JPS62296633A - Data compressing and transmitting equipment using differential pulse modulation system - Google Patents

Data compressing and transmitting equipment using differential pulse modulation system

Info

Publication number
JPS62296633A
JPS62296633A JP61140890A JP14089086A JPS62296633A JP S62296633 A JPS62296633 A JP S62296633A JP 61140890 A JP61140890 A JP 61140890A JP 14089086 A JP14089086 A JP 14089086A JP S62296633 A JPS62296633 A JP S62296633A
Authority
JP
Japan
Prior art keywords
circuit
signal
quantization
local decoding
pulse modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61140890A
Other languages
Japanese (ja)
Inventor
Hiroaki Kikuchi
菊地 浩昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61140890A priority Critical patent/JPS62296633A/en
Priority to KR1019870004872A priority patent/KR910000707B1/en
Priority to AU73379/87A priority patent/AU591287B2/en
Priority to CA000537929A priority patent/CA1280509C/en
Priority to US07/053,627 priority patent/US4809067A/en
Priority to DE3789074T priority patent/DE3789074T2/en
Priority to EP87107644A priority patent/EP0249086B1/en
Publication of JPS62296633A publication Critical patent/JPS62296633A/en
Priority to CA000615828A priority patent/CA1292060C/en
Priority to CA000615825A priority patent/CA1292057C/en
Priority to CA000615827A priority patent/CA1292059C/en
Priority to CA000615826A priority patent/CA1292058C/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the coding efficiency by quantizing only the effective data range of a difference signal while converting it into a characteristic being the object of quantization attended with the fluctuation of a threshold level so as to reduce the quantized error. CONSTITUTION:The change detection circuit of a transmission circuit outputs a difference signal based on the threshold level and a predication difference signal between an input signal and predicate signal calculated by a prediction circuit, a quantization circuit quantizes the difference signal and stores it tentatively in a transmission buffer circuit, and a local decoding circuit decodes the quantization signal locally. Further, a reception circuit is provided with a reception buffer circuit, a local decoding circuit and an adder. Then the quantization circuit consists of an adaptive quantization circuit including a characteristic selection circuit 8 selecting plural quantization characterstics of the circuit depending on the hershold level and a local decoding circuit consists of an adaptive local decoding circuit including a characteristic selection circuit 9 selecting the plural decoding characteristics of the circuit based on the threshold level so as to switch the effective data range of the difference signal into a characteristic being the object of quantization to apply quantization.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [産業上の利用分野] 本発明は差分パルス変調方式を用いたデータ圧縮伝送装
置、特に画像信号などのデータを帯域圧縮し、伝送する
のに適した伝送装置の改良に関するちのである。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] The present invention is a data compression and transmission device using a differential pulse modulation method, and in particular, a data compression and transmission device for band-compressing and transmitting data such as image signals. This article concerns the improvement of a transmission device suitable for

[従来の技術] Jス下、従来の差分パルス変調方式を用いたデータ圧縮
伝送装置を図面に基づいて説明する。
[Prior Art] A data compression transmission device using a conventional differential pulse modulation method will be described below with reference to the drawings.

(K来の差分パルス変調方式を用いたデータ圧縮伝送装
置は、デジタル入力信号を差分パルス変調(以下DPC
Mと略す)を用いてデータ圧縮伝送を行う送信回路部と
、該送信回路に対応する受信回路部と、からなり、第6
図には送信回路部のブロック構成図が示されている。
(The data compression transmission device using the conventional differential pulse modulation method converts digital input signals into differential pulse modulation (hereinafter referred to as DPC).
a transmitting circuit section that performs data compression transmission using a transmission circuit (abbreviated as M), and a receiving circuit section corresponding to the transmitting circuit;
The figure shows a block diagram of the transmitting circuit section.

図において、予測回路(1)は後述するごとくデジタル
入力信号を予測し、予測信@(101)を算出する。こ
の予測信号(101)は減鋒器(2)において人力信@
(100)と差演騨され、両者の差である予測誤差信号
(102)が算出される。
In the figure, a prediction circuit (1) predicts a digital input signal as described later and calculates a predicted signal @ (101). This predicted signal (101) is transmitted to the human power signal @
(100), and a prediction error signal (102), which is the difference between the two, is calculated.

そして、変化検出回路(3)において、前記予測誤差信
号(102)は差分信号(103)及びこの差分信号(
103)が有効/無効データ範囲(対応するしきい値よ
り変化量が大きいか否か)であるかという変化検出信号
(113)に変換され、量子化回路(4b)において、
前記差分信号(103)が量子化される。
Then, in the change detection circuit (3), the prediction error signal (102) is converted into a difference signal (103) and this difference signal (
103) is converted into a change detection signal (113) indicating whether the data is in the valid/invalid data range (whether or not the amount of change is larger than the corresponding threshold value), and in the quantization circuit (4b),
The difference signal (103) is quantized.

量子化回路(4b)の出力である量子化信号(104b
)は可変長符号化回路(10)において符号化され、送
信バッファ(11)に送出される。
The quantization signal (104b) is the output of the quantization circuit (4b).
) is encoded in the variable length encoding circuit (10) and sent to the transmission buffer (11).

また、量子化信号(104b)は局部復号化回路(5b
)にも送出され、これにより、(前記予測信号を算出す
るための)再生入力信号(106)を求めるための再生
差分信号(105b)が算出される。
Further, the quantized signal (104b) is transmitted to the local decoding circuit (5b).
), thereby calculating a reproduction difference signal (105b) for obtaining a reproduction input signal (106) (for calculating the predicted signal).

