JPS6229778A - Static oil hydraulic pressure driving control device - Google Patents

Static oil hydraulic pressure driving control device

Info

Publication number
JPS6229778A
JPS6229778A JP60168973A JP16897385A JPS6229778A JP S6229778 A JPS6229778 A JP S6229778A JP 60168973 A JP60168973 A JP 60168973A JP 16897385 A JP16897385 A JP 16897385A JP S6229778 A JPS6229778 A JP S6229778A
Authority
JP
Japan
Prior art keywords
control
hydraulic actuator
pressure
signal
oil hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60168973A
Other languages
Japanese (ja)
Other versions
JPH0549827B2 (en
Inventor
Koji Kuwabara
耕治 桑原
Nobuaki Matoba
信明 的場
Makoto Samejima
誠 鮫島
Masatoshi Miki
三木 正俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECH RES ASSOC OPENAIR COAL MIN MACH
Original Assignee
TECH RES ASSOC OPENAIR COAL MIN MACH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECH RES ASSOC OPENAIR COAL MIN MACH filed Critical TECH RES ASSOC OPENAIR COAL MIN MACH
Priority to JP60168973A priority Critical patent/JPS6229778A/en
Publication of JPS6229778A publication Critical patent/JPS6229778A/en
Publication of JPH0549827B2 publication Critical patent/JPH0549827B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To stably control the pressure of a static oil hydraulic pressure driving gear and its speed, by performing positive feedback control of a speed signal of an oil hydraulic actuator to promote a stable control objective thereafter performing a feedback control of the pressure and the speed. CONSTITUTION:A function generator 14, inputting by controlling a control lever 6 a deviation DELTAomega between a speed command signal omegas of an oil hydraulic actuator and its actual speed signal omegam, outputs a difference pressure preset value Ps. A control arithmetic device 16, inputting a deviation DELTAP of said difference pressure preset value Ps from a difference pressure P of the oil hydraulic actuator, outputs a pressure control signal epsilonp. While the device 16 outputs a signal epsilonm applying a feedback gain 17 to the actual speed signal omegam. And the control arithmetic device 16 outputs a signal, performing a positive feedback control of the signal epsilonm to add it to the pressure control signal epsilonp, so as to control a swash plate driving servo system 11A of an oil hydraulic pump.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明油圧シ、ベル等の建設機械あるいはそ〔従来の技
術〕 従来の静油圧駆動装置の一例として第5図のように構成
したものがある。
[Detailed Description of the Invention] [Industrial Field of Application] Construction machines such as hydraulic cylinders and bells according to the present invention, or the like [Prior Art] An example of a conventional hydrostatic drive device is one constructed as shown in Fig. 5. be.

第5図において1は油圧ポンプ駆動用原動機(以下原動
機と称す)、znこの原動機1によシ駆動される可変容
積形油圧ポンプ(以下油圧ポンプと称す)、sFi油圧
モータなどの油圧アクチェータ、4は油圧ポンダ2の吐
出流量を設定する斜板、5は油圧Iンプ斜板制御装置、
6は操作レバー、7a、7bはクロスオーバリリーフ弁
、8は油圧アクチェータ3により駆動される負荷である
。第5図に示す様に油圧ボンf2と油圧アクチェータ3
は管路L1t12で直結され閉回路を構成している。
In FIG. 5, reference numeral 1 denotes a hydraulic pump driving prime mover (hereinafter referred to as prime mover), zn a variable displacement hydraulic pump (hereinafter referred to as hydraulic pump) driven by this prime mover 1, a hydraulic actuator such as an sFi hydraulic motor, 4 5 is a swash plate that sets the discharge flow rate of the hydraulic pumper 2; 5 is a hydraulic I pump swash plate control device;
6 is an operating lever, 7a and 7b are crossover relief valves, and 8 is a load driven by the hydraulic actuator 3. As shown in Fig. 5, hydraulic cylinder f2 and hydraulic actuator 3
are directly connected by a pipe L1t12 to form a closed circuit.

以上のように構成した静油圧駆動装置の作動を説明する
。第5図において原動機1で駆動される油圧ポンダ2の
吐出流量は斜板制御装置5で制御される斜板4によって
制御され、油圧ア吸こみ側にもどる。
The operation of the hydrostatic drive device configured as above will be explained. In FIG. 5, the discharge flow rate of the hydraulic pumper 2 driven by the prime mover 1 is controlled by a swash plate 4 controlled by a swash plate control device 5, and returns to the hydraulic pump suction side.

