JPS62298163A - Manufacture of solid-state image sensor - Google Patents

Manufacture of solid-state image sensor

Info

Publication number
JPS62298163A
JPS62298163A JP61140262A JP14026286A JPS62298163A JP S62298163 A JPS62298163 A JP S62298163A JP 61140262 A JP61140262 A JP 61140262A JP 14026286 A JP14026286 A JP 14026286A JP S62298163 A JPS62298163 A JP S62298163A
Authority
JP
Japan
Prior art keywords
overflow
overflow drain
conductivity type
mask
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61140262A
Other languages
Japanese (ja)
Inventor
Kenji Nagano
永野 賢治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61140262A priority Critical patent/JPS62298163A/en
Publication of JPS62298163A publication Critical patent/JPS62298163A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14887Blooming suppression

Abstract

PURPOSE:To form an overflow drain and a barrier region very finely and highly accurately, by introducing first impurities in a substrate through a mask opening part, diffusing the impurities in the lateral direction by heat treatment, and introducing second impurities. CONSTITUTION:An ion implanting mask layer 10, which can resist heat treatment, is deposited and formed on one main surface of a P-type Si semiconductor substrate 1. Thereafter a photoresist layer 11 is applied and formed. After an opening part 12 is formed in the photoresist layer 11, an opening part 13 is formed in the layer 10, with the resist layer 11 as a mask. Then, with the layers 11 and 10 as masks, P-type impurities 100 are implanted. The layer 11 is removed, and a P-type region is diffused by heat treatment. With the layer 10 as a mask, N-type impurities 101 are implanted, and an N<+> type overflow drain 4 is formed. Then, the P-type region remaining on both sides is formed as an overflow barrier region 5.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は、固体撮像素子の製造方法、特に固体撮像素子
に於けるブルーミング抑制機構の製造方法に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method of manufacturing a solid-state image sensor, and particularly to a method of manufacturing a blooming suppression mechanism in a solid-state image sensor.

〔従来の技術〕[Conventional technology]

CCD (電荷結合素子)等を用いた固体撮像素子に於
いてはプルーミング抑制のために、受光部又は垂直シフ
トレジスタの取扱い能力を超える過剰電荷を流すオーバ
ーフロードレイン構造が必要である。第2図はかかる構
造の一つを有する固体撮像素子の主要部分の断面図を示
す例で、第2図Aは受光部を含む断面を、第2図Bは垂
直シフトレジスタを含む断面をそれぞれ示している。第
2図中に於いて、lはP形半導体基板、2は受光部、3
は垂直シフトレジスタ、4はオーバーフロードレイン、
5はオーバーフローバリア領域、15はポリシリコンゲ
ート電極を示す。第2図に示すように第1導電形の半導
体基板1上に形成される第2導電形の受光部2又は垂直
シフトレジスタ3に近接してこれら領域より高濃度の第
2導電形のオーバーフロードレイン4を設け、受光部2
又は垂直シフトレジスタ3とオーバーフロードレイン4
との間に受光部2又は垂直シフトレジスタ3より電位が
浅くなるように不純物濃度を調節したオーバーフローバ
リア領域5を設けている。
In a solid-state imaging device using a CCD (charge-coupled device) or the like, an overflow drain structure is required to flow excess charge exceeding the handling capacity of a light receiving section or a vertical shift register in order to suppress pluming. FIG. 2 is an example showing a cross-sectional view of the main part of a solid-state image sensing device having one of such structures. FIG. 2A is a cross-section including the light receiving part, and FIG. It shows. In Fig. 2, l is a P-type semiconductor substrate, 2 is a light receiving section, and 3 is a P-type semiconductor substrate.
is a vertical shift register, 4 is an overflow drain,
5 is an overflow barrier region, and 15 is a polysilicon gate electrode. As shown in FIG. 2, an overflow drain of the second conductivity type is formed on the semiconductor substrate 1 of the first conductivity type and is located close to the light receiving section 2 of the second conductivity type or the vertical shift register 3 and has a higher concentration than these regions. 4 is provided, and the light receiving section 2
or vertical shift register 3 and overflow drain 4
An overflow barrier region 5 whose impurity concentration is adjusted so that the potential is shallower than that of the light receiving section 2 or the vertical shift register 3 is provided between the light receiving section 2 and the vertical shift register 3.

