JPS62296150A - Electrophotographic sensitive body - Google Patents
Electrophotographic sensitive bodyInfo
- Publication number
- JPS62296150A JPS62296150A JP13979186A JP13979186A JPS62296150A JP S62296150 A JPS62296150 A JP S62296150A JP 13979186 A JP13979186 A JP 13979186A JP 13979186 A JP13979186 A JP 13979186A JP S62296150 A JPS62296150 A JP S62296150A
- Authority
- JP
- Japan
- Prior art keywords
- photoreceptor
- org
- charge transfer
- metal
- charge transport
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 claims abstract description 34
- 229920005989 resin Polymers 0.000 claims abstract description 17
- 239000011347 resin Substances 0.000 claims abstract description 17
- 238000002441 X-ray diffraction Methods 0.000 claims abstract description 16
- 239000011230 binding agent Substances 0.000 claims abstract description 14
- 239000002245 particle Substances 0.000 claims abstract description 12
- 239000000758 substrate Substances 0.000 claims abstract description 12
- 108091008695 photoreceptors Proteins 0.000 claims description 46
- 239000000126 substance Substances 0.000 claims description 17
- 239000000463 material Substances 0.000 abstract description 20
- 230000035945 sensitivity Effects 0.000 abstract description 7
- 238000002156 mixing Methods 0.000 abstract description 3
- 150000007857 hydrazones Chemical class 0.000 abstract description 2
- DNXIASIHZYFFRO-UHFFFAOYSA-N pyrazoline Chemical compound C1CN=NC1 DNXIASIHZYFFRO-UHFFFAOYSA-N 0.000 abstract description 2
- AAAQKTZKLRYKHR-UHFFFAOYSA-N triphenylmethane Chemical compound C1=CC=CC=C1C(C=1C=CC=CC=1)C1=CC=CC=C1 AAAQKTZKLRYKHR-UHFFFAOYSA-N 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 44
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical group OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 10
- 239000013078 crystal Substances 0.000 description 8
- 239000010408 film Substances 0.000 description 7
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 5
- -1 phthalocyanine compound Chemical class 0.000 description 5
- 239000002356 single layer Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 4
- 206010034972 Photosensitivity reaction Diseases 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 239000011247 coating layer Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 230000036211 photosensitivity Effects 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- YGBCLRRWZQSURU-UHFFFAOYSA-N 4-[(diphenylhydrazinylidene)methyl]-n,n-diethylaniline Chemical compound C1=CC(N(CC)CC)=CC=C1C=NN(C=1C=CC=CC=1)C1=CC=CC=C1 YGBCLRRWZQSURU-UHFFFAOYSA-N 0.000 description 2
- 101100295091 Arabidopsis thaliana NUDT14 gene Proteins 0.000 description 2
- 229910002483 Cu Ka Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- 239000000565 sealant Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- PIGCSKVALLVWKU-UHFFFAOYSA-N 2-Aminoacridone Chemical compound C1=CC=C2C(=O)C3=CC(N)=CC=C3NC2=C1 PIGCSKVALLVWKU-UHFFFAOYSA-N 0.000 description 1
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 101000650778 Boana raniceps Raniseptin-4 Proteins 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 206010011224 Cough Diseases 0.000 description 1
- 101000637792 Homo sapiens Solute carrier family 35 member G5 Proteins 0.000 description 1
- 229910001370 Se alloy Inorganic materials 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 102100032019 Solute carrier family 35 member G5 Human genes 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 125000000664 diazo group Chemical group [N-]=[N+]=[*] 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 208000017983 photosensitivity disease Diseases 0.000 description 1
- 231100000434 photosensitization Toxicity 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/06—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
- G03G5/0664—Dyes
- G03G5/0696—Phthalocyanines
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