JPS62297410A - Control method for recovery of og gas of converter - Google Patents

Control method for recovery of og gas of converter

Info

Publication number
JPS62297410A
JPS62297410A JP13915986A JP13915986A JPS62297410A JP S62297410 A JPS62297410 A JP S62297410A JP 13915986 A JP13915986 A JP 13915986A JP 13915986 A JP13915986 A JP 13915986A JP S62297410 A JPS62297410 A JP S62297410A
Authority
JP
Japan
Prior art keywords
gas
concentration
converter
valve
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13915986A
Other languages
Japanese (ja)
Inventor
Yuji Sato
雄二 佐藤
Minoru Oda
織田 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP13915986A priority Critical patent/JPS62297410A/en
Publication of JPS62297410A publication Critical patent/JPS62297410A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To prevent the deterioration of calorie in CO gas and the combustion of blown-out gas from skirt part by measuring N2 concentration in OG gas for a converter by gas analyzer and controlling the exhaust gas flowing rate in accordance with a deviation between the measured value and the setting value. CONSTITUTION:Raw materials 2 are charged into the converter 1 and refining oxygen 4 is blown, and then carbon in the raw materials 2 is reached with the oxygen 4 and CO concentration in the OG gas 9 becomes to about 70-80%. When the pressure in the hood part 6 becomes to equal to the initial setting value (almost atmospheric pressure) and reaches a regular condition, three-way valve 20 is changed to recovery valve 21 side and controlling system is changed to automatic operation. The gas analyzer 42, such as mass spectrometer, etc., analyzes the sampling from the OG gas 9, to indicate as transmitting N2 concentration to a control device 44. By comparing this indicated valve of N2 concentration with the aimed value of N2 concentration beforehand set, control signal is transmitted to control valve 46 in accordance with the deviation, so as to become to zero for the deviation, and flow rate in the flue is controlled. And, in case of enclosing rather large quantity of air in the furnace by any cause, the control system detects immediately increase of N2 gas to shut the valve 46.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 この発明は製鉄用転炉のOGガスの回収制御に関する。[Detailed description of the invention] 3. Detailed description of the invention [Industrial application field] The present invention relates to recovery control of OG gas in a steelmaking converter.

より詳しくはOGガス中に混入する空気量を最小にする
ため、OGガス中における混入空気の代表的成分の1つ
であろN2量を制御して高カロリーなOGガスを回収す
る方法に関する。
More specifically, the present invention relates to a method of recovering high-calorie OG gas by controlling the amount of N2, which is one of the typical components of the air mixed in the OG gas, in order to minimize the amount of air mixed into the OG gas.

〔従来の技術〕[Conventional technology]

従来は転炉の直上部の圧力を検出すると共に別に設けた
制御装置の炉口圧力設定値(はぼ大気圧)と比較して、
この偏差を零にするようOGガスの流量の制御弁を制御
(開閉)するようにしていた。
Conventionally, the pressure directly above the converter was detected and compared with the furnace mouth pressure setting (atmospheric pressure) of a separately installed control device.
The control valve for the flow rate of the OG gas was controlled (opened and closed) so as to reduce this deviation to zero.

第2図は従来の転炉のOGガスの回収制御方法を示すシ
ステム図である。図:どおいて、1は転炉、2はこの転
炉1の中に投入された原料(溶銑及びスクラップ)、3
は転炉1の回転軸、4は原料2中の炭素を酸化するため
の吹錬酸素、5はこの吹錬酸素4を原料2に到達させる
ランス、6は転炉1の直上部にあるフード部、7は吹錬
に際して投入する副原料、8は副原料投入用のホッパー
、9はこの成分を制御しようとしているOGガス、10
は転炉1とフード部6との間に弁装置されているスカー
ト、lla、llbはこのスカート10の移動方向を示
す矢印、12は副射部、13は上部安全弁、14はこの
上部安全弁の近傍に設けるガス分析計取付位置、15は
1次集塵器、16は2次11m!18.17は排カx 
m i 計、18はOGガス9を吸引する誘引送風機、
19はガス分析計の取付位置、20は煙突23あるいは
回収弁21の方向と流路を切や換える三方弁、22は回
収されたOGガス9を収容するガスホルダー、24は放
散ガス、41は炉圧検知器42aにフード部6内の圧力
を導入する導管、43はこの炉圧検知器42aの出力信
号を制御装置44に送る信号ライン、45はこの制御装
置44の出力を制御バルブ46に送り、二次集塵器16
内のOGガス9の流量を制御する制御ラインである。
FIG. 2 is a system diagram showing a conventional method for controlling the recovery of OG gas from a converter. Figure: 1 is the converter, 2 is the raw material (hot metal and scrap) put into the converter 1, and 3 is the converter.
is the rotating shaft of the converter 1, 4 is the blowing oxygen for oxidizing the carbon in the raw material 2, 5 is the lance that allows this blowing oxygen 4 to reach the raw material 2, and 6 is the hood located directly above the converter 1. part, 7 is the auxiliary raw material to be charged during blowing, 8 is the hopper for auxiliary raw material input, 9 is the OG gas whose components are to be controlled, 10
1 is a skirt provided as a valve device between the converter 1 and the hood section 6, lla and llb are arrows indicating the direction of movement of the skirt 10, 12 is a secondary injection section, 13 is an upper safety valve, and 14 is an arrow of this upper safety valve. Gas analyzer installation location nearby, 15 is the primary dust collector, 16 is the secondary 11m! 18.17 is ejaculation x
m i total, 18 is an induced blower that sucks the OG gas 9;
19 is the installation position of the gas analyzer, 20 is a three-way valve that switches the direction and flow path of the chimney 23 or recovery valve 21, 22 is a gas holder that accommodates the recovered OG gas 9, 24 is a diffused gas, and 41 is a A conduit that introduces the pressure in the hood 6 to the furnace pressure detector 42a, 43 a signal line that sends the output signal of the furnace pressure detector 42a to a control device 44, and 45 a signal line that sends the output of the control device 44 to a control valve 46. Feed, secondary dust collector 16
This is a control line that controls the flow rate of the OG gas 9 inside.

次にこの動作について説明する。上記のような従来の転
炉1から発生するOGガス9の圧力の制御方法は、フー
ド部6内の圧力を炉圧検知器42aによって検出し、こ
の出力信号を制御装置44に伝え、予め設定しておいた
目標値と比較し、その偏差に比例する信号を制御バルブ
46に送り、OGガス9の流量を制御してフード部6内
の圧力を制御していた。
Next, this operation will be explained. The conventional method for controlling the pressure of the OG gas 9 generated from the converter 1 as described above is to detect the pressure inside the hood 6 with the furnace pressure detector 42a, transmit this output signal to the control device 44, and set the pressure in advance. A signal proportional to the deviation is sent to the control valve 46 to control the flow rate of the OG gas 9 and the pressure inside the hood 6.

ところが転炉l上の圧力ζま転炉1の中の酸化反ぼに伴
う変化及び炉口に付着する地金により変化を示すもので
、上記のように炉圧検知器42aによる方法においては
炉口圧力の設定値を適切に演算できないため(設定値は
炉内の反応状況に追従して変化させるべきであるのに一
定値に固定しているため)炉口のスカート10の間から
OGガス9の放散又は空気の巻込みにより採集ガスのカ
ロリーの低下を来たすなど不安定要素があった。
However, the pressure ζ on the converter 1 changes due to the oxidation reactor in the converter 1 and the metal attached to the furnace mouth, and as described above, in the method using the furnace pressure detector 42a, Since the set value of the mouth pressure cannot be calculated properly (the set value should be changed according to the reaction situation in the furnace, but it is fixed at a constant value), OG gas is removed from between the skirts 10 at the furnace mouth. There were unstable factors such as a decrease in the calorie content of the collected gas due to the dissipation of 9 or the entrainment of air.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の炉圧検知器による転炉の圧力制御方
法においては、転炉内の反応及び炉口地金付着による圧
力の変化に追従して、理想的な制御結果を得ることが困
難であった。そのため空気の巻込みにより回収されたO
Gガスのカロリーが低下したり、或いは炉内圧力が大気
圧を越えて、スカート部から転炉の外に吹き出し燃焼す
るなどの問題があった。
In the conventional converter pressure control method using a furnace pressure detector as described above, it is difficult to follow pressure changes due to reactions inside the converter and metal adhesion at the furnace mouth and obtain ideal control results. Met. Therefore, the O recovered by air entrainment
There have been problems such as the calorie content of the G gas decreasing, or the pressure inside the furnace exceeding atmospheric pressure, causing it to blow out of the converter from the skirt and burn.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る転炉OGガス回収制御方法においては、
転炉のOGガスの一部を例えば質量分析計等のガス分析
計に導入して、上記OGガス中のN2濃度を計測し、こ
のN2濃度と目標値との偏差を零とするように排ガス流
量を制御するものである。
In the converter OG gas recovery control method according to the present invention,
A part of the OG gas from the converter is introduced into a gas analyzer such as a mass spectrometer to measure the N2 concentration in the OG gas, and the exhaust gas is adjusted so that the deviation between this N2 concentration and the target value is zero. It controls the flow rate.

[作用] この発明においては、フード部内のOGガスの一部は質
量分析計に導入されN2濃度を計測する。
[Operation] In the present invention, a part of the OG gas in the hood is introduced into a mass spectrometer to measure the N2 concentration.

このN2濃度は制御装置に伝送されN2濃度の目標値と
比較されこの偏差に比例した信号を制御バルブに送り二
次ta!!11器内を流れるOGガスの流量を制御する
This N2 concentration is transmitted to the control device and compared with the target value of N2 concentration, and a signal proportional to this deviation is sent to the control valve to the secondary ta! ! 11 Controls the flow rate of OG gas flowing inside the vessel.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示す説明図である。図に
おいて、1〜24.41.43〜46は第2図に示した
従来の構成と同一であり、42はフード部6内のOGガ
ス9の成分を分析しているガス分析計である。
FIG. 1 is an explanatory diagram showing an embodiment of the present invention. In the figure, 1 to 24, 41, 43 to 46 have the same structure as the conventional structure shown in FIG. 2, and 42 is a gas analyzer that analyzes the components of the OG gas 9 in the hood 6.

次にこの動作について説明する。転炉1内に原料2(溶
銑及びスクラップ)を投入し三方弁20の煙突23側を
開き誘引送風1fi18を始rs<制御装置は停止して
おきマニュアル制御する)すれば、転炉工に通じろ流路
ば圧力降下をする。ここでランス5を通じて吹錬酸素4
を徐々に吹き込むと原料2内の炭素は吹錬酸素4と反応
してOGガス9中のCO濃度がは70〜80%となる。
Next, this operation will be explained. If raw materials 2 (molten pig iron and scrap) are put into the converter 1, and the chimney 23 side of the three-way valve 20 is opened and the induced air 1fi18 is started (the control device is stopped and manually controlled), it will be communicated to the converter engineer. The pressure drop occurs in the filtration channel. Here, oxygen 4 is blown through lance 5.
When OG gas 9 is gradually blown in, the carbon in raw material 2 reacts with blowing oxygen 4, and the CO concentration in OG gas 9 becomes 70 to 80%.

フード部6内の圧力が初期設定値(はぼ大気圧)に等し
くなり定常状態に達したならば三方弁20は回収弁21
側に切り換え制剤系を自動運転に切り換える。
When the pressure inside the hood section 6 becomes equal to the initial setting value (approximately atmospheric pressure) and reaches a steady state, the three-way valve 20 closes the recovery valve 21.
Switch to the side and switch the drug control system to automatic operation.

ガス分析計42は導管41を介してOGガス9をサンプ
リングし、分析しNz濃度を制御袋g44に伝送指示す
る。このN2e度指示値と、予め設定しておいたN2濃
度(1〜2%)の目標値とを比較し、この偏差に応じた
制御信号を制御ライン45を介して制御バルブ46に伝
えれば煙道内の流量を制御出来る。 OGガス9の中に
N2ガスが1〜2%含有する状態では転炉1の頂部とス
カート10の間はやや隙間があり炉内は負圧(ゲージ圧
力がマイナスであること)であることを示している。
The gas analyzer 42 samples the OG gas 9 through the conduit 41, analyzes it, and transmits the Nz concentration to the control bag g44. If this N2e degree indication value is compared with a preset target value of N2 concentration (1 to 2%) and a control signal corresponding to this deviation is transmitted to the control valve 46 via the control line 45, smoke will be generated. It is possible to control the flow rate within Hokkaido. When the OG gas 9 contains 1 to 2% N2 gas, there is a slight gap between the top of the converter 1 and the skirt 10, indicating that the inside of the furnace is under negative pressure (gauge pressure is negative). It shows.

今、何等かの原因によって炉内から発生するガス流量が
減少し、炉の圧力が下がり炉内に空気をやや多量に巻込
んだと仮定すれば制御系ζよ直ちにN2ガスの増加を検
知するから制御装置44は制御バルブ46を閉じるよう
に動作する。従って空気を過大に混入した低カロリーガ
スなガスホルダ−22内に収容することを避けることが
出来る。
Now, if we assume that the gas flow rate generated from the furnace has decreased due to some reason, the pressure of the furnace has decreased, and a rather large amount of air has been drawn into the furnace, the control system ζ will immediately detect an increase in N2 gas. From then on, controller 44 operates to close control valve 46. Therefore, it is possible to avoid storing the gas in the gas holder 22, which is a low-calorie gas containing too much air.

炉内からの発生ガス流量が増加して炉圧が上昇すれば、
制御系はOGガス9中のN2成分の低下、即ち空気の流
入が低下したことを検知して制御バルブ46を開き、高
カロリーガスだけがガスホルダー22内に蓄積されろよ
うに動作する。
If the flow rate of generated gas from inside the furnace increases and the furnace pressure rises,
The control system detects a decrease in the N2 component in the OG gas 9, that is, a decrease in the inflow of air, and opens the control valve 46, operating so that only high-calorie gas is accumulated in the gas holder 22.

吹錬を終了させるときは吹錬酸素4を停止したランス5
を引き上げ、制御系は停止させ、三方弁20を煙突23
側に切り換え、溶鋼を取出すと言うサイクルを繰り返す
ものである。
When finishing the blowing, use the lance 5 with the blowing oxygen 4 stopped.
, the control system is stopped, and the three-way valve 20 is closed to the chimney 23.
The cycle of switching to the side and taking out the molten steel is repeated.

上記の動作はOGガス9の中のN2axをガス分析計4
2を用いて計測して制御を行い回収ガスの品質管理に寄
与したものであるが、N2ガスが微小混入していること
はフード部6内の圧力が大気圧よりわずかに低いことを
意味するから、結果的にはOGガス9の圧力を制御した
ことと同一の効果を示すこととなる。
The above operation analyzes the N2ax in the OG gas 9 using the gas analyzer 4.
This contributes to the quality control of the recovered gas by measuring and controlling it using 2, but the presence of minute amounts of N2 gas means that the pressure inside the hood 6 is slightly lower than atmospheric pressure. Therefore, the same effect as controlling the pressure of the OG gas 9 can be obtained.

又この実施例において(よN4度を測定してOGガスの
制御を行ったが、空気の混入量と比例し、かつ原料から
発生することのない他のガス、幽えばAr、Heなどの
不活性ガス濃度を計測して制御系を構成することも出来
ろ。
In addition, in this example, although the OG gas was controlled by measuring the N4 degree, other gases such as Ar and He, which are proportional to the amount of air mixed in, and which are not generated from the raw materials, may be present. It would also be possible to construct a control system by measuring the active gas concentration.

〔発明の効果〕〔Effect of the invention〕

この発明【よ以上説明した通りガス分析計(例えば質量
分析計)を用いてOGガス中のN2C度を計測すること
によってフード部内に空気が混入されたか否かを検知し
、この検知の結果を制御装置に送って設定値と比較し、
この比較による偏差に応じた信号を制御パをブに送って
OGガスの流量を制御するから結果的にガスホルダーに
回収されるOGガスのカロリーの低下を防止出来ろと言
う効果を有する。
This invention [As explained above, by measuring the degree of N2C in the OG gas using a gas analyzer (for example, a mass spectrometer), it is possible to detect whether or not air has entered the hood, and the result of this detection is Send it to the control device and compare it with the set value,
A signal corresponding to the deviation resulting from this comparison is sent to the control valve to control the flow rate of the OG gas, which has the effect of preventing a decrease in the calorie content of the OG gas collected in the gas holder.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す説明図、第2図は従
来の転炉OGガスの制御方法を示す説明図である。 図において、1は転炉、2は原料(溶銑及びスクラップ
)、4は吹t!R酸素、5はランス、9はOGガス、1
0はスカート、22はガスホルダー、42はガス分析計
、44(よ制御装置、46は制御バルブである。 代理人 弁理士 佐 藤 正 年 ■ 第2図
FIG. 1 is an explanatory diagram showing an embodiment of the present invention, and FIG. 2 is an explanatory diagram showing a conventional method for controlling converter OG gas. In the figure, 1 is the converter, 2 is the raw material (hot metal and scrap), and 4 is the blowing t! R oxygen, 5 is lance, 9 is OG gas, 1
0 is the skirt, 22 is the gas holder, 42 is the gas analyzer, 44 is the control device, and 46 is the control valve. Agent: Masatoshi Sato, Patent Attorney ■ Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)転炉のOGガスの一部を例えば質量分析計等のガ
ス分析計に導入して、上記OGガス中のN_2濃度を計
測し、このN_2濃度と目標値との偏差を零とするよう
に排ガス流量を制御することを特徴とする転炉OGガス
回収制御方法。
(1) Introduce a part of the OG gas from the converter into a gas analyzer such as a mass spectrometer, measure the N_2 concentration in the OG gas, and set the deviation between this N_2 concentration and the target value to zero. A converter OG gas recovery control method characterized by controlling the exhaust gas flow rate as follows.
JP13915986A 1986-06-17 1986-06-17 Control method for recovery of og gas of converter Pending JPS62297410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13915986A JPS62297410A (en) 1986-06-17 1986-06-17 Control method for recovery of og gas of converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13915986A JPS62297410A (en) 1986-06-17 1986-06-17 Control method for recovery of og gas of converter

Publications (1)

Publication Number Publication Date
JPS62297410A true JPS62297410A (en) 1987-12-24

Family

ID=15238951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13915986A Pending JPS62297410A (en) 1986-06-17 1986-06-17 Control method for recovery of og gas of converter

Country Status (1)

Country Link
JP (1) JPS62297410A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012219289A (en) * 2011-04-05 2012-11-12 Nippon Steel Corp Method and equipment for recovering converter gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012219289A (en) * 2011-04-05 2012-11-12 Nippon Steel Corp Method and equipment for recovering converter gas

Similar Documents

Publication Publication Date Title
US3873073A (en) Apparatus for processing molten metal
EP0671595B1 (en) Electric arc fusion furnace with controlled oxygen blast
US3908969A (en) Method and apparatus for air pollution control combined with safe recovery and control of gases from a bottom-blown steel converter vessel
US3561743A (en) Use of stack gas as oxygen potential measurements to control the bof process
US4141795A (en) Dry type method for quenching coke
US5392312A (en) Method and device for regulating the combustion air flow rate of a flue rate gas collection device of a metallurgical reactor, corresponding collection device and metallurgical reactor
JPS62297410A (en) Control method for recovery of og gas of converter
US4415142A (en) Apparatus for handling converter gas
EP0190644B2 (en) Convertor pressure control device in convertor waste gas disposing device
US3653650A (en) Method of controlling the exhaust gas flow volume in an oxygen top-blowing converter
US4669706A (en) Method of operation of exhaust-gas treatment system of sealed-type converter under abnormal conditions
US4314694A (en) Method for controlling exhaust gases in oxygen blown converter
JPS6043886B2 (en) Waste gas recovery method in converter waste gas treatment equipment
US4427183A (en) Gas control system for steel-making converters
JPH01142015A (en) Method for controlling inert gas generation in converter exhaust gas treatment
US4192486A (en) Method for controlling exhaust gases in oxygen blown converter
JPS5839204B2 (en) Furnace pressure control device in converter waste gas treatment equipment
JPS54147531A (en) Air preheating temperature controller for combustion of air heating furnaces
CA1092361A (en) Method for controlling exhaust gases in oxygen blown converter
JPS54119316A (en) Slopping control method in converter
SU711108A1 (en) Method of oxygen convertor process control
JPH06256834A (en) Detection of firing in converter
JPS6173810A (en) Method for controlling pressure in converter of converter waste gas treating device
JPS62177113A (en) System for controlling furnace pressure for converter waste gas treatment device
SU621731A1 (en) Device for controlling fuel flow to open-hearth furnace