いま、操作し・々−6を右■側に動かすと斜板制御装置
5により斜板4は図中の矢印■の方向に作動し、油圧イ
ンf2のポート2ILより吐出された圧油は管路t1よ
り油圧アクチェータ3の$−トJaに入シ油圧アクチェ
ータ3t(f3矢印方向に動かし負荷8を駆動する。又
油圧アクチェータ3から吐出油は管路t2より油圧ポン
プ2のポート2bに戻る。
Now, when you operate -6 and move it to the right side, the swash plate control device 5 operates the swash plate 4 in the direction of the arrow ■ in the figure, and the pressure oil discharged from the port 2IL of the hydraulic input f2 flows into the pipe. The hydraulic actuator 3t (f3) enters the $-t Ja of the hydraulic actuator 3 through the path t1 and drives the load 8 in the direction of the arrow.Furthermore, the oil discharged from the hydraulic actuator 3 returns to the port 2b of the hydraulic pump 2 through the pipe t2.

一万操作しパー6を■の位置から中立位置に戻すと斜板
4は矢印eの方向に動きかつ負荷8の慣性エネルギーに
より油圧アクチェータ3のポート3bから圧油が吐出さ
れ、管路t2より油圧ボンf2のポート2bに供給され
油圧アクチェータ3を駆動し負荷8の制動時のエネルギ
ー1−原動機1に回収することができる。操作レバー6
をe側に操作した場合についても、斜板8の動き油圧ア
クチェータ3の動きはO方向になるが同じ過程で作動す
る。
When the par 6 is returned from the position ■ to the neutral position after 10,000 operations, the swash plate 4 moves in the direction of the arrow e, and pressure oil is discharged from the port 3b of the hydraulic actuator 3 due to the inertial energy of the load 8, and from the pipe t2. It is supplied to the port 2b of the hydraulic cylinder f2, drives the hydraulic actuator 3, and can be recovered as energy 1 - prime mover 1 during braking of the load 8. Operation lever 6
When is operated to the e side, the movement of the swash plate 8 and the movement of the hydraulic actuator 3 are in the O direction, but the same process is performed.

上記の静油圧駆動装置の特徴は主回路に方向切換弁およ
びリリーフ弁がないので、絞9損失およびブリードオフ
損失がなく、従ってエネルギー損失が少なく、又負荷制
御時や負の負荷が作用した時にエネルギーを原動機に回
収できる点である。
The characteristics of the hydrostatic drive system described above are that there is no directional control valve or relief valve in the main circuit, so there is no throttling loss or bleed-off loss, so there is little energy loss, and when controlling the load or when a negative load is applied. The advantage is that energy can be recovered into the prime mover.

上記の特徴を達成するためには斜板4を制御することに
よりクロスオーバーリリーフ弁7m。
To achieve the above features, the cross-over relief valve 7m is used by controlling the swash plate 4.

7bの設定圧以上に回路圧が上昇しない様に圧力を制御
し、かつ油圧アクチェータ3の定常回転角速度は操作レ
バー6と比例関係になる機制御する必要がある。
It is necessary to control the pressure so that the circuit pressure does not rise above the set pressure 7b, and to control the steady rotational angular velocity of the hydraulic actuator 3 so that it is in a proportional relationship with the operating lever 6.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、圧力の制御方式として通常考えられることは
回路圧P1sP2を検知し回路差圧Pが設定圧力以上に
ならない様に斜板4を制御する方法が考えられる。しか
し単純な圧力フィードパ、り方式では、油圧負荷系の特
性によシ  。
By the way, a commonly thought method for controlling pressure is a method of detecting the circuit pressure P1sP2 and controlling the swash plate 4 so that the circuit differential pressure P does not exceed the set pressure. However, with a simple pressure feed system, problems may occur depending on the characteristics of the hydraulic load system.

斜板4を制御すると発振し不安定になる。When the swash plate 4 is controlled, it oscillates and becomes unstable.

以下その理由を第6図および第7図を参照して説明する
The reason for this will be explained below with reference to FIGS. 6 and 7.

第6図に油圧アクチェータ3を加速する場合の静油圧駆
動装置の油圧駆動系をモデル化したものである。負荷系
の粘性抵抗及び管路抵抗を無視すると油圧駆動系の特性
式は次式で与えられる。
FIG. 6 shows a model of the hydraulic drive system of the hydrostatic drive device when accelerating the hydraulic actuator 3. Ignoring the viscous resistance of the load system and the pipe resistance, the characteristic equation of the hydraulic drive system is given by the following equation.