この固体撮像素子では、受光時に強い入射光によって受
光部2又は垂直シフトレジスタ3の取扱い能力を超える
過剰電荷が発生すると、この過剰電荷はオーバーフロー
バリア領域5を通じてオーバーフロードレイン4に流さ
れ、プルーミング抑制がなされる。これをNチャネルC
CDフレーム転送型撮像素子を例にとって説明する。第
3図の実線A、点yABはそれぞれ駆動時に於けるチャ
ネル部6の電荷蓄積部とバリア部のポテンシャル分布図
である。バリア部の電荷蓄積部に対する電位障壁30が
オーバーフローバリアの電荷蓄積部に対する電位障壁3
1より高くなるように設定すれば、強い入射光により生
じた過剰電荷はバリア部に溢れるより先にオーバーフロ
ーバリアを越えてオーバーフロードレインに流れ込む為
フルーミングは抑制される。なお、第3図において32
は電荷蓄積部に蓄積されている電荷を示している。
In this solid-state image sensor, when excessive charge is generated due to strong incident light during light reception, which exceeds the handling capacity of the light receiving section 2 or the vertical shift register 3, this excess charge is flowed to the overflow drain 4 through the overflow barrier region 5, and plumping is suppressed. It will be done. This is N channel C
This will be explained by taking a CD frame transfer type image sensor as an example. The solid line A and the point yAB in FIG. 3 are potential distribution diagrams of the charge storage section and the barrier section of the channel section 6 during driving, respectively. The potential barrier 30 for the charge storage section of the barrier section is the potential barrier 3 for the charge storage section of the overflow barrier.
If it is set to be higher than 1, excess charges generated by strong incident light will flow over the overflow barrier and into the overflow drain before overflowing into the barrier portion, so that flooding will be suppressed. In addition, in Figure 3, 32
indicates the charge stored in the charge storage section.

さて、従来このようなオーバーフロードレイン4及びオ
ーバーフローバリア領域5の形成法は主として第4図A
−Cに示す如く、第1導電形の半導体基板1の表面に酸
化シリコン膜40を形成した後、この酸化膜40をパタ
ーニングして開口部41を形成し、酸化膜40をマスク
としてその開口部41を通して拡散又はイオン注入して
基板表面に第2導電形のオーバーフロードレイン4を形
成し、次に改めて酸化シリコン膜42を形成してこれに
開口部41より大きい開口部43を形成し、酸化膜42
をマスクとしてその開口部43を通して拡散又はイオン
注入し、オーバーフロードレイン4を挟む両側にオーバ
ーフローバリア領域5を形成するものである。
Now, the conventional method of forming such an overflow drain 4 and overflow barrier region 5 is mainly as shown in FIG. 4A.
-C, after forming a silicon oxide film 40 on the surface of the semiconductor substrate 1 of the first conductivity type, this oxide film 40 is patterned to form an opening 41, and the opening 41 is opened using the oxide film 40 as a mask. A second conductivity type overflow drain 4 is formed on the substrate surface by diffusion or ion implantation through the silicon oxide film 41. Next, a silicon oxide film 42 is formed again, and an opening 43 larger than the opening 41 is formed therein. 42
Using this as a mask, diffusion or ion implantation is performed through the opening 43 to form overflow barrier regions 5 on both sides of the overflow drain 4.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上に述べた従来の製造方法に於いてはオーバーフロード
レインとオーバーフローバリア領域とがセルファライン
に形成されず、かつマスク工程が2回必要とされ、従っ
て第4図C′に示すようにマスクずれの問題からオーバ
ーフロードレイン4とオーバーフローバリア領域5を超
微細に形成することが困難であり、さらに2回のマスク
工程での露光むら、現像むらの生じ方の違いに起因して
オーバーフローバリア領域の形成にばらつきが生じ、受
光部又は垂直シフトレジスタの取扱い電荷量のむら、感
度むらが生じ、高解像度固体撮像素子の製造が困難であ
る。
In the conventional manufacturing method described above, the overflow drain and the overflow barrier region are not formed in the self-alignment line, and the masking process is required twice, so that the mask misalignment is caused as shown in FIG. 4C'. Due to this problem, it is difficult to form the overflow drain 4 and the overflow barrier region 5 in an ultra-fine manner, and furthermore, due to differences in the way uneven exposure and development occur during the two mask processes, it is difficult to form the overflow barrier region. This causes variations in the amount of charge handled by the light receiving section or the vertical shift register, and uneven sensitivity, making it difficult to manufacture a high-resolution solid-state image sensor.

