておく。
Charging current 1c (-ωC■) to 1D and effective current IR (
=V/R). Here, ω is the frequency of the applied voltage,
C is the capacitance of the cable, and ■ is the applied voltage R is the insulation resistance of the cable. Each ground current passes through lead wires 9A and 9B to the first. Flows into the second] files 12A and 12B. The insulation abnormality detector 10 detects the first one so that the magnetic flux in the annular iron core 11 becomes zero when the cable line 4 is normal. second coil 12
The ratio of the number of turns N1 and N2 of A and 12B is adjusted in advance by a tap changer 13. In this state, the current flowing through the third coil 12G is constantly monitored. Of the ground currents, the charging current 1c depends on the capacitance (or dielectric constant) of the cable, and the effective current In depends on the insulation resistance of the cable. If the dielectric constant or insulation resistance of the cable IC or ID on one side changes for some reason, the first cable wound around the annular core 11 may change. The ground current flowing through the second coils 12A, 12B changes, thereby generating magnetic flux in the annular iron core 11, and current flows through the third coil 12G. This current is amplified by an amplifier 14, and when the level exceeds a certain level, an alarm is issued from an alarm device 15.

ここでケーブルのtanδは tanδ−IR/Ic=1/ωcR−(1)で表わされ
るため、警報器15から警報がでるということはtan
δの値に異常が発生したことであり、tanδの常時監
視ができる。本発明で用いている絶縁異常検出器10で
は、tanδの変化の絶対値は判らないので、警報が出
たのち、tanδ測定器を現場へ搬入してtanδ測定
を厳密に行えばよい。
Here, tan δ of the cable is expressed as tan δ - IR/Ic = 1/ωcR - (1), so the fact that the alarm 15 issues an alarm means tan
This means that an abnormality has occurred in the value of δ, and tan δ can be constantly monitored. Since the insulation abnormality detector 10 used in the present invention cannot determine the absolute value of the change in tan δ, after an alarm is issued, a tan δ measuring device can be brought to the site and tan δ can be precisely measured.

次に測定データの一例を説明する。使用したケ−プル(
66KV)の静電容量は200pF/mで、ケーブル長
が接続部間で約1000mである。従って、 lc−ωCV= 2.4A また、tanδは正常値で0.0001であるため、1
R=tanδx l c = O,0O024Aである
Next, an example of measurement data will be explained. The cable used (
The capacitance of the cable (66 KV) is 200 pF/m, and the cable length is approximately 1000 m between connections. Therefore, lc-ωCV = 2.4A Also, since tanδ is 0.0001 as a normal value, 1
R=tan δx l c = O, 0O024A.

従って、接地電流は、 (Ic 2+IR2)吟Φ2.4A =[cである。t
anδ変化の主な原因は絶縁抵抗の異常に基因するため
、Icは殆んど一定であり、Inが増大することになる
。従って、若し、ケーブルIC,ID間のtanb差(
−八tanδ)がo、oo。
Therefore, the ground current is (Ic 2 + IR2) Φ2.4A = [c. t
Since the main cause of the and[delta] change is due to an abnormality in insulation resistance, Ic remains almost constant and In increases. Therefore, if the tanb difference between cable IC and ID (
-8 tan δ) is o, oo.

5以上になった時に警報を出すようにするには、第3の
コイル12Cの感度はIRの増大分△IRは(1)式よ
り、 ΔIR=Δtanδ×IC −〇、0005 x 2.4= 0.0012Φ1(a
mA) である。従って、感度0.11111A程度の絶縁異常
検出器10を使用して実験を行った。模擬的にケーブル
1B側の接地電流を0.1mA以上増大させたところ警
報器15から警報が発せられた。
In order to issue an alarm when the temperature exceeds 5, the sensitivity of the third coil 12C is determined by the increase in IR, △IR, from formula (1), ΔIR=Δtanδ×IC −〇, 0005 x 2.4= 0.0012Φ1(a
mA). Therefore, an experiment was conducted using an insulation abnormality detector 10 with a sensitivity of about 0.11111A. When the grounding current on the cable 1B side was increased by 0.1 mA or more in a simulated manner, the alarm 15 issued an alarm.

なお、通電状態で実施すると、通電電流の変化による誘
導で誤動作するおそれがあるので、絶縁異常検出器10
はシールドボックスの中に入れるか、ケーブル線路4か
ら1m以上離すことが必要である。
Note that if this is carried out in a energized state, there is a risk of malfunction due to induction due to changes in the energized current, so the insulation abnormality detector 10
must be placed in a shield box or at least 1 m away from the cable line 4.

絶縁異常検出器10として本実施例では、変流器型]ン
パレータを使用したが、その代りに光磁界センサーを使
用すると誘導の問題は解決できる。
In this embodiment, a current transformer type amparator is used as the insulation abnormality detector 10, but the problem of induction can be solved by using an optical magnetic field sensor instead.