 dP −一=Dωφ−Dmω□−KLP    ・・・(1)
βdt PPP き=DyrlP         ・・・(2)t  
J P=P、 −p2          ・・・(3)P
l、P2:回路圧(kg/FI) β  :油の体積弾性率(kg/cm )D、:油圧ポ
ンプ容量(ec/rid )Dm:油圧アクチェータ容
量(cc/rad )リ  :油圧ポンプ斜板傾転角(
−) ω、  二油圧ポング回転角速度(rad/see )
0m  :油圧アクチェータ回転角速度(raφee)
J   :負荷の慣性能率(kytYnsec  )V
   :油圧ポンプ、油圧アクチェータ間の片gA1g
積(CC)++       −J  +−M顧 / 
 −−/−−//+−−/  2X )上記(1) #
 (2)式よりφ、からPへの伝達関数を求めると 但し く4)式よシ油圧駆動系において斜板傾転角φ。
dP −1=Dωφ−Dmω□−KLP (1)
βdt PPP = DyrlP ... (2) t
JP=P, -p2...(3)P
l, P2: Circuit pressure (kg/FI) β: Bulk modulus of oil (kg/cm) D,: Hydraulic pump capacity (ec/rid) Dm: Hydraulic actuator capacity (cc/rad) Li: Hydraulic pump swash plate Tilt angle (
−) ω, angular velocity of rotation of two hydraulic pumps (rad/see)
0m: Hydraulic actuator rotation angular velocity (raφee)
J: Load inertia factor (kytYnsec) V
:One gA1g between the hydraulic pump and hydraulic actuator
Product (CC) ++ -J +-M customer /
−−/−−//+−−/ 2X) Above (1) #
From equation (2), find the transfer function from φ to P. However, according to equation 4, the swash plate tilt angle φ in the hydraulic drive system.

から回路差圧Pの間の伝達関数は、二次遅れ要素と微分
要素の積で表わされる。第7図は圧力フィードパ、夕方
式を示しており、P、は、回路設定差圧、9は回路差圧
のフィードパ、り加え合せ点、10は比例ゲイン、11
は 斜板駆動サーボ系伝達関数、xzFi油圧駆動系伝
達関数であシ、この油圧駆動系伝達関数12の出力は回
路差圧Pとなる。
The transfer function between P and circuit differential pressure P is expressed as the product of a second-order lag element and a differential element. Figure 7 shows the pressure feeder, evening type, where P is the circuit setting differential pressure, 9 is the feeder and summation point of the circuit differential pressure, 10 is the proportional gain, and 11
is the swash plate drive servo system transfer function and the xzFi hydraulic drive system transfer function, and the output of this hydraulic drive system transfer function 12 is the circuit differential pressure P.

制御対象である油圧駆動系伝達関数12は上記(4)式
に示すように微分要素があシ、かつ二次遅れ要素の固有
振動数ωxll−t2Hz程度と低く減衰停数C−け0
−2程麿であみため、筑7面の王力7イードパ、り方式
では回路差圧Pは任意の圧力に設定できず発振する。
The hydraulic drive system transfer function 12 to be controlled has a differential element as shown in equation (4) above, and the natural frequency of the second-order lag element is as low as about ωxll-t2Hz, and the damping stop is C-ke0.
In the case where the circuit is heated at a temperature of about -2, the circuit differential pressure P cannot be set to an arbitrary pressure and oscillates.

そこで、本発明は、上記の不具合点を解消し圧力及び速
度を安定に制御できる静油圧駆動制御装置全提供するこ
とを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an entire hydrostatic drive control device that can eliminate the above-mentioned problems and stably control pressure and speed.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記不具合点を解決するため次のように構成し
たものである。すなわち、可変容積形油圧ポンプと油圧
モータ等の油圧アクチェータとを管路で直結し閉回路を
構成する静油圧駆動装置において、上記油圧アクチェー
タの速度指令と実際の速度との偏差を入力とする関数発
生器により上記油圧アクチェータの差圧を設定し実際の
上記油圧アクチェータの差圧と比較した偏差を制御演算
器に入力し、ここで得られる制御演算信号と、上記油圧
アクチェータの速度信号とを加え合せた信号にて上記可
変容積形油圧ポンプの斜板全制御することを特徴とした
ものである。
In order to solve the above-mentioned problems, the present invention is constructed as follows. That is, in a hydrostatic drive device in which a variable displacement hydraulic pump and a hydraulic actuator such as a hydraulic motor are directly connected through a pipe to form a closed circuit, a function that takes as input the deviation between the speed command and the actual speed of the hydraulic actuator is used. The differential pressure of the hydraulic actuator is set by a generator, the deviation compared with the actual differential pressure of the hydraulic actuator is inputted to a control calculator, and the control calculation signal obtained here is added to the speed signal of the hydraulic actuator. The combined signal controls all of the swash plates of the variable displacement hydraulic pump.