本発明の目的は、前記従来の欠点を除去し、オーバーフ
ロードレイン、オーバーフローバリア領域を超微細かつ
高精度に形成することを可能とする固体撮像素子の製造
方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a solid-state imaging device that eliminates the above-mentioned conventional drawbacks and makes it possible to form an overflow drain and an overflow barrier region with ultrafine precision.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の要旨は、同一のマスク工程によってオーバーフ
ロードレインとオーバーフローバリア領域の両方を形成
するところにある。すなわちまずマスクの開口部を通じ
て、半導体基板に第1導電形のオーバーフローバリア領
域を形成する第1の不純物を導入し、これを高温の熱処
理により横方向拡散させる。次に、同一のマスクの開口
部を通じて、オーバーフローバリア領域とは反対の導電
性を生じせしむる第2の不純物を導入して、オーバーフ
ローバリア領域中にその一部を打ち消してこの領域の第
1の不純物濃度より高い第2の不純物濃度を有するオー
バーフロードレインを形成する。しかる後、オーバーフ
ロードレイン構造に隣接する受光部又は垂直シフトレジ
スタ等の第2導電形半導体領域を形成する不純物を、オ
ーバーフロードレインとオーバーフローバリアml域の
両頭域に導入することによって、オーバーフローバリア
領域をオーバーフロードレイン構造に隣接する第2導電
形半導体領域とオーバーフロードレインよりも浅い電位
を持つように成す。
The gist of the invention is to form both the overflow drain and overflow barrier regions by the same mask process. That is, first, a first impurity that forms an overflow barrier region of the first conductivity type is introduced into the semiconductor substrate through the opening of the mask, and is laterally diffused by high-temperature heat treatment. A second impurity is then introduced into the overflow barrier region through an opening in the same mask to create a conductivity opposite to that of the overflow barrier region, thereby canceling out a portion of the first impurity in this region. forming an overflow drain having a second impurity concentration higher than the impurity concentration of the second impurity concentration; Thereafter, an impurity forming a second conductivity type semiconductor region such as a light receiving section or a vertical shift register adjacent to the overflow drain structure is introduced into both regions of the overflow drain and the overflow barrier ml region, thereby causing the overflow barrier region to overflow. The second conductivity type semiconductor region adjacent to the drain structure has a shallower potential than the overflow drain.

〔作用〕[Effect]

かかる製造方法によれば、オーバーフロードレインとオ
ーバーフローバリア領域とを形成するマスフが同一であ
る為に、従来の製造方法によるマスクずれの問題が全く
生じない。そのためマスク合わせの為のマージンが不必
要となり、更にオーバーフローバリア領域の幅は熱拡散
工程によって規定され、マスクの最小微細加工寸法によ
る制限及びマスク工程での露光むら、現像むらの影響を
受けない為、オーバーフロードレイン構造の寸法を精度
良く縮小することができ、高解像度固体撮像素子の製造
が可能となる。
According to this manufacturing method, since the masks forming the overflow drain and the overflow barrier region are the same, the problem of mask misalignment caused by the conventional manufacturing method does not occur at all. This eliminates the need for a margin for mask alignment, and furthermore, the width of the overflow barrier area is determined by the thermal diffusion process, and is not affected by limitations due to the minimum microfabrication dimensions of the mask and uneven exposure and development during the mask process. , the dimensions of the overflow drain structure can be reduced with high precision, making it possible to manufacture a high-resolution solid-state image sensor.