(発明の効果) 以上説明したように本発明によれば、高圧部から信号を
取り出さないので、課電状態のまま、常時、絶縁異常の
検出を行うことができる。従って、電カケープルの地絡
事故を未然に防ぐことができる。
(Effects of the Invention) As described above, according to the present invention, since a signal is not extracted from the high voltage section, insulation abnormality can be detected at all times while the power is being applied. Therefore, it is possible to prevent a ground fault of the power cable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施しているケーブル線路の一
例を示す説明図、第2図は本発明で用いている絶縁異常
検出器の一例を示す結線図、第3図は従来の方法を実施
しているケーブル線路の説明図である。 1A〜1F・・・ケーブル、3A〜3E・・・絶縁接続
部、4・・・ケーブル線路、8・・・アレスター、9A
。 9B・・・リード線、10・・・絶縁異常検出器。
Fig. 1 is an explanatory diagram showing an example of a cable line in which the method of the present invention is implemented, Fig. 2 is a wiring diagram showing an example of an insulation abnormality detector used in the present invention, and Fig. 3 is a diagram showing an example of a conventional method. FIG. 2 is an explanatory diagram of a cable line implementing the 1A to 1F...Cable, 3A to 3E...Insulated connection part, 4...Cable line, 8...Arrester, 9A
. 9B... Lead wire, 10... Insulation abnormality detector.

Claims (1)

【特許請求の範囲】[Claims] 適宜間隔で絶縁接続部を設けてケーブル線路を構成して
いるケーブル線路の絶縁異常検出方法において、或る絶
縁接続部の両側の絶縁接続部をアレスターで対地間とそ
れぞれ絶縁し、前記或る絶縁接続部の両側のケーブルの
接地電流を比較し、どちらかの接地電流が相対的に増大
した場合に絶縁異常と判定することを特徴とするケーブ
ル線路の絶縁異常検出方法。
In a method for detecting an insulation abnormality in a cable line in which insulated connection parts are provided at appropriate intervals to constitute a cable line, the insulated connection parts on both sides of a certain insulated connection part are respectively insulated from ground to ground using an arrester, and the certain insulation A method for detecting an insulation abnormality in a cable line, comprising comparing ground currents of cables on both sides of a connection part, and determining an insulation abnormality when either ground current increases relatively.
JP61141434A 1986-06-19 1986-06-19 Insulation abnormality detection for cable line Pending JPS62298778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61141434A JPS62298778A (en) 1986-06-19 1986-06-19 Insulation abnormality detection for cable line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61141434A JPS62298778A (en) 1986-06-19 1986-06-19 Insulation abnormality detection for cable line

Publications (1)

Publication Number Publication Date
JPS62298778A true JPS62298778A (en) 1987-12-25

Family

ID=15291873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61141434A Pending JPS62298778A (en) 1986-06-19 1986-06-19 Insulation abnormality detection for cable line

Country Status (1)

Country Link
JP (1) JPS62298778A (en)

Similar Documents

Publication Publication Date Title
KR0172603B1 (en) Apparatus for monitoring degradation of insulation of electrical installation
EP1102998B1 (en) Closely-coupled multiple-winding magnetic induction-type sensor
CA2203833C (en) A device for sensing of electric discharges in a test object
US4689546A (en) Internal armature current monitoring in large three-phase generator
KR890004170A (en) Insulation Detection Method and Device
CN112154585B (en) Method and device for detecting turn-to-turn short circuits in windings arranged in parallel
KR100306084B1 (en) Separation of high frequency error signal from high frequency electromagnetic field in large electrical equipment
US3548302A (en) Apparatus for detecting faults in the insulation covering of insulated electric conductors including means for causing a fluctuating current to flow through a bare portion of the insulation
JP2011252778A (en) Method for detecting partial discharge of electrical device using magnetic field probe
JPH03206976A (en) Diagnosis of insulation
JPH03128471A (en) Monitoring device for insulation deterioration of electric equipment
GB2062250A (en) Detecting fault in insulated electric cable
JPS62298778A (en) Insulation abnormality detection for cable line
JPH09152462A (en) Partial discharge detection method for transformer
JP4279426B2 (en) High-voltage lead-in cable shield tape breakage detector
JPH099439A (en) Cable recognition device and current sensor that can be used of the device
Naseri et al. Incipient fault monitoring of medium voltage UD-EPR power cable using Rogowski coil
JP2002107402A (en) Insulation abnormality monitoring device and insulation abnormality monitoring method for motor
JP2613435B2 (en) Partial discharge measurement method
JP2750713B2 (en) Simple insulation resistance measurement method for low voltage wiring etc.
JP2870551B2 (en) Method and apparatus for determining direction of occurrence of partial discharge
KR910001232Y1 (en) Insulated wire alarm system
JP2000221229A (en) Apparatus and method for detecting partial discharge
JPS59630Y2 (en) Transformer testing equipment
JPH04147065A (en) Method for testing insulating coil