〔作用〕[Effect]

制御対象である油圧駆動系には微分要素とダンピングの
悪い振動根とが含まれており単純な圧力フィードバック
制御では圧力制御できないため、油圧アクチェータの速
度信号をポジティブフィードパ、りし制御対象よシ微分
要素と振動根を除去し、制御対象の安定化を図った後圧
カフィードバック、速度フィードパ、りを行なうように
し【いる。
The hydraulic drive system to be controlled contains differential elements and vibration roots with poor damping, and the pressure cannot be controlled by simple pressure feedback control. Differential elements and vibration roots are removed to stabilize the controlled object, followed by pressure feedback and velocity feed feedback.

〔実施例〕〔Example〕

以下、第1図〜第4図を参照して本発明の静油圧駆動制
御装置の一実施例を説明する。はじめに第1図によりそ
の制御回路図を説明する。
Hereinafter, one embodiment of the hydrostatic drive control device of the present invention will be described with reference to FIGS. 1 to 4. First, the control circuit diagram will be explained with reference to FIG.

図において、6は上記した操作レバーでこれから油圧ア
クヶエ−23゜回転角速度指令信号が出力されるように
なっている。13はこの回転角速度指令信号ω、と実際
の油圧モータの回転角速度ω、のフィードバック信号の
加え合せ点、14けこの加え合せ点13からの回転角速
度偏差Δω金大入力、差圧設定値P、が出力される関数
発生器、15は この関数発生器14より出力される差
圧設定値P、と実際の回路差圧Pをフィードバックし、
ここで両者の差圧偏差ΔP’c出力する加え合せ点、1
6aは比例ダイン、16bは積分器、16cは上記比例
ダイン16aからの出力と上記積分器16bからの出力
の加え合せ点で、16*、16b、16c″f、総括し
て制御演算器16と称す。17はフィードバックダイン
、18は上記油圧アクチェータの回転角速度ω□にフィ
ードバックダイン171!−掛けた信号輻のチヅティプ
フィードバックの加え合せ点、11Aは斜板駆動サーブ
系、19は油圧駆動系を示している。
In the figure, reference numeral 6 denotes the above-mentioned operating lever from which a hydraulic actuator-23 degree rotation angular velocity command signal is output. 13 is the addition point of the feedback signal of this rotational angular velocity command signal ω and the actual rotational angular velocity ω of the hydraulic motor; 14 is the rotational angular velocity deviation Δω from the addition point 13; the differential pressure setting value P; A function generator 15 outputs the differential pressure set value P output from the function generator 14 and the actual circuit differential pressure P,
Here, the addition point that outputs the differential pressure difference ΔP'c between the two is 1
6a is a proportional dyne, 16b is an integrator, 16c is a point where the output from the proportional dyne 16a and the output from the integrator 16b are added, 16*, 16b, 16c''f, collectively the control calculator 16. 17 is the feedback dyne, 18 is the addition point of the tip feedback of the signal radiation multiplied by the rotational angular velocity ω□ of the hydraulic actuator, 11A is the swash plate drive serve system, and 19 is the hydraulic drive system. It shows.

次に第2図により上記関数発生器I4の一例について説
明する。すなわち、関数発生器14の入力は、回転角速
度指令ω、と実際の回転速度ω との回転角速度偏差Δ
ωであり、又出力としては差圧設定値P3であシ、回転
角速度偏差Δωが−ω。からωの間にある時は差圧設定
値P6は回転角速度/Fl  ”I’r  Jl、、 
 1/rL+−rKill  I   ロ古−−/’P
I  ’7F  #G  /Pi  由テIt、+  
Jy?    z、+   Ill τ−噂は−P  
1ω以上ではP。1Xを差圧設定値P、とじmax  
    c て出力する。
Next, an example of the function generator I4 will be explained with reference to FIG. That is, the input of the function generator 14 is the rotational angular velocity deviation Δ between the rotational angular velocity command ω and the actual rotational velocity ω.
ω, and the output is the differential pressure set value P3, and the rotational angular velocity deviation Δω is −ω. When the pressure difference is between ω and ω, the differential pressure setting value P6 is the rotational angular velocity/Fl ”I'r Jl,,
1/rL+-rKill I Roko--/'P
I '7F #G /Pi YuteIt, +
Jy? z, + Ill τ-Rumor is -P
P for 1ω or more. 1X is the differential pressure setting value P, binding max
c and output.