〔実施例〕〔Example〕

以下、本発明の一実施例であるNチャネルCCDフレー
ム転送型撮像素子の製造方法を図面を用いて詳細に説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A method of manufacturing an N-channel CCD frame transfer type image sensor, which is an embodiment of the present invention, will be described in detail below with reference to the drawings.

第1図はNチャネルCCDフレーム転送型撮像素子の製
造方法を示す工程順の断面図である。
FIG. 1 is a cross-sectional view showing the process steps for manufacturing an N-channel CCD frame transfer type image sensor.

まず、P−形シリコン半導体基板1の一生面上に、イオ
ン注入用マスクとなり熱処理に耐え得る酸化シリコン又
は窒化シリコン等の層10を被着形成しく第1図A)、
次にこの層lo上にホトレジスト層11を塗布形成する
。そしてこのホトレジスト層11に対して形成すべきオ
ーバーフロードレインに対応したパターンのマスクを介
して露光、現像処理してオーバーフロードレインに対応
した開口部12を形成する(第1図B)。更に、このホ
トレジスト層11をエツチングマスクとして層10をエ
ツチングし、開口部12に対応した位置に同じ大きさの
開口部13を形成する。そしてこのホトレジスト層11
とJiIOをマスクとして開口部12及び13を通じて
P形不純物100をイオン注入し、基板1の表面に開口
部12で幅規定されたP影領域14を形成する(第1図
C)。次にホトレジスト層11を除去してP影領域14
を熱処理により所定の大きさまで横方向拡散する(第1
図D)。次に層10をマスクとして開口部13を通じて
N形不純物101をイオン注入し、先に形成されたP影
領域14の中央に開口部13で幅規定されたN゛形のオ
ーバーフロードレイン4を形成する。それに伴ってその
両側に残ったP影領域がオーバーフローバリア領域5と
して形成される(第1図E)。層10を除去した後に活
性領域全面にN形不純物102を導入することによって
オーバーフロードレイン構造間の領域にチャネル部6が
形成される(第1図F)。N形不純物102の濃度はチ
ャネル部6の特性により規定される。
First, a layer 10 of silicon oxide or silicon nitride that can serve as an ion implantation mask and can withstand heat treatment is deposited on the entire surface of a P-type silicon semiconductor substrate 1 (FIG. 1A).
Next, a photoresist layer 11 is formed by coating on this layer lo. Then, the photoresist layer 11 is exposed to light through a mask having a pattern corresponding to the overflow drain to be formed, and then developed to form an opening 12 corresponding to the overflow drain (FIG. 1B). Further, the layer 10 is etched using the photoresist layer 11 as an etching mask to form an opening 13 of the same size at a position corresponding to the opening 12. And this photoresist layer 11
P-type impurity 100 is ion-implanted through the openings 12 and 13 using JiIO and JiIO as a mask to form a P shadow region 14 whose width is defined by the opening 12 on the surface of the substrate 1 (FIG. 1C). Next, the photoresist layer 11 is removed and the P shadow area 14 is removed.
is laterally diffused to a predetermined size by heat treatment (first
Figure D). Next, using the layer 10 as a mask, N-type impurity 101 is ion-implanted through the opening 13 to form an N-shaped overflow drain 4 whose width is defined by the opening 13 in the center of the previously formed P shadow region 14. . Accordingly, the P shadow areas remaining on both sides are formed as overflow barrier areas 5 (FIG. 1E). After removing layer 10, N-type impurities 102 are introduced throughout the active region, thereby forming channel portions 6 in the regions between the overflow drain structures (FIG. 1F). The concentration of the N-type impurity 102 is defined by the characteristics of the channel portion 6.