しきい値発生回路(7)は送信バッフニア’(11)内
の情報量に応じて、変化検出回路(3)に供給されるし
きい値(107)を発生する回路である。
The threshold generation circuit (7) is a circuit that generates a threshold value (107) to be supplied to the change detection circuit (3) in accordance with the amount of information in the transmission buff nearer (11).

第7図は前記変化検出回路(3)の詳細な説明図であり
、絶対値回路(12)は予測信号(101)の絶対値(
112)を出力する回路であり、比較回路(13)はし
きい値(107)と絶対値(112>との比較を行い、
所定量以上の変化のも無を判定し、所定量以下の変化デ
ータの足きりを行い、データの有効/無効を示す変化検
出信号(113)を出力する回路であり、零割当て回路
(14)は変化検出信号(11’3)が無効の場合に前
記予測課差信@(102)に## OHを割り当てる回
路である。
FIG. 7 is a detailed explanatory diagram of the change detection circuit (3), and the absolute value circuit (12) is the absolute value (
112), and the comparator circuit (13) compares the threshold value (107) with the absolute value (112>).
This is a circuit that determines whether there is a change of more than a predetermined amount, determines whether or not there is a change of data that is less than a predetermined amount, and outputs a change detection signal (113) indicating the validity/invalidity of the data, and a zero allocation circuit (14). is a circuit that assigns ##OH to the prediction difference signal @ (102) when the change detection signal (11'3) is invalid.

次に信号の流れについて説明する。第6図に示Jように
、画像信号などのデジタル化された入カイF1’@(1
00)をs、予測信@ (1’ 01 )を[)1、予
測誤差信号(102)を01差分信号(103)をei
、再生差分信@(105b)を6  再生入力信号(1
06)を94.とすれば、り それぞれの信号の値の間には次式の関係が成立する。
Next, the signal flow will be explained. As shown in FIG. 6, digitized input signals such as image signals F1'@(1
00) is s, predicted signal @ (1' 01 ) is [)1, prediction error signal (102) is 01, difference signal (103) is ei
, reproduced differential signal @ (105b) 6 reproduced input signal (1
06) to 94. Then, the following relationship holds between the values of each signal.

eS=8.>−P、2 ej!=e、十d @ 1 = e I +Q ただし、d は変化検出回路における無効誤差Q は吊
子化誤差 A は予測計数 Z4は時間tの遅延 予測回路(1)では、再生入力信@@、g(106)を
あらかじめ設定された1時間遅延させ、更(二、係数A
を乗じて予測信号Pi(101)を出ノJする。
eS=8. >-P, 2 ej! = e, 10 d @ 1 = e I +Q where d is the invalid error Q in the change detection circuit is the suspension error A is the prediction count Z4 is the reproduction input signal @@ in the delay prediction circuit (1) at time t, g(106) is delayed for a preset 1 hour, and further (2, coefficient A
The predicted signal Pi (101) is obtained by multiplying by .

なお、入力信@S、(100)が画像信号で時間tを1
フレ一ム時間に設定すればフレーム間DI−) CM伝
送装置、1フイ一ルド時間に設定すればフィールド間D
PCM伝送装置となる。
Note that the input signal @S, (100) is an image signal and the time t is 1
If set to one frame time, inter-frame DI-) CM transmission equipment, if set to one field time, inter-field D
It becomes a PCM transmission device.

第7図に示されるように、変化検出回路(3)(ごおい
て、絶対値回路(12)によって計算された予測誤差信
号eS (102)の絶対値(112)を10,1とし
、しきい値(107)をTh トスると、比較回路(1
3Hこよって計算される変化検出信号(113)Vの値
は次ぎのように決まる。
As shown in FIG. 7, in the change detection circuit (3), the absolute value (112) of the prediction error signal eS (102) calculated by the absolute value circuit (12) is set to 10,1. When the threshold (107) is tossed, the comparator circuit (1
The value of the change detection signal (113) V calculated by 3H is determined as follows.

Hl e、l <Th   then  V=O(無効
)else  V=1 (有効) また、所定間の変化が検出されない場合(無効データ範
囲の場合)は、零割り当て回路(14)により、予測誤
差信号e、(102>にII 011が割り当てられ、
差分信号J (103)は1101#として、出力され
る。
Hl e,l <Th then V=O (invalid) else V=1 (valid) Furthermore, if no change is detected for a predetermined period (in the case of an invalid data range), the zero allocation circuit (14) assigns a prediction error signal to e, (102> is assigned II 011,
The difference signal J (103) is output as 1101#.

そして、量子化回路(4b)に入力された差分子f 号
e 1 (103)は、任意の特性にしたがって量子化
信号χ、(104b)に変換される。
Then, the difference molecule f 1 e 1 (103) input to the quantization circuit (4b) is converted into a quantized signal χ, (104b) according to an arbitrary characteristic.

そして、可変長符号化回路(10)では、変化検出信号
V(113)が有効の場合(V=、1)である量子化信
号χ、(104b)のみを取り込み、変化検出信号V(
113)に対してはランレングス符号化を、量子化信号
χ、(1,04b)に対しては発生頻度の高いO近辺の
数値には符号長の短いコードを割り当てて、送信バッフ
ァ回路(11)に送出し、送信バッファ回路(11)に
蓄積されたデータは伝送路に符号化信号(200>とし
て送出される。
Then, the variable length encoding circuit (10) takes in only the quantized signal χ, (104b) when the change detection signal V (113) is valid (V=, 1), and takes in the change detection signal V (
For the quantized signal χ, (1,04b), run-length encoding is applied to the quantized signal ), and the data accumulated in the transmission buffer circuit (11) is sent to the transmission path as an encoded signal (200>).