以上のように構成された本発明による静油圧駆動制御装
置の一実施例の作用について第3図および第4図を参照
して説明する。第1図において操作レバー6を操作する
と油圧アクチェータの回転角速度指令信号ωが出力され
、加え合せ点13で実際の油圧アクチェータの回転角速
度ω。がフィードパ、りされ、回転角速度偏差Δωが関
数発生器14に入力される。この関数発生器14では回
転角速度偏差Δωの値により差圧設定値P、が出力され
、加え合せ点15で実際の回路差圧Pと比較され、この
差圧偏差ΔPが制御演算器16に入力され圧力制御信号
1 として油圧アクチエータの回転角速度ω。にフィー
ドバックダイン17を掛けた信号8n1と加え合せ点1
8で加算され、斜板駆動サーボ系11kに与えられ油圧
ポンプの斜板4を動かし油圧アクチェータ3の圧力Pm
1回転角速度ωmK−制御する。
The operation of one embodiment of the hydrostatic drive control device according to the present invention constructed as described above will be explained with reference to FIGS. 3 and 4. In FIG. 1, when the operating lever 6 is operated, a rotational angular velocity command signal ω of the hydraulic actuator is output, and at a summing point 13, the actual rotational angular velocity ω of the hydraulic actuator is output. is fed, and the rotational angular velocity deviation Δω is input to the function generator 14. This function generator 14 outputs a differential pressure set value P according to the value of the rotational angular velocity deviation Δω, which is compared with the actual circuit differential pressure P at a summing point 15, and this differential pressure deviation ΔP is input to the control calculator 16. The pressure control signal 1 is the rotational angular velocity ω of the hydraulic actuator. signal 8n1 multiplied by feedback dyne 17 and summation point 1
8 and is applied to the swash plate drive servo system 11k to move the swash plate 4 of the hydraulic pump and the pressure Pm of the hydraulic actuator 3
One rotation angular velocity ωmK-control.

幣jlr6F私論で帛初池庄了〃千エータ3け停止状態
で、その状態より操作レバー6を操作すると油圧アクチ
ェータ回転角速度指令信号ω、が設定される。最初加え
合せ点13での回転角速度偏差Δωは関数発生器14の
折れ点での値ωよりも大きくなり、関数発生器14から
の差圧設定値P、は正の最高差圧値Pn1□となり、油
圧アクチェータ3t−加速する側に実際の回路差圧Pが
立ち上がり正の最高差圧値Pm□に整定し、油圧アクチ
ェータ3を加速し続ける。次に油圧アクチェータ回転角
速度ωが指令速度ω、に近づき、加え合せ点13での回
転角速度偏差Δωがω。以下になると関数発生器14か
らの差圧設定値Pは回転角速度偏差Δωに比例して低下
し、それに伴ない油圧アクチェータ3を駆動する回路差
圧Pは低下し油圧アクチェータ3の回転角速度ωは緩や
かに上昇し回転角速度偏差ΔωがOとなると差圧設定値
PIIは0となり、油圧アクチェータ3はそれ以上加速
されず回転角速度指令信号ω、で回転する。
In a personal opinion, the hydraulic actuator rotation angular velocity command signal ω is set when the operating lever 6 is operated in a stopped state. The rotational angular velocity deviation Δω at the first summing point 13 becomes larger than the value ω at the bending point of the function generator 14, and the differential pressure setting value P from the function generator 14 becomes the positive maximum differential pressure value Pn1□. , hydraulic actuator 3t - Actual circuit differential pressure P on the accelerating side rises and settles to the positive maximum differential pressure value Pm□, and continues accelerating the hydraulic actuator 3. Next, the hydraulic actuator rotation angular velocity ω approaches the command speed ω, and the rotation angular velocity deviation Δω at the summing point 13 becomes ω. Below, the differential pressure set value P from the function generator 14 decreases in proportion to the rotational angular velocity deviation Δω, and accordingly, the circuit differential pressure P that drives the hydraulic actuator 3 decreases, and the rotational angular velocity ω of the hydraulic actuator 3 decreases. When the rotational angular velocity deviation Δω gradually increases and reaches O, the differential pressure setting value PII becomes 0, and the hydraulic actuator 3 is no longer accelerated and rotates at the rotational angular velocity command signal ω.

次に操作レバー6を中立に戻すと回転角速度指令信号ω
、は0となり加え合せ点13での回転角速度偏差Δωは
関数発生器14の折れ点の値−ω。
Next, when the operating lever 6 is returned to neutral, the rotational angular velocity command signal ω
, becomes 0, and the rotational angular velocity deviation Δω at the summing point 13 is the value of the bending point of the function generator 14 -ω.