P形不純物100の拡散量はチャネル部6.オーバーフ
ロードレイン構造等の寸法により規定され、P形不純物
100の濃度はその拡散量とN形不純物102の濃度に
対してオーバーフローバリア領域5がオーバーフロード
レインとチャネル部よりも浅い電位を有するように制御
される。
The amount of diffusion of the P-type impurity 100 is determined by the amount of diffusion in the channel portion 6. The concentration of the P-type impurity 100 is determined by the dimensions of the overflow drain structure, etc., and the concentration of the P-type impurity 100 is controlled so that the overflow barrier region 5 has a shallower potential than the overflow drain and channel portion with respect to its diffusion amount and the concentration of the N-type impurity 102. Ru.

〔発明の効果〕〔Effect of the invention〕

上述した本発明によれば、受光部への強い入射光により
生じた過剰電荷を吸収する為に素子間に設けるオーバー
フロードレイン構造を従来の技術よりも高精度かつ微細
に造ることができ、ブルーミングを抑制しつつも高密度
かつ低感度むらで、また受光部の開口率を大きくするこ
とにより高感度の固体撮像素子を得ることができる。
According to the present invention described above, the overflow drain structure provided between the elements to absorb excess charge caused by strong incident light on the light receiving part can be created with higher precision and finer details than conventional techniques, and blooming can be prevented. It is possible to obtain a high-sensitivity solid-state image pickup device by suppressing the unevenness of the photosensitive material while maintaining high density and low sensitivity unevenness, and by increasing the aperture ratio of the light-receiving section.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す工程順の断面図、 第2図は本発明に適用し得るオーバーフロードレイン構
造を有する固体撮像素子の一例の主要な断面図、 第3図は本発明の説明に供するポテンシャル分布図、 第4図は従来の製造方法の一例を示す工程順の断面図で
ある。 1・・・半導体基板 4・・・オーバーフロードレイン 5・・・オーバーフローバリア領域 6・・・チャネル部 10・・・酸化シリコン又は窒化シリコン等の層11・
・・ホトレジスト層 12、13・・・開口部 14・・・P影領域 代理人弁理士   岩  佐  義  幸第1図 第2図 q 第3図
FIG. 1 is a cross-sectional view of the process order showing an embodiment of the present invention, FIG. 2 is a main cross-sectional view of an example of a solid-state image sensor having an overflow drain structure applicable to the present invention, and FIG. 3 is a cross-sectional view of an example of the present invention. FIG. 4 is a potential distribution diagram for explaining the process. 1... Semiconductor substrate 4... Overflow drain 5... Overflow barrier region 6... Channel portion 10... Layer 11 of silicon oxide or silicon nitride, etc.
... Photoresist layers 12, 13... Openings 14... Yoshiyuki Iwasa, Patent Attorney, Patent Attorney for P Shadow Area Figure 1 Figure 2 q Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)受光部又は垂直シフトレジスタに近接してオーバ
ーフロードレインを設け、かかる受光部又は垂直シフト
レジスタとオーバーフロードレインとの間にオーバーフ
ローバリア領域を設けたオーバーフロードレイン構造を
ブルーミング抑制機構として有する固体撮像素子の製造
方法に於いて、半導体基板上に形成したイオン注入に対
してマスクとなり得る層の開口部を通じて、前記半導体
基板上に第1導電形の半導体領域を形成した後、高温の
熱処理により前記半導体領域を横方向拡散させ、しかる
後前記開口部を通じ前記第1導電形半導体領域中に第2
導電形のオーバーフロードレインを形成し、前記第1導
電形半導体領域及び第2導電形のオーバーフロードレイ
ンに、これら領域に隣接する第2導電形半導体領域を形
成する不純物を共通に導入し第1導電形半導体領域から
なるオーバーフローバリア領域の電位を制御して、オー
バーフロードレイン構造を形成することを特徴とする固
体撮像素子の製造方法。
(1) A solid-state image sensor having an overflow drain structure as a blooming suppression mechanism, in which an overflow drain is provided close to a light receiving section or a vertical shift register, and an overflow barrier region is provided between the light receiving section or vertical shift register and the overflow drain. In the manufacturing method, a semiconductor region of the first conductivity type is formed on the semiconductor substrate through an opening in a layer that can be used as a mask for ion implantation formed on the semiconductor substrate, and then the semiconductor region is removed by high-temperature heat treatment. lateral diffusion of a second conductivity type semiconductor region through the opening and into the first conductivity type semiconductor region.
An overflow drain of a conductivity type is formed, and an impurity is commonly introduced into the first conductivity type semiconductor region and the second conductivity type overflow drain to form a second conductivity type semiconductor region adjacent to these regions. A method for manufacturing a solid-state imaging device, comprising controlling the potential of an overflow barrier region made of a semiconductor region to form an overflow drain structure.
JP61140262A 1986-06-18 1986-06-18 Manufacture of solid-state image sensor Pending JPS62298163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61140262A JPS62298163A (en) 1986-06-18 1986-06-18 Manufacture of solid-state image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61140262A JPS62298163A (en) 1986-06-18 1986-06-18 Manufacture of solid-state image sensor

Publications (1)

Publication Number Publication Date
JPS62298163A true JPS62298163A (en) 1987-12-25

Family

ID=15264688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61140262A Pending JPS62298163A (en) 1986-06-18 1986-06-18 Manufacture of solid-state image sensor

Country Status (1)

Country Link
JP (1) JPS62298163A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1289019A2 (en) * 2001-08-31 2003-03-05 Eastman Kodak Company A method for creating an antiblooming structure in a charge coupled device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846670A (en) * 1981-08-27 1983-03-18 ア−ルシ−エ−・コ−ポレ−シヨン Method of producing buried channel type charge coupled device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846670A (en) * 1981-08-27 1983-03-18 ア−ルシ−エ−・コ−ポレ−シヨン Method of producing buried channel type charge coupled device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1289019A2 (en) * 2001-08-31 2003-03-05 Eastman Kodak Company A method for creating an antiblooming structure in a charge coupled device
EP1289019A3 (en) * 2001-08-31 2004-05-19 Eastman Kodak Company A method for creating an antiblooming structure in a charge coupled device

Similar Documents

Publication Publication Date Title
JPH04355964A (en) Solid-state image pickup device and manufacture thereof
US5567632A (en) Method for fabricating solid state image sensor device having buried type photodiode
US5238864A (en) Method of making solid-state imaging device
US4579626A (en) Method of making a charge-coupled device imager
US20070069259A1 (en) CMOS image sensor and method of manufacturing the same
JP3322341B2 (en) Photoelectric conversion element, solid-state imaging device using the same, and method of manufacturing the same
JPH03201478A (en) Solid-state image sensing device
JP3867312B2 (en) Ion implantation method
JPS62298163A (en) Manufacture of solid-state image sensor
JP4826067B2 (en) Solid-state imaging device manufacturing method and semiconductor device manufacturing method
JP2526512B2 (en) Method of manufacturing solid-state imaging device
JP3320589B2 (en) Solid-state imaging device and method of manufacturing the same
KR100671140B1 (en) Method for Manufacturing of Solid State Image Sensing Devive
JPH04291965A (en) Solid-state image sensor and manufacture thereof
JPH0294568A (en) Manufacture of solid-state image sensing device
JPH04218966A (en) Solid state pickup device and fabrication and driving thereof
JP2768452B2 (en) Method for manufacturing solid-state imaging device
JPH03181171A (en) Solid state image sensor and manufacture thereof
JPH07302891A (en) Manufacture of solid image pick-up device
JPH0685233A (en) Manufacture of solid-state image sensing device
JP2011146747A (en) Method for manufacturing solid-state imaging apparatus and method for manufacturing semiconductor device
JPH04299862A (en) Solid-state image sensor
JP2002190587A (en) Method of manufacturing solid-state image pickup device
JPS62269355A (en) Solid-state image sensing element
JP2663516B2 (en) Method for manufacturing semiconductor device