また、しきい値発生回路(7)では、送信バラフッ回路
(11)のデータ蓄積量を監視し、データ蓄積量に応じ
た適切なしきい値を発生し、データ符号量の平滑化を行
う。
Further, the threshold generation circuit (7) monitors the amount of data accumulated in the transmission balance circuit (11), generates an appropriate threshold according to the amount of data accumulated, and smoothes the data code amount.

第8図には従来の差分パルス変調方式を用いたデータ圧
縮伝送装置の受信回路部のブロック構成図が示されてお
り、受信バッファ回路(21)は受信された符号化信号
(200>を一時的に蓄える回路であり、可変長符号化
回路(22b )は前翫i符号化信号(200)を復帰
化する回路であり、局部復号化回路(23b)は再生差
分信@(223b)を出力する回路であり、予測回路(
24)は再生信号(225>を予測する回路である。
FIG. 8 shows a block diagram of the receiving circuit section of a data compression transmission device using the conventional differential pulse modulation method. The variable length encoding circuit (22b) is a circuit for restoring the front i encoded signal (200), and the local decoding circuit (23b) outputs the reproduced difference signal (223b). It is a prediction circuit (
24) is a circuit that predicts the reproduced signal (225>).

そして、前記再生信@(225>は予測信号(224>
前記再生差分信@(223b)によって加算器(25)
から韓出される。
The reproduced signal @(225> is the predicted signal (224>
The adder (25) by the reproduced difference signal @ (223b)
He was taken out of Korea.

次に受信回路部の信号の流れについて説明する。Next, the flow of signals in the receiving circuit section will be explained.

送信回路部で可変長符号化された符号化信@(200)
は、受信バッフ7回路(21)にて受信され、可変長復
号化回路(22b>に送出される。
Encoded signal variable-length coded in the transmitter circuit @ (200)
is received by the receiving buffer 7 circuit (21) and sent to the variable length decoding circuit (22b>).

そして、可変長復号化回路(22b)において復号化さ
れた変化検出信@V(113)が有効データ範囲を示す
(V=1)場合のみに量子化信号(222b)は局部復
号化回路(23b)へ出力され、復帰化された変化検出
信号V(113)が無効データ範囲を示す(V=O)の
場合は170 flが局部復号化回路(23b)に出力
される。
Then, only when the change detection signal @V (113) decoded in the variable length decoding circuit (22b) indicates a valid data range (V=1), the quantized signal (222b) is transferred to the local decoding circuit (23b). ), and when the restored change detection signal V (113) indicates an invalid data range (V=O), 170 fl is output to the local decoding circuit (23b).

そして、更に、局部復号化回路(23b)により、量子
化信@(222b)、は再生差分信号(223b)に復
号化され、予測回路(24)による予測信号(224>
と加算器の演算により、送信回路部からの符号化信号(
200>が再生(225)される。
Then, the local decoding circuit (23b) decodes the quantized signal @ (222b) into a reproduced difference signal (223b), and the prediction circuit (24) generates a predicted signal (224>
The encoded signal (
200> is played back (225).

[発明が解決しようとする問題点] 従来のDPCMを用いたデータ圧縮データ装置は以上の
J:うに構成されているので、送信回路部中の量子化回
路における量子化特性は、しきい値が大きくなるにつれ
て有効データのダイナミックレンジが狭くなるにもかか
わらず、量子化精度が向上しないという問題点があった
[Problems to be Solved by the Invention] Since the conventional data compression data device using DPCM is configured as shown above, the quantization characteristic of the quantization circuit in the transmitting circuit section has a threshold value. Although the dynamic range of effective data becomes narrower as the size increases, there is a problem in that quantization accuracy does not improve.

  8一 本発明は上記のような問題点を解決するためになされた
ものであり、しきい値に対応した量子化特性を用いて量
子化誤差を低減し、量子化効率の良いDPCMを用いた
データ圧縮伝送装置を得ることを目的とする。
81 The present invention was made to solve the above problems, and uses a quantization characteristic corresponding to a threshold value to reduce quantization errors and uses a DPCM with high quantization efficiency. The purpose is to obtain a data compression transmission device.

[問題点を解決するための手段] 上記目的を達成するために、本発明における送信回路部
中の量子化回路は、複数の量子化特性を有し、該量子化
特性を前記しきい値により選択する特性選択回路を含む
適応量子化回路からなり、本発明における送信回路部及
び受信回路部中の局部復号化回路は、量子化回路に対応
して複数の復号化特性を有し、該復号化特性を前記しき
い値により選択する特性選択回路含む適応局部復号化回
路とから構成したものであり、前記量子化回路で選択さ
れる量子化特性は、無効データ範囲内(対応するしきい
値の指定範囲内)である差分信号の量子化出力が′O″
になるような特性であり、しきい値に応じて、適応的に
量子化したものである。
[Means for Solving the Problems] In order to achieve the above object, the quantization circuit in the transmitting circuit section of the present invention has a plurality of quantization characteristics, and the quantization characteristics are determined by the threshold value. The local decoding circuit in the transmitting circuit section and the receiving circuit section in the present invention has a plurality of decoding characteristics corresponding to the quantization circuit, and the local decoding circuit in the transmitting circuit section and the receiving circuit section in the present invention has a plurality of decoding characteristics corresponding to the quantizing circuit, and an adaptive local decoding circuit including a characteristic selection circuit that selects a quantization characteristic based on the threshold value, and the quantization characteristic selected by the quantization circuit is within the invalid data range (within the corresponding threshold value). quantized output of the difference signal (within the specified range) is 'O''
This characteristic is adaptively quantized according to the threshold value.

[作用] 前述した構成から明らかなように、本発明によれば、し
きい値の変動に伴ない、差分信号の有効データ範囲のみ
を量子化対象とした特性を複数用意し、しきい値に応じ
た量子化特性に切り換えて量子化するように構成したの
で、量子化誤差を低減することができ、量子化効率の良
いDPCMを用いたデータ圧縮伝送装置を得ることがで
きる。
[Operation] As is clear from the above-described configuration, according to the present invention, as the threshold value changes, a plurality of characteristics are prepared in which only the effective data range of the difference signal is subject to quantization, and the threshold value changes. Since the configuration is configured such that quantization is performed by switching to a corresponding quantization characteristic, it is possible to reduce quantization errors and obtain a data compression transmission device using DPCM with high quantization efficiency.

[実施例] 以下、図面に基づいて本発明の好適な実施例を説明する
[Embodiments] Hereinafter, preferred embodiments of the present invention will be described based on the drawings.

本発明による差分パルス変調方式を用いたデータ圧縮伝
送装置は、デジタル入力信号を差分パルス変調を用いて
データ圧縮伝送を行う送信回路部と、該送信回路に対応
する受信回路部と、からなり、第1図には本実施例によ
る送信回路部のブロック構成図が示されている。
A data compression transmission device using a differential pulse modulation method according to the present invention includes a transmission circuit section that performs data compression transmission of a digital input signal using differential pulse modulation, and a reception circuit section corresponding to the transmission circuit, FIG. 1 shows a block diagram of the transmitting circuit section according to this embodiment.

本発明において、量子化回路は適応量子化回路(4a)
からなり、適応量子化回路(4a)は複数の量子化特性
を有し、しきい値(107)より特性を選択し、差分信
号(103)を適応量子化し、適応量子化信号(104
a)を出力する。
In the present invention, the quantization circuit is an adaptive quantization circuit (4a).
The adaptive quantization circuit (4a) has a plurality of quantization characteristics, selects the characteristic from the threshold value (107), adaptively quantizes the difference signal (103), and adaptively quantizes the adaptive quantization signal (104).
Output a).

そして、適応局部復号化回路(5a)は前記適応吊子化
回路(4a)に対応して設けられ、適応量子化信@(1
04a)を復号化し、再生差分信号(105a>を出力
する回路であり、その伯、従来例と同一部分には同一番
号を付し、その説明を省略する。
The adaptive local decoding circuit (5a) is provided corresponding to the adaptive hanging circuit (4a), and the adaptive local decoding circuit (5a) is provided with the adaptive quantization signal @(1
04a) and outputs a reproduced difference signal (105a>), and the same parts as those in the conventional example are given the same numbers, and the explanation thereof will be omitted.

第2図は適応量子化回路(4a)の詳細なブロック説明
図であり、特性選択回路(8)にて、しきい値(107
)により量子化特性が選択され、差分信号(103)が
量子化される。
FIG. 2 is a detailed block diagram of the adaptive quantization circuit (4a), in which the threshold value (107
), the quantization characteristic is selected, and the difference signal (103) is quantized.

第3図は適応復号化回路(5a)の詳細なブロック説明
図であり、特性選択回路(9)にて、しきい値(107
)により復号化特性が選択され、量子化信号(104a
>が復号化され、更に、零割り当て回路(15)を通り
、変化検出信号(113)により零割当てされる。
FIG. 3 is a detailed block diagram of the adaptive decoding circuit (5a), in which the threshold value (107
), the decoding characteristics are selected by the quantized signal (104a
> is decoded, and further passes through a zero assignment circuit (15) and is assigned a zero by a change detection signal (113).

次に信号の流れについて説明する。第1図に示すように
、画像信号などのデジタル化された入力信号(100)
を3..1!述するごとく、予測回路(1)にて算出さ
れる予測信@(101)をP2)予測誤差信!(102
>をC5、差分信号(103)を61 、再生差分信号
(105b)を〜、再生入力信号(106)をhlとす
れば、それぞれの信号の値の間には次式の関係が成立す
る。
Next, the signal flow will be explained. As shown in FIG. 1, a digitized input signal (100) such as an image signal
3. .. 1! As described above, the prediction signal @(101) calculated by the prediction circuit (1) is converted into P2) prediction error signal! (102
> is C5, the differential signal (103) is 61, the reproduced differential signal (105b) is ~, and the reproduced input signal (106) is hl, then the following relationship holds between the values of the respective signals.

C5−8I  Pl e p ・−e 、十d 6Jl”“e Jl十Q ■ ただし、dは変化検出回路における無効誤差Q1は量子
化誤差 △は予測計数 Z″1は時間tの遅延 予測回路(1)では、再生人力信@54(106)をあ
らかじめ設定された1時間遅延させ、更に、係数Aを乗
じて予測信号PJ!(101)を出力する。
C5-8I Pl e p ・-e , 10d 6Jl""e Jl0Q ■ However, d is the invalid error in the change detection circuit Q1 is the quantization error △ is the prediction count Z"1 is the delay prediction circuit at time t ( In 1), the reproduced human power signal @54 (106) is delayed by a preset one hour, and further multiplied by a coefficient A to output the prediction signal PJ! (101).

変化検出回路(3)においては、第7図と同様に、絶対
値回路(12)によってiI算された予測誤差信号e、
(102)の絶対値(112>を10.1とし、しきい
値(107)をThとすると、比較回路(13)によっ
て計算される変化検出信@(113)Vの値は次ぎのJ
:うに決まる。
In the change detection circuit (3), similarly to FIG. 7, the prediction error signal e calculated by the absolute value circuit (12),
If the absolute value (112> of (102) is 10.1 and the threshold value (107) is Th, then the value of the change detection signal @ (113) V calculated by the comparator circuit (13) is the following J
: It is decided by sea urchin.

if  Ie、l<Th   then  V=0(無
効)else  V=1 (有効) また、所定量の変化が検出されない場合(無効データ範
囲の場合)は、零割り当て回路(14)により、予測誤
差信号e、(102)に”0”が割り当てられ、差分信
号ei(103)はu OIUとして、適応量子化回路
(4a)に出力される。
if Ie, l<Th then V=0 (invalid) else V=1 (valid) Furthermore, if a predetermined amount of change is not detected (in the case of an invalid data range), the zero allocation circuit (14) assigns a prediction error signal to "0" is assigned to e, (102), and the difference signal ei (103) is output as u OIU to the adaptive quantization circuit (4a).

そして、適応量子化回路(4a)の動作は第2図に示さ
れるように、適応量子化回路(4a)に入力された差分
信号J (103)は、しきい値(107)によって特
性を切り換える特性選択回路(9)によって指定された
量子化特性にしたがって量子化信号χ。(104a)に
変換され、可変長符号化回路(10)に出力される。
The operation of the adaptive quantization circuit (4a) is as shown in FIG. Quantized signal χ according to the quantization characteristic specified by the characteristic selection circuit (9). (104a) and output to the variable length encoding circuit (10).

ここで、第5図(a)の量子化特性例について説明する
Here, the example of the quantization characteristic shown in FIG. 5(a) will be explained.

一点鎖線が、しきい値がTh=Oの場合の特性例であり
、実線がしきい値(107)Th=3の場合の特性例で
ある。この図のように、差分信号(103)のデータが
、無効データ範囲(−Thくデータ<+7h)の場合は
、量子化せず、有効データ範囲(データ<−Th 、 
Or、 +Hh <データ)内の場合のみ、量子化対象
としている。そして、同図から明らかなごとく、特性選
択回路(8)で選択される量子化特性は、無効データ範
囲内(対応するしきい値の指定範囲内)である差分信号
の量子化出力が′O゛′になるような特性であり、この
ようにして、量子化精度を向上させている。
The dashed-dotted line is a characteristic example when the threshold value is Th=O, and the solid line is a characteristic example when the threshold value (107) Th=3. As shown in this figure, when the data of the difference signal (103) is in the invalid data range (-Th, data < +7h), it is not quantized and is not quantized, but in the valid data range (data <-Th,
Only cases within Or, +Hh<data) are subject to quantization. As is clear from the figure, the quantization characteristic selected by the characteristic selection circuit (8) is such that the quantization output of the difference signal within the invalid data range (within the specified range of the corresponding threshold value) is The quantization accuracy is improved in this way.

そして、可変長符号化回路(10)では、変化検出信号
V(113)が有効の場合(V=1>である量子化信号
χ  (104a )のみを取り込a み、変化検出信号V(113)に対してはランレングス
符号化を、量子化信号χ  (104a>a に対しては発生頻度の高いO近辺の数値には符号長の知
い]−ドを割り当てて、送信バッファ回路(11)に送
出し、送信バッファ回路(11)に蓄積されたデータは
伝送路に符号化信@ (200>として送出される。
Then, in the variable length encoding circuit (10), when the change detection signal V (113) is valid (V=1>), only the quantized signal χ (104a) is taken in, a ) is assigned run-length encoding, and the quantized signal ), and the data accumulated in the transmission buffer circuit (11) is sent to the transmission path as an encoded signal @ (200>).

また、量子化信号χ。(104a > <A、第1図に
示されるように、適応量子化回路(5a)にも送出され
る。
Also, the quantized signal χ. (104a ><A, as shown in FIG. 1, it is also sent to the adaptive quantization circuit (5a).

一方、適応部復号回路(59)では、第3図に示すよう
に、特性選択回路(9)ににり適応量子化回路で選択し
た量子化特性に対応する復号化特性を選択する。さらに
零割当回路(15)により無効データ“O′′を割当て
て、再生差分信@(105b)として出力する。その復
号特性例を第5図(b)に示す。再生差分信号〜(10
5b)は加算器(6)番こおいて予測信号Pj!(10
1)と加輝すれ再生入力信号@J! (106)となり
予測回路(1)へ入力される。
On the other hand, in the adaptive section decoding circuit (59), as shown in FIG. 3, the characteristic selection circuit (9) selects a decoding characteristic corresponding to the quantization characteristic selected by the adaptive quantization circuit. Further, the zero allocation circuit (15) allocates invalid data "O'' and outputs it as a reproduced difference signal@(105b). An example of its decoding characteristics is shown in FIG. 5(b).Reproduced difference signal ~(10
5b) is the predicted signal Pj! by the adder (6). (10
1) and Kaki's playback input signal @J! (106) and is input to the prediction circuit (1).

また、しきい値発生回路(7)では、送信バッファ回路
(11)のデータ蓄積量を監視し、データ蓄積量に応じ
た適切なしきい値を発生し、データ符号量の平滑化を行
う。
Further, the threshold generation circuit (7) monitors the amount of data accumulated in the transmission buffer circuit (11), generates an appropriate threshold according to the amount of data accumulated, and smoothes the data code amount.

第4図には本実施例による差分パルス変調方式を用いた
データ圧縮伝送装置の受信回路部のブロック構成図が示
されており、受信バッファ回路(21)は受信された符
号化信号(200>を一時的に蓄える回路であり、可変
長符号化回路(22a>は前記符号化信号(200>を
復号化する回路であり、適応局部復号化回路(23a)
は再生差分信号(223a>を出力する回路であり、予
測回路(24)は再生信@ (225)を予測する回路
である。
FIG. 4 shows a block diagram of the receiving circuit section of the data compression and transmission apparatus using the differential pulse modulation method according to the present embodiment. The variable length encoding circuit (22a) is a circuit for temporarily storing the encoded signal (200), and the adaptive local decoding circuit (23a) is a circuit for decoding the encoded signal (200).
is a circuit that outputs the reproduced difference signal (223a>), and the prediction circuit (24) is a circuit that predicts the reproduced signal @ (225).

そして、前記再生信号(225>は予測信号(224>
前記再生差分信号(223a)によって加綽器(25)
から算出される。
The reproduced signal (225> is the predicted signal (224>
The adder (25) is controlled by the reproduced difference signal (223a).
Calculated from.

次に受信回路部の信号の流れについて説明する。Next, the flow of signals in the receiving circuit section will be explained.

送信回路部で可変長符号化された符号化信号(200)
は、受信バッファ回路(21)にて受信され、可変長復
号化回路(22a)に送出される。
Encoded signal (200) variable-length encoded in the transmitter circuit
is received by the reception buffer circuit (21) and sent to the variable length decoding circuit (22a).

そして、可変長復号化回路(22a)において復号化さ
れた変化検出信号V (222a3)が有効データ範囲
を示す(V=1)場合のみに量子化信号(222al)
及びしきい値(222a2)が局部復号化回路(23a
>へ出力され、復号化された変化検出信号V(113)
が無効データ範囲を示す(V=O)の場合はIT O$
1が局部復号化回路(23a>に出力される。
Then, only when the change detection signal V (222a3) decoded in the variable length decoding circuit (22a) indicates a valid data range (V=1), the quantized signal (222al) is generated.
and the threshold value (222a2) is the local decoding circuit (23a
> and decoded change detection signal V (113)
indicates an invalid data range (V=O), IT O$
1 is output to the local decoding circuit (23a>).

そして、更に、適応局部復号化回路(23a)では送信
回路部中の適応局部復号化回路(5a)と同様に、しき
い値(222a2)Gこより)q号化特性が選択され、
量子化信号(222a1)は再生差分信号(223a>
に復号化され、予測回路(24)による予測信号(22
4>とhl算器の演詐により、送信回路部からの符号化
信号(200)が再生(225>される。
Furthermore, in the adaptive local decoding circuit (23a), similarly to the adaptive local decoding circuit (5a) in the transmitting circuit section, the threshold value (222a2)G (from) q coding characteristic is selected,
The quantized signal (222a1) is the reproduced difference signal (223a>
The prediction signal (22) is decoded by the prediction circuit (24).
4> and the hl calculator's manipulation, the encoded signal (200) from the transmitting circuit section is reproduced (225>).

なお、本実施例において、しきい値の発生(更新)を任
意の時間t(例えば、1フレ一ム時間)に一度行うこと
により、伝送すべきしきい値を削減しても同様の効果を
得ることができる。
In addition, in this embodiment, the same effect can be obtained even if the threshold value to be transmitted is reduced by generating (updating) the threshold value once at an arbitrary time t (for example, one frame time). Obtainable.

[発明の効果コ 以上のように、本発明に係る差分パルス変調方式を用い
たデータ圧縮伝送装置の量子化回路は、複数の量子化特
性を有し、該量子化特性を前記しきい値により選択する
特性選択回路を含む適応量子化回路からなり、該伝送装
置の送信回路及び受信回路中の局部復号化回路は、量子
化回路に対応して複数の復号化特性を有し、該復号化特
性を前記しきい値により選択する特性選択回路を含む適
応局部復号化回路から構成したので、しきい値の変動に
伴い差分信号の有効データ範囲のみを量子化対象とした
特性に適応的に切換えて量子化することができ、量子化
誤差を低減することができ符号化効率の良い伝送装置が
得られる効果がある。
[Effects of the Invention] As described above, the quantization circuit of the data compression and transmission device using the differential pulse modulation method according to the present invention has a plurality of quantization characteristics, and the quantization characteristics are determined based on the threshold value. The local decoding circuit in the transmission circuit and the reception circuit of the transmission device has a plurality of decoding characteristics corresponding to the quantization circuit, and the local decoding circuit in the transmitting circuit and the receiving circuit of the transmission device has a plurality of decoding characteristics corresponding to the quantization circuit, and Since it is composed of an adaptive local decoding circuit including a characteristic selection circuit that selects a characteristic based on the threshold value, the characteristic can be adaptively switched to a characteristic in which only the valid data range of the difference signal is subject to quantization as the threshold value changes. This has the effect of providing a transmission device that can reduce quantization errors and has high encoding efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る差分パルス変調方式を用いた伝送
装置の好適な実施例の送信回路部を示すブロック構成図
、第2図は第1図における適応量子化回路の詳細ブロッ
ク構成図、第3図は第1図における適応局部復号化回路
の詳細ブロック構成図、第4図は第1図実施例の受信側
を示すブロック構成図、第5図(a)及び(b)は本発
明における適応量子化・復帰化特性の一例を示した図、
第6図は従来の差分パルス変調方式を用いた伝送装置の
送信回路部を示すブロック構成図、第7図は第6図にお
ける変化検出回路の詳細ブロック構成図、第8図は第6
図従来例の受信側を示すブロック構成図である。 図において、(1)は予測回路、(2)は減算器、(3
)は変化検出回路、(4a)は適応量子化回路、(5a
)は適応局部復号化回路、(6)は加算器、(7)はし
きい値発生回路、(8)。 9)は特性選択回路、(11)は送信バッファ回路、(
12)は絶対値回路、(13)は比較回路、(14)、
(15)は零割当回路、(21)は絶対値回路、(22
a>は可変長復号化回路、(23a)は適応局部復号化
回路、(24)は予測回路、(25)は加幹器、(10
0)はデジタル入力信号、(101)は予測信号、(1
02>は予測誤差信号、(103)は差分信号、(10
4a)は量子化信号(105a)は復号化信号、(10
6)は再生入力信号、(107)はしきい値、(113
)は変化検出信号、(200>は符号化信号、(222
al>は量子化信号、(222a2)はしきい値、(2
22a3)は変化検出信号(223a)は再生差分信号
、(224>は予測信号、(225)は再生信号である
。 なお図中同一部材には同一符号を付して説明を省略する
FIG. 1 is a block configuration diagram showing a transmitting circuit section of a preferred embodiment of a transmission device using a differential pulse modulation method according to the present invention, and FIG. 2 is a detailed block configuration diagram of an adaptive quantization circuit in FIG. 1. FIG. 3 is a detailed block diagram of the adaptive local decoding circuit in FIG. 1, FIG. 4 is a block diagram showing the receiving side of the embodiment of FIG. 1, and FIGS. A diagram showing an example of adaptive quantization/reversion characteristics in
FIG. 6 is a block configuration diagram showing the transmitting circuit section of a transmission device using the conventional differential pulse modulation method, FIG. 7 is a detailed block configuration diagram of the change detection circuit in FIG. 6, and FIG.
FIG. 2 is a block configuration diagram showing a receiving side of a conventional example. In the figure, (1) is a prediction circuit, (2) is a subtracter, and (3
) is a change detection circuit, (4a) is an adaptive quantization circuit, (5a
) is an adaptive local decoding circuit, (6) is an adder, (7) is a threshold generation circuit, and (8). 9) is a characteristic selection circuit, (11) is a transmission buffer circuit, (
12) is an absolute value circuit, (13) is a comparison circuit, (14),
(15) is a zero assignment circuit, (21) is an absolute value circuit, (22
a> is a variable length decoding circuit, (23a) is an adaptive local decoding circuit, (24) is a prediction circuit, (25) is a trunk unit, (10
0) is the digital input signal, (101) is the predicted signal, (1
02> is the prediction error signal, (103) is the difference signal, (10
4a) is the quantized signal (105a) is the decoded signal, (10
6) is the reproduction input signal, (107) is the threshold value, (113
) is a change detection signal, (200> is a coded signal, (222
al> is the quantized signal, (222a2) is the threshold value, (2
22a3) is a change detection signal (223a) is a reproduced difference signal, (224> is a predicted signal, and (225) is a reproduced signal. In the drawings, the same members are given the same reference numerals and explanations will be omitted.

Claims (2)

【特許請求の範囲】[Claims] (1)デジタル入力信号を差分パルス変調を用いてデー
タ圧縮伝送を行う送信回路と、該送信回路に対応する受
信回路と、を有する差分パルス変調方式を用いたデータ
圧縮伝送装置において、前記送信回路は、デジタル入力
信号を予測する予測信号を算出する予測回路と、前記入
力信号と予測信号との差である予測誤差信号と送信デー
タ量の平滑化を行うしきい値とから差分信号を出力する
変化検出回路と、前記差分信号を量子化する量子化回路
と、量子化された送信信号を一時的に蓄える送信バッフ
ァ回路と、前記しきい値を発生し且つ制御するしきい値
発生回路と、前期予測信号を算出する為に量子化信号を
局部的に復号化する局部復号化回路と、を含み、 前記受信回路は、受信信号を一時的に蓄える受信バッフ
ァ回路と、受信信号を復号化する局部復号化回路と、該
復号化信号と予測信号より再生信号を算出する加算器と
、を含み、 前記量子化回路は、複数の量子化特性を有し、該量子化
特性を前記しきい値により選択する特性選択回路を含む
適応量子化回路からなり、 前記送信回路及び受信回路中の局部復号化回路は、量子
化回路に対応して複数の復号化特性を有し、該復号化特
性を前記しきい値により選択する特性選択回路を含む適
応局部復号化回路とからなることを特徴とする差分パル
ス変調方式を用いたデータ圧縮伝送装置。
(1) In a data compression transmission device using a differential pulse modulation method, which includes a transmitting circuit that compresses and transmits digital input signals using differential pulse modulation, and a receiving circuit corresponding to the transmitting circuit, the transmitting circuit outputs a difference signal from a prediction circuit that calculates a prediction signal that predicts a digital input signal, a prediction error signal that is the difference between the input signal and the prediction signal, and a threshold that smoothes the amount of transmitted data. a change detection circuit, a quantization circuit that quantizes the difference signal, a transmission buffer circuit that temporarily stores the quantized transmission signal, and a threshold generation circuit that generates and controls the threshold; a local decoding circuit that locally decodes the quantized signal in order to calculate the early prediction signal; the receiving circuit includes a receiving buffer circuit that temporarily stores the received signal; and a receiving buffer circuit that decodes the received signal. The quantization circuit includes a local decoding circuit and an adder that calculates a reproduced signal from the decoded signal and the predicted signal, and the quantization circuit has a plurality of quantization characteristics, and the quantization characteristics are set to the threshold value. The local decoding circuit in the transmitting circuit and the receiving circuit has a plurality of decoding characteristics corresponding to the quantization circuit, and the local decoding circuit in the transmitting circuit and the receiving circuit has a plurality of decoding characteristics corresponding to the quantization circuit, and A data compression and transmission device using a differential pulse modulation method, comprising an adaptive local decoding circuit including a characteristic selection circuit that selects based on the threshold value.
(2)特許請求の範囲第(1)項記載の差分パルス変調
方式を用いたデータ圧縮伝送装置において、前記量子化
回路で選択される量子化特性は、無効データ範囲内(対
応するしきい値の指定範囲内)である差分信号の量子化
出力が”0”になるような特性であることを特徴とする
差分パルス変調方式を用いたデータ圧縮伝送装置。
(2) In the data compression transmission device using the differential pulse modulation method according to claim (1), the quantization characteristic selected by the quantization circuit is within the invalid data range (corresponding threshold value). 1. A data compression transmission device using a differential pulse modulation method, characterized in that the quantized output of a differential signal (within a specified range) is "0".
JP61140890A 1986-05-26 1986-06-17 Data compressing and transmitting equipment using differential pulse modulation system Pending JPS62296633A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP61140890A JPS62296633A (en) 1986-06-17 1986-06-17 Data compressing and transmitting equipment using differential pulse modulation system
KR1019870004872A KR910000707B1 (en) 1986-05-26 1987-05-18 Method and apparatus for encoding transmitting
AU73379/87A AU591287B2 (en) 1986-05-26 1987-05-25 Apparatus for encoding/transmitting image.
CA000537929A CA1280509C (en) 1986-05-26 1987-05-25 Method and apparatus for encoding/transmitting image
DE3789074T DE3789074T2 (en) 1986-05-26 1987-05-26 Method and device for encoding / transmitting images.
US07/053,627 US4809067A (en) 1986-05-26 1987-05-26 Method and apparatus for encoding transmitting and receiving image by pulse code modulation
EP87107644A EP0249086B1 (en) 1986-05-26 1987-05-26 Method and apparatus for encoding/transmitting image
CA000615828A CA1292060C (en) 1986-05-26 1990-08-15 Apparatus for encoding/transmitting an image
CA000615825A CA1292057C (en) 1986-05-26 1990-08-15 Apparatus for encoding/transmitting an image
CA000615827A CA1292059C (en) 1986-05-26 1990-08-15 Method for encoding/transmitting an image
CA000615826A CA1292058C (en) 1986-05-26 1990-08-15 Method for encoding/transmitting an image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61140890A JPS62296633A (en) 1986-06-17 1986-06-17 Data compressing and transmitting equipment using differential pulse modulation system

Publications (1)

Publication Number Publication Date
JPS62296633A true JPS62296633A (en) 1987-12-23

Family

ID=15279164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61140890A Pending JPS62296633A (en) 1986-05-26 1986-06-17 Data compressing and transmitting equipment using differential pulse modulation system

Country Status (1)

Country Link
JP (1) JPS62296633A (en)

Similar Documents

Publication Publication Date Title
EP0249086B1 (en) Method and apparatus for encoding/transmitting image
US5412484A (en) Variable rate coder/decoder system
US20070154090A1 (en) System and method for using pattern vectors for video and image coding and decoding
JP2000125297A (en) Method for coding and decoding consecutive image
WO1991003128A1 (en) Control system for encoding image
JPH02308671A (en) Conversion coder
JPH0473333B2 (en)
JPH0313089A (en) Encoder
US6028896A (en) Method for controlling data bit rate of a video encoder
JPH03149984A (en) Image encoding device
JPS5857836A (en) Forecasting encoder
AU607636B2 (en) Method for encoding/transmitting images
JPS62296633A (en) Data compressing and transmitting equipment using differential pulse modulation system
JP2797411B2 (en) Encoding device
Kim et al. Adaptive entropy-coded subband coding of image sequences
EP0998818B1 (en) A method in compression coding
JPH02239776A (en) Data transmitting device
JPH0235884A (en) Picture encoding/decoding system
JP2590162B2 (en) High-efficiency image coding system
GB2329782A (en) Buffer data control in a wavelet transform image compression system
JP2862457B2 (en) Encoding / decoding method of image information
JPS6028453B2 (en) Encoding method
KR0148131B1 (en) The method and apparatus of dpcm encoding
JPH03104435A (en) Data transmitter
Hwang et al. Storage-and entropy-constrained multi-stage vector quantization and its applications to progressive image transmission