より小さくなり関数発生器14−から出力される差圧設
定値p、 t’を負の最高差圧値−Pma!となり、油
圧アクチェータ3を減速する側に回路差圧Pが立ち、負
の最高差圧値−Ptn、Lxで油圧アクチェータ3′f
c減速し続ける。油圧アクチェータ3の回転角速度ω。
The differential pressure set value p, t' output from the function generator 14- is set to the negative maximum differential pressure value -Pma! Therefore, the circuit differential pressure P stands on the side that decelerates the hydraulic actuator 3, and at the negative maximum differential pressure value -Ptn,Lx, the hydraulic actuator 3'f
c Continue to decelerate. Rotational angular velocity ω of the hydraulic actuator 3.

がOに近づき、加え合せ点13での回転角速度偏差Δω
が一ω。と0の間の値となシ、回転角速度偏差Δωに比
例し差圧設定値P、は減少し油圧アクチェータ3は緩や
かに減速し停止する。
approaches O, and the rotational angular velocity deviation Δω at the summing point 13
One ω. When the value is between 0 and 0, the differential pressure setting value P decreases in proportion to the rotational angular velocity deviation Δω, and the hydraulic actuator 3 gradually decelerates and stops.

■油圧アクチェータ回転角速度のポジティブフィードパ
、り 第4図は油圧アクチェータ回転角速度ω。にrイン17
を掛けた信号をポジティブフィードバックすることによ
多安定な制御が得られるこ 。
■Positive feed of hydraulic actuator rotational angular velocity, Figure 4 shows hydraulic actuator rotational angular velocity ω. ni r in 17
Multistable control can be obtained by giving positive feedback to the multiplied signal.

と全説明するためのプロ、り線図である。第4図におい
て20は負荷の伝達関数である。フィードバックダイン
17は次式で与えられる。
This is a professional line diagram for explaining everything. In FIG. 4, 20 is a load transfer function. Feedback dyne 17 is given by the following equation.

Dm/D、ω、         ・・・(5)第4図
のプロ、り線図を整理して斜板φから回格差圧Pの間の
伝達関数を求めると 但し く6)式より制御対象に油圧アクチェータ回転角速度ω
。にフィード・り、フグイン17を掛けた信号をポジテ
ィブフィードバックすることにより制御対象である油圧
駆動系より微分要素とダンピングの悪い振動機を除去で
き安定な制御対象に置き換えることができることが証明
できる。
Dm/D, ω, ... (5) Organize the professional line diagram in Figure 4 and find the transfer function between the swash plate φ and the circuit differential pressure P. However, from equation 6), the control target Hydraulic actuator rotational angular velocity ω
. It can be proven that by positively feeding back the signal obtained by multiplying the input signal by FUG-IN 17, the differential element and the vibrator with poor damping can be removed from the hydraulic drive system which is the controlled object, and the vibrator with poor damping can be replaced with a stable controlled object.

■速度制御 第1図に示すように操作レバー6の出力は油圧アクチェ
ータ回転角速度指令ω3に相当し実際の油圧アクチェー
タ30回転金運度ω。と加え合せ点13で比較され、回
転角速度偏差Δωにて曲 米b5hl+−W  I  
 I   P   M  !  口:  処 cb  
6占゛ n   棺IJ4 →] −r  4橢 7が
、関数発生器14は回転角速度偏差Δωが0に近づくと
差圧設定値Pが0になる様な第2図の特性を持っている
ので油圧アクチェータ3の回転角速度ωは回転角速度指
令ω3に整定する。つま9操作レバー6の操作量に比例
した油圧アクチェータ3の定常回転角速度が得られる。
■Speed control As shown in FIG. 1, the output of the operating lever 6 corresponds to the hydraulic actuator rotational angular velocity command ω3, which corresponds to the actual hydraulic actuator 30 rotational speed ω. and is compared at addition point 13, and the rotational angular velocity deviation Δω is calculated.
IPM! Mouth: Where cb
6 Divination n Coffin IJ4 → ] -r 4 橢 7. Since the function generator 14 has the characteristic shown in Fig. 2 that when the rotational angular velocity deviation Δω approaches 0, the differential pressure setting value P becomes 0. The rotational angular velocity ω of the hydraulic actuator 3 is set to the rotational angular velocity command ω3. A steady rotational angular velocity of the hydraulic actuator 3 is obtained that is proportional to the amount of operation of the tab 9 operation lever 6.

■圧力制御 実際の回路差圧Pは関数発生器14から出力される差圧
設定値P8と加え合せ点15で比較され、差圧偏差ΔP
を制御演算し圧力制御信号りとして斜板駆動サーボ系1
1Aに与えているの差圧Pkクロスオーバーリリーフ弁
7m。
■Pressure control The actual circuit differential pressure P is compared with the differential pressure set value P8 output from the function generator 14 at the summing point 15, and the differential pressure deviation ΔP
The swash plate drive servo system 1 is calculated and used as a pressure control signal.
Differential pressure Pk given to 1A crossover relief valve 7m.

ax 2bの開口圧以下に設定しておけばクロスオーバーリリ
ーフ弁7m 、7bは作動しないのでクロスオーバーリ
リーフ弁7h、7bでのエネルギー損失がなく当初の目
的である省エネルギーが達成できる。
If the opening pressure is set below the opening pressure of ax 2b, the crossover relief valves 7m and 7b will not operate, so there will be no energy loss in the crossover relief valves 7h and 7b, and the original objective of energy saving can be achieved.

〔発明の効果〕〔Effect of the invention〕

以上述べた本発明は、可変容積形油圧ポンプと油圧モー
タ等の油圧アクチェータとを管路で直結し閉回路を構成
する静油圧駆動装置において、上記油圧アクチェータの
速度指令と実際の速度との偏差を入力とする関数発生器
によシ上記油圧アクチェータの差圧を設定し実際の上記
油圧アクチェータの差圧と比較した偏差を制御演算器に
入力し、ここで得られる制御演算信号と、上記油圧アク
チェータの速度信号とを加え合せた信号にて上記可変容
積形油圧ポンプの斜板全制御することを特徴としたもの
である。
The present invention described above provides a hydrostatic drive device in which a variable displacement hydraulic pump and a hydraulic actuator such as a hydraulic motor are directly connected through a conduit to form a closed circuit, in which a deviation between a speed command and an actual speed of the hydraulic actuator is provided. The differential pressure of the above-mentioned hydraulic actuator is set by a function generator that takes as input, and the deviation compared with the actual differential pressure of the above-mentioned hydraulic actuator is inputted to a control calculator, and the control calculation signal obtained here and the above-mentioned hydraulic pressure are The present invention is characterized in that the swash plate of the variable displacement hydraulic pump is entirely controlled by a signal obtained by adding the speed signal of the actuator.

従って、圧力及び速度を安定に制御できる静油圧駆動制
御装置を提供できる。
Therefore, it is possible to provide a hydrostatic drive control device that can stably control pressure and speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による静油圧駆動制御装置の一実施例を
示す制御回路図、第2図は第1図の関数発生器の機能を
説明するための特性図、第3図は第1図の作用を説明す
るための図、第4図は第1図の作用効果を説明するだめ
の図、第5図は従来の静油圧駆動装置の一例を示す概略
構成図、第6図は第5図の問題点を説明するための油圧
駆動系をモデル化した図、第7図は第5図の問題点を説
明するための図である。 1・・・油圧ポンプ駆動用原動機、2・・・可変容積形
油圧ポンプ、3・・・油圧アクチェータ、4・・・斜板
、5・・・油圧デング斜板制御装置、6・・・操作レバ
ー、7m、7b・・・りqスオーノ々リリーフ弁、8・
・・負荷、1ノ・・・斜板駆動サーブ系、J3゜15.
16c、IIJ・・・加え合せ点、14・・・関数発生
器、161・・・比例ゲイン、16b・・・積分器、1
7・・・フィードバックダイン、19・・・油圧駆動系
。 11″、出願人代理人  弁理士 鈴 江 武 彦抽圧
酉fニー元本を鑞ωm 綻
Fig. 1 is a control circuit diagram showing an embodiment of the hydrostatic drive control device according to the present invention, Fig. 2 is a characteristic diagram for explaining the function of the function generator shown in Fig. 1, and Fig. 3 is a diagram similar to the one shown in Fig. 1. FIG. 4 is a diagram for explaining the operation and effect of FIG. 1, FIG. 5 is a schematic configuration diagram showing an example of a conventional hydrostatic drive device, and FIG. FIG. 7 is a modeled diagram of a hydraulic drive system for explaining the problems in the figure, and FIG. 7 is a diagram for explaining the problems in FIG. DESCRIPTION OF SYMBOLS 1... Hydraulic pump drive prime mover, 2... Variable displacement hydraulic pump, 3... Hydraulic actuator, 4... Swash plate, 5... Hydraulic Dengue swash plate control device, 6... Operation Lever, 7m, 7b...Riq suono relief valve, 8.
...Load, 1...Swash plate drive serve system, J3゜15.
16c, IIJ... Addition point, 14... Function generator, 161... Proportional gain, 16b... Integrator, 1
7...Feedback dyne, 19...Hydraulic drive system. 11'', Applicant's representative Patent attorney Suzue Takehiko

Claims (1)

【特許請求の範囲】[Claims] 可変容積形油圧ポンプと負荷を駆動する油圧アクチエー
タとを管路で直結し、閉回路を構成する静油圧駆動装置
において、上記油圧アクチエータの速度指令と実際の速
度との偏差を入力とする関数発生器により、上記油圧ア
クチエータの差圧設定値と実際の上記油圧アクチエータ
の差圧と比較した偏差を制御演算器に入力し、ここで得
られる制御演算信号と、上記油圧アクチエータの速度信
号とを加え合せた信号にて上記可変容積形油圧ポンプの
斜板を制御することを特徴とする静油圧駆動制御装置。
In a hydrostatic drive system in which a variable displacement hydraulic pump and a hydraulic actuator that drives a load are directly connected via a pipe to form a closed circuit, a function is generated that takes as input the deviation between the speed command of the hydraulic actuator and the actual speed. The difference between the set value of the differential pressure of the hydraulic actuator and the actual differential pressure of the hydraulic actuator is input into the control calculator, and the control calculation signal obtained here is added to the speed signal of the hydraulic actuator. A hydrostatic drive control device, characterized in that the swash plate of the variable displacement hydraulic pump is controlled by the combined signals.
JP60168973A 1985-07-31 1985-07-31 Static oil hydraulic pressure driving control device Granted JPS6229778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60168973A JPS6229778A (en) 1985-07-31 1985-07-31 Static oil hydraulic pressure driving control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60168973A JPS6229778A (en) 1985-07-31 1985-07-31 Static oil hydraulic pressure driving control device

Publications (2)

Publication Number Publication Date
JPS6229778A true JPS6229778A (en) 1987-02-07
JPH0549827B2 JPH0549827B2 (en) 1993-07-27

Family

ID=15877999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60168973A Granted JPS6229778A (en) 1985-07-31 1985-07-31 Static oil hydraulic pressure driving control device

Country Status (1)

Country Link
JP (1) JPS6229778A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02189517A (en) * 1989-01-18 1990-07-25 Sanyo Electric Co Ltd Method for injecting liquid crystal into liquid crystal display device
US5509788A (en) * 1993-09-27 1996-04-23 Diversey Corporation Flow-metered pumping with load compensation system and method
US5792967A (en) * 1996-07-17 1998-08-11 Applied Power Inc. Pumping unit with speed transducer
JPWO2009142264A1 (en) * 2008-05-21 2011-09-29 株式会社ジェイテクト Electric pump device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02189517A (en) * 1989-01-18 1990-07-25 Sanyo Electric Co Ltd Method for injecting liquid crystal into liquid crystal display device
US5509788A (en) * 1993-09-27 1996-04-23 Diversey Corporation Flow-metered pumping with load compensation system and method
US5792967A (en) * 1996-07-17 1998-08-11 Applied Power Inc. Pumping unit with speed transducer
JPWO2009142264A1 (en) * 2008-05-21 2011-09-29 株式会社ジェイテクト Electric pump device
JP5678659B2 (en) * 2008-05-21 2015-03-04 株式会社ジェイテクト Electric pump device

Also Published As

Publication number Publication date
JPH0549827B2 (en) 1993-07-27

Similar Documents

Publication Publication Date Title
CN101542131B (en) Pump control device for construction machine
US4510750A (en) Circuit pressure control system for hydrostatic power transmission
US8660761B2 (en) Method of effecting simultaneous displacement changes in hydrostatic drive machine
JPS5872762A (en) Controller for hydraulic driver
JP6486008B2 (en) Output branching transmission for travel drive unit and control pressure setting method for the transmission
JP2752501B2 (en) Pump torque control method
JP6400219B2 (en) Work machine
US20140060034A1 (en) Electro-Hydraulic Control Design for Pump Discharge Pressure Control
WO1990009528A1 (en) Hydraulic circuit for working machines
JPS6229778A (en) Static oil hydraulic pressure driving control device
JPS628619B2 (en)
JPH07259140A (en) Pump controller of hydraulic shovel
JP3481277B2 (en) Electric-hydraulic transmission device
Huang et al. Combined velocity and position control of large inertial hydraulic swing mechanism considering energy balance of supply and demand
JP4127771B2 (en) Engine control device for construction machinery
JPS58137660A (en) Power transmission gear
JPS6115305B2 (en)
JP3989991B2 (en) Servo motor controller for hydraulic pump drive
JPH04143473A (en) Control device of oil-hydraulic pump
JPS6231765A (en) Controller for static hydraulic driving
JPH04143472A (en) Control device of oil-hydraulic pump
JPH10159807A (en) Hydraulic circuit unit of working machine
JP2566751B2 (en) Output control method of engine driven variable displacement hydraulic pump
CN114411865A (en) Control method, controller and control device for skid-steer loader
JPS6249072A (en) Static hydraulic drive control device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees