JPS62297246A - Sealing of iron-chromium alloy and glass - Google Patents

Sealing of iron-chromium alloy and glass

Info

Publication number
JPS62297246A
JPS62297246A JP14212986A JP14212986A JPS62297246A JP S62297246 A JPS62297246 A JP S62297246A JP 14212986 A JP14212986 A JP 14212986A JP 14212986 A JP14212986 A JP 14212986A JP S62297246 A JPS62297246 A JP S62297246A
Authority
JP
Japan
Prior art keywords
glass
airtight
iron
chromium alloy
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14212986A
Other languages
Japanese (ja)
Inventor
Hidehiko Harada
秀彦 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP14212986A priority Critical patent/JPS62297246A/en
Publication of JPS62297246A publication Critical patent/JPS62297246A/en
Pending legal-status Critical Current

Links

Landscapes

  • Connections Arranged To Contact A Plurality Of Conductors (AREA)

Abstract

PURPOSE:To stably improve air-tightness and sealing strength of a sealed part between an iron-chromium alloy and glass, by forming a chromium oxide film on the surface of the iron-chromium alloy to an extent to give an oxidation weight increase falling within a specific range. CONSTITUTION:A chromium oxide film is formed on the surface of an iron- chromium alloy at an oxidation weight increase of 0.05-0.20mg/cm<2> and glass is sealed to the chromium oxide film. A product such as hermetic terminal, etc., having improved quality and reliability can be produced by this process.

Description

【発明の詳細な説明】 3、発明の詳細な説明 主呈上夏程ユ分… 本発明は、気密端子のガラス封着工程の製造などに利用
される鉄−クロム合金とガラスとの封着方法に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention The present invention is directed to the sealing of an iron-chromium alloy and glass, which is used in the production of glass sealing processes for airtight terminals. Regarding the method.

従来夏技血 冷凍機やクーラーなどの圧縮機における給電端子に使用
される気密端子は、金泥外環に3本のリード線をガラス
で封着した3端子構造で、この気密端子は高圧力状態下
で使用されていることから、高い気密性のものが要求さ
れている。この要求は、気密端子のガラスで封着される
リード線に、少くとも表層部がガラスに強固、気密に封
着できる鉄−クロム合金であるものを使用し、また金属
外環にガラスを圧縮シールする材料、構造のものを使用
することで達成されている。
Conventionally, the airtight terminal used as the power supply terminal for compressors such as Natsugi blood refrigerators and coolers has a three-terminal structure with three lead wires sealed with glass to the outer ring of gold clay, and this airtight terminal can be used under high pressure conditions. Since it is used underneath, it is required to be highly airtight. This requirement requires that at least the surface layer of the lead wire sealed with the glass of the airtight terminal be made of an iron-chromium alloy that can be firmly and airtightly sealed to the glass, and that the glass be compressed into the metal outer ring. This is achieved by using materials and structures that seal.

このような気密端子の一例を、第3図及び第4図より説
明する。第3図は気密端子(1)の平面図、第4図は第
3図のA−A線に沿う拡大断面図で、同図において、(
2)は円形キャップ状の鉄製金属外環で、円形の天板部
(2a)と、その外周に絞り加工された外筒部(2b)
と、外筒部(2b)の下端から斜め外方に広がるフラン
ジ部(2c)と、天板部(2a)の周辺部3個所に下面
側に向って絞り加工された3つのリード封着用内筒部(
2d)  (2d)・・・を有する。(3)(3)・・
・は3つの内筒部(2d)  (2d)・・・の中心に
挿通されてガラス(4)(4)・・・にて気密絶縁的に
封着された3本のリード線である。3本のリード線(3
)  (3)・・・はクロム23〜25重量%の鉄−ク
ロム合金製であり、ガラス(4)(4)・・・はソーダ
バリウムガラスである。
An example of such an airtight terminal will be explained with reference to FIGS. 3 and 4. FIG. 3 is a plan view of the airtight terminal (1), and FIG. 4 is an enlarged sectional view taken along line A-A in FIG.
2) is a circular cap-shaped iron metal outer ring, which includes a circular top plate part (2a) and an outer cylinder part (2b) that is drawn on the outer periphery.
, a flange part (2c) that extends diagonally outward from the lower end of the outer cylinder part (2b), and three lead sealing inner parts that are drawn toward the bottom surface at three places around the top plate part (2a). Cylindrical part (
2d) (2d)... has... (3) (3)...
- are three lead wires inserted into the centers of the three inner cylindrical parts (2d) (2d)... and hermetically and insulatively sealed with glass (4) (4).... 3 lead wires (3
) (3)... are made of iron-chromium alloy containing 23 to 25% by weight of chromium, and glasses (4) (4)... are soda barium glass.

1つの内筒部(2d)でのリード線ガラス封着構造を説
明する。鉄−クロム合金製のリード線(3)は、鉄−ク
ロム合金のままではガラス(4)とのなじみ性が悪いの
で、ガラス11着される前に、水蒸気を含む水素雰囲気
内で加熱処理して、リード線(3)の全表面に析出した
クロムを選択酸化させて、リード線(3)の表面にガラ
ス(4)とのなじみ性の良いクロム酸化膜(Cr203
 )  (5)が形成される。このリード線(3)を金
属外環(2)の内筒部(2d)に挿通し、内筒部(2d
)内でガラス(4)を加熱し溶融させると、リード線(
3)のクロム酸化膜(5)にガラス(4)が強固に、気
密に溶着して、リード線(3)はガラス(4)で十分強
固に、気密に封着される。一方、鉄製の金属外環(2)
の熱膨張係数(約130 X 10−7 )と、ガラス
(4)の熱膨張係数〔約98X10−71の差でもって
、ガラス封着後の冷却時に内筒部(2d)が収縮して、
ガラス(4)を工材シールし、これにより内筒部(2d
)とガラス(4)の気密性は高く保持される〔特公昭5
7−43540号公報〕。
The lead wire glass sealing structure in one inner cylinder part (2d) will be explained. The iron-chromium alloy lead wire (3) has poor compatibility with the glass (4) if it is an iron-chromium alloy, so it is heat-treated in a hydrogen atmosphere containing water vapor before being attached to the glass. Then, the chromium deposited on the entire surface of the lead wire (3) is selectively oxidized to form a chromium oxide film (Cr203) on the surface of the lead wire (3) that has good compatibility with the glass (4).
) (5) is formed. This lead wire (3) is inserted into the inner cylinder part (2d) of the metal outer ring (2), and
), when the glass (4) is heated and melted, the lead wire (
The glass (4) is firmly and airtightly welded to the chromium oxide film (5) of 3), and the lead wire (3) is sealed sufficiently firmly and airtightly with the glass (4). On the other hand, the iron metal outer ring (2)
Due to the difference between the thermal expansion coefficient of the glass (approximately 130 x 10-7) and the thermal expansion coefficient of the glass (4) (approximately 98 x 10-71), the inner cylinder portion (2d) contracts during cooling after glass sealing
The glass (4) is sealed with a workpiece, and the inner cylinder part (2d
) and glass (4) are highly airtight.
7-43540].

りシよ゛と る。 占 上記気密端子(1)は、金属外環(2)のフランジ部(
2C)を冷凍機などの圧縮機の密閉容器に高加圧力、大
電流の溶接条件でもって電気溶接され、この溶接待に金
属外環(2)は急速に200℃以上に加熱される。この
ような用途において、気密端子(1)は十分に高い耐熱
衝撃性、気密性を保持するよう設計され、製造されてい
るが、圧縮機への取付は条件が少し間違うと、気密端子
(1)の気密性が損なわれて、気密端子(1)が気密洩
れのある欠陥品となることがある。この気密端子(1)
の気密洩れの箇所は、リード1jl(3)とガラス(4
)の間が大部分であることが、稠査の結果分っている。
I'm going to go to Rishi. The airtight terminal (1) above is connected to the flange part (2) of the metal outer ring (2).
2C) is electrically welded to a closed container of a compressor such as a refrigerator under high pressure and large current welding conditions, and during this welding, the metal outer ring (2) is rapidly heated to 200° C. or more. In such applications, the airtight terminal (1) is designed and manufactured to maintain sufficiently high thermal shock resistance and airtightness, but if the conditions are slightly incorrect when installing it to the compressor, the airtight terminal (1) ) may be impaired, resulting in the airtight terminal (1) becoming a defective product with airtight leakage. This airtight terminal (1)
The location of the airtight leak is between the lead 1jl (3) and the glass (4).
As a result of the investigation, it has been found that the majority of the cases are between ).

本発明者は気密端子(1)が気密洩れを起す原因が圧縮
機への溶接待にあることを想定して、次なる耐熱衝撃試
験を行った。
The present inventor conducted the following thermal shock resistance test assuming that the cause of airtight leakage of the airtight terminal (1) is during welding to the compressor.

同一条件で製造された気密端子を多数用意し、気密端子
の20個ずつを、その金属外環の温度が、溶接待に加熱
される温度に近い260℃と、それ以上の314℃、3
43℃、399℃、427℃になるまで高周波誘導加熱
装置でもって約10秒間高周波誘導加熱して、自然冷却
させた後で、ヘリウムにて個々の気密端子の気密洩れの
有無を調べた。その結果、260℃に加熱された20個
の気密端子の全てに気密洩れは無く、従って、通常の使
用条件下において気密端子は高い気密性を維持し、問題
無いことが分った。しかし、314℃に加熱された20
個の気密端子の内の2個に気密洩れが発見され、343
℃に加熱された気密端子においては20個の内の3個に
、399℃に加熱された気密端子においては20個の内
の4個に気密洩れが発見された。また、427℃に加熱
された気密端子においては20個の全てに気密洩れが発
見されたが、この場合は加熱温度427℃が気密端子の
封着ガラスの下限除歪温度(strain point
)に近くて、427℃の加熱は気密端子の気密性を維持
する限界を越えるため、仕方無いことと考えられる。
A large number of airtight terminals manufactured under the same conditions were prepared, and each of the 20 airtight terminals was heated to a temperature of 260°C, which is close to the temperature at which the metal outer ring is heated during welding, to 314°C, which is higher than 314°C.
High-frequency induction heating was performed using a high-frequency induction heating device for about 10 seconds until the temperature reached 43°C, 399°C, and 427°C, and after natural cooling, the individual airtight terminals were examined for airtight leakage using helium. As a result, there was no airtight leakage in all of the 20 airtight terminals heated to 260° C. Therefore, it was found that the airtight terminals maintained high airtightness under normal usage conditions and there were no problems. However, 20 heated to 314°C
Airtight leakage was discovered in 2 of the 343 airtight terminals.
Airtight leaks were found in 3 out of 20 airtight terminals heated to 399°C, and in 4 out of 20 airtight terminals heated to 399°C. In addition, airtight leaks were discovered in all 20 of the airtight terminals heated to 427°C, but in this case, the heating temperature of 427°C was the lower limit strain point of the sealing glass of the airtight terminal.
), heating to 427°C exceeds the limit for maintaining the airtightness of the airtight terminal, so it is considered unavoidable.

上記実験結果は、気密端子が正常な条件下で使用される
分には問題無いことを証明する。しかし、気密端子の使
用条件を少し間違うと4.数%から10%近(のものに
気密洩れが生じることが分っており、気密端子の信頼性
に今−歩劣る問題が残されていた。
The above experimental results prove that there is no problem when the airtight terminal is used under normal conditions. However, if you make a slight mistake in the usage conditions of the airtight terminal, 4. It is known that hermetic leakage occurs in a few percent to nearly 10 percent, and the reliability of hermetic terminals remains unreliable.

そこで、本発明者は、気密端子がその使用条件を少し間
違うと気密洩れを起こす原因を追求したところ、気密端
子のガラス封着される鉄−クロム合金製リード線の表面
に形成されたクロム酸化膜に上記原因があることを知見
した。即ち、鉄−クロム合金製リード線をガラスに強固
、気密に封着させる目的で、リード線表面に形成された
クロム酸化膜によるリード線の酸化増量と、ガラスとの
封着力の関係は、従来からほとんど考慮されておらず、
従来はリード線表面に形成されるクロム酸化膜の色が緑
色系で、このクロム酸化膜が膜厚大に、或は膜厚小に形
成されると、リード線の外観がかなり変化するので、こ
の外観からクロム酸化膜によるリード線の酸化増量を規
制する程度である。このリード線の酸化増量を調べた結
果、従来はリード線表面の単位面積当りの酸化増量は0
.03〜0.30■/dの広範囲に及び、ここに気密端
子の気密洩れの原因があることが分った。
Therefore, the inventor of the present invention investigated the cause of airtight leakage when the airtight terminal is used slightly incorrectly, and found that chromium oxide formed on the surface of the iron-chromium alloy lead wire that is sealed in glass of the airtight terminal. It was discovered that the above cause was caused by the membrane. In other words, for the purpose of firmly and airtightly sealing an iron-chromium alloy lead wire to glass, the relationship between the oxidation weight gain of the lead wire due to the chromium oxide film formed on the surface of the lead wire and the sealing force with the glass is as follows. little consideration has been given to
Conventionally, the color of the chromium oxide film formed on the surface of the lead wire was greenish, and when this chromium oxide film was formed to a large or small thickness, the appearance of the lead wire changed considerably. This appearance only limits the oxidation weight increase of the lead wire due to the chromium oxide film. As a result of investigating the oxidation weight gain of this lead wire, it was found that in the past, the oxidation weight gain per unit area of the lead wire surface was 0.
.. It was found that this ranged from 0.03 to 0.30 .mu./d and that this was the cause of airtight leakage of the hermetic terminal.

占 n? るための−・ 本発明は、上記気密端子の気密洩れが鉄−クロム合金製
リード線の酸化増量に起因していることに鑑みてなされ
たもので、鉄−クロム合金の表面に0.05■/ci乃
至0.20■/dの酸化増量でクロム酸化膜を形成した
ものに、ガラスを封着したことを特徴とする鉄−クロム
合金とガラスとの封着方法を提供する。
Fortune n? The present invention was made in view of the fact that the airtight leakage of the above-mentioned airtight terminal is caused by the oxidation increase in the lead wire made of iron-chromium alloy. To provide a method for sealing an iron-chromium alloy and glass, characterized in that glass is sealed to a chromium oxide film formed with an oxidation increase of 1/ci to 0.20 2/d.

去施凱 本発明を、第3図及び第4図の気密端子(1)における
リードI!!(3)とガラス(4)の封着方法において
説明する。
The present invention is applied to the lead I in the airtight terminal (1) of FIGS. 3 and 4! ! The method for sealing (3) and glass (4) will be explained.

本発明においては、第1図の断面図に示すように、鉄−
クロム合金製リード線(3)の表面に、0.05〜0.
20■/dの酸化増量規制でもってクロム酸化膜(6)
を形成し、このリード線(3)を金属外環(2)の内筒
部(2d)にソーダバリウムガラスのガラス(4)にて
封着する。
In the present invention, as shown in the cross-sectional view of FIG.
The surface of the chromium alloy lead wire (3) is coated with a coating of 0.05 to 0.
Chromium oxide film (6) with oxidation increase regulation of 20■/d
This lead wire (3) is sealed to the inner cylindrical portion (2d) of the metal outer ring (2) with soda barium glass (4).

リード線(3)のクロム酸化膜(6)による酸化増量の
0.05〜0.20■/dなる範囲設定は、気密端子(
1)の様々な使用条件を想定し、多少間違った使用条件
下でも気密洩れが無い範囲を求めた結果、得られたもの
である。
Setting the range of 0.05 to 0.20 μ/d of the oxidation weight increase due to the chromium oxide film (6) of the lead wire (3) is the airtight terminal (
This was obtained by assuming various usage conditions in 1) and determining the range in which there would be no airtight leakage even under somewhat incorrect usage conditions.

本発明方法でリード線(3)を金属外環(2)にガラス
封着した気密端子(1゛)を多数用意して、その20個
ずつを前述した耐熱衝撃試験と同様に10秒間で260
℃1314℃、343℃、399℃、427℃に高周波
誘導加熱して、自然冷却後にヘリウムにて気密洩れの有
無を稠ぺた結果、260℃、314t、343℃、39
9℃に加熱した20個ずつの計801固の全てに気密洩
れが無いことが分った。また、427℃に加熱された気
密端子は20個中の18個に気密洩れが発見されたが、
これは前述のとおり封着ガラス自体の物性に起因するも
のであり、気密端子が400℃以上に加熱されて使用さ
れることはまず有り得ないので問題無い。
Prepare a large number of airtight terminals (1゛) in which the lead wire (3) is glass-sealed to the metal outer ring (2) using the method of the present invention, and test 20 of them at 260°C for 10 seconds in the same way as in the thermal shock resistance test described above.
℃1314℃, 343℃, 399℃, 427℃ After high-frequency induction heating, after natural cooling, we checked for airtightness with helium.The results were 260℃, 314t, 343℃, 39℃.
It was found that there were no airtight leaks in all 801 pieces of 20 pieces heated to 9°C. In addition, airtight leaks were discovered in 18 out of 20 airtight terminals heated to 427°C.
As mentioned above, this is due to the physical properties of the sealing glass itself, and there is no problem since it is almost impossible for the airtight terminal to be used while being heated to 400° C. or higher.

このようなリード線(3)のクロム酸化膜(6)による
酸化増量は0.05ag/cJより少な(ても、0.2
0■/dより多くても気密洩れの可能性は増す、これは
、酸化増量を0.05■/dより少なくすると、クロム
酸化膜(6)の膜厚が小さくなり過ぎて、リード線(3
)の鉄−クロム合金の地金にガラス(4)が直接的に封
着するためと、逆に酸化増量が0.20■/cI11を
超えると、クロム酸化膜(6)の膜厚が大きくなり過ぎ
て、多孔質のクロム酸化膜(6)自体の気密洩れが影響
を及□ぼすためと考えられる。
The oxidation weight increase due to the chromium oxide film (6) of such a lead wire (3) is less than 0.05 ag/cJ (at least 0.2
The possibility of airtight leakage increases even if the amount exceeds 0.05 ■/d. This is because if the oxidation increase is less than 0.05 ■/d, the film thickness of the chromium oxide film (6) becomes too small and the lead wire ( 3
) Because the glass (4) is directly sealed to the base metal of the iron-chromium alloy, and conversely, when the oxidation weight increase exceeds 0.20■/cI11, the film thickness of the chromium oxide film (6) becomes large. It is thought that this is because the airtight leakage of the porous chromium oxide film (6) itself has an effect.

尚、本発明は上記鉄−クロム合金製リード線(3)のガ
ラス封着方法に限らず、例えば第2図に示すように、銅
の芯材(7)の外周に鉄−クロム合金の外皮材(8)を
気密に固着した大電流用リード線(9)を金属外環(2
)の内筒部(2d)にガラス(4)にて封着したものに
も通用される。この場合は、リード線(9)の外皮材(
8)の表面ニ0.05〜0.20q/ −〇)酸化増量
でクロム酸化膜(6゛)を形成しておいて、ガラス封着
する。
Note that the present invention is not limited to the glass sealing method of the iron-chromium alloy lead wire (3), for example, as shown in FIG. The high current lead wire (9) with the material (8) hermetically fixed is connected to the metal outer ring (2
) in which the inner cylinder part (2d) is sealed with glass (4) is also applicable. In this case, the outer sheath material (
A chromium oxide film (6゛) is formed on the surface of 8) by oxidation increase of 0.05 to 0.20q/-〇) and sealed with glass.

また、本発明は、気密端子におけるガラス封着部分での
封着方法に限らない。
Furthermore, the present invention is not limited to the sealing method for the glass sealed portion of the airtight terminal.

発肌旦処果 本発明によれば、鉄−クロム合金とガラスとの封着部分
の気密性、封着強度が、鉄−クロム合金表面のクロム酸
化膜の酸化増量規制でもって最高値に近(安定して得ら
れ、従って、本発明方法にて製造された気密端子などの
製品の品質改善、信頼性向上が図れる。
According to the present invention, the airtightness and sealing strength of the sealed portion between the iron-chromium alloy and the glass can be brought close to the maximum value by regulating the oxidation increase of the chromium oxide film on the surface of the iron-chromium alloy. (It is stably obtained, and therefore, the quality and reliability of products such as airtight terminals manufactured by the method of the present invention can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の詳細な説明するための異な
る構造のガラス封着部分での断面図である。 第3図は気密端子の平面図、第4図は第3図のA−A線
に沿う拡大断面図である。 (3)・−鉄−クロム合金〔リード線〕、(4)−・・
ガラス、 (6)  (6°) −・・クロム酸化膜(Cr203
 )、(8) −・鉄−クロム合金〔リード線外皮材〕
1 and 2 are cross-sectional views of glass-sealed portions of different structures for explaining the present invention in detail. FIG. 3 is a plan view of the airtight terminal, and FIG. 4 is an enlarged sectional view taken along line A-A in FIG. 3. (3) - Iron-chromium alloy [lead wire], (4) -...
Glass, (6) (6°) ---Chromium oxide film (Cr203
), (8) -・Iron-chromium alloy [Lead wire outer sheath material]
.

Claims (1)

【特許請求の範囲】[Claims] (1)鉄−クロム合金の表面に0.05mg/cm^2
乃至0.20mg/cm^2の酸化増量でクロム酸化膜
を形成したものに、ガラスを封着することを特徴とする
鉄−クロム合金とガラスとの封着方法。
(1) 0.05mg/cm^2 on the surface of iron-chromium alloy
A method for sealing an iron-chromium alloy and glass, which comprises sealing glass to a chromium oxide film formed by increasing the oxidation content by 0.20 mg/cm^2.
JP14212986A 1986-06-17 1986-06-17 Sealing of iron-chromium alloy and glass Pending JPS62297246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14212986A JPS62297246A (en) 1986-06-17 1986-06-17 Sealing of iron-chromium alloy and glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14212986A JPS62297246A (en) 1986-06-17 1986-06-17 Sealing of iron-chromium alloy and glass

Publications (1)

Publication Number Publication Date
JPS62297246A true JPS62297246A (en) 1987-12-24

Family

ID=15308050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14212986A Pending JPS62297246A (en) 1986-06-17 1986-06-17 Sealing of iron-chromium alloy and glass

Country Status (1)

Country Link
JP (1) JPS62297246A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7484402B2 (en) * 2005-12-14 2009-02-03 Denso Corporation Gas sensor
JP2010091566A (en) * 2008-10-08 2010-04-22 Robert Bosch Gmbh Sensor device for detecting liquid electrical characteristics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7484402B2 (en) * 2005-12-14 2009-02-03 Denso Corporation Gas sensor
JP2010091566A (en) * 2008-10-08 2010-04-22 Robert Bosch Gmbh Sensor device for detecting liquid electrical characteristics

Similar Documents

Publication Publication Date Title
US5709724A (en) Process for fabricating a hermetic glass-to-metal seal
US5194697A (en) Electrically conductive feedthrough connection and methods of manufacturing same
US3531853A (en) Method of making a ceramic-to-metal seal
KR101608113B1 (en) High-voltage airtight terminal and method for producing the same
US2749668A (en) Method of sealing vacuum-tight envelopes
JPH0324041B2 (en)
US3918147A (en) Hermetic enclosure for electronic component
US3035372A (en) Method for making a glass to metal seal
JPS62297246A (en) Sealing of iron-chromium alloy and glass
US5774037A (en) Circuit protector and method for making a circuit protector
US2708787A (en) Fabrication of metal to ceramic seals
US3166396A (en) Method of forming sealed article
US2043307A (en) Metal glass seal
US3638076A (en) Metal-to-glass-to-ceramic seal
US3210459A (en) Hermetic seal for semiconductor devices
US2015483A (en) Metal-refractory joint
US4161746A (en) Glass sealed diode
JP2003046010A (en) Hermetically-sealed electronic component
US1971924A (en) Mercury contact device
JP2541642B2 (en) Sodium-sulfur battery and method of manufacturing the same
JPS63240051A (en) Ceramic cap
JPH11120965A (en) Sealing method for electrode rod in aluminum sealing cover for battery
GB2040912A (en) Electric lamp with metallic sealing plugs
JPH0159223B2 (en)
JPH0431187B2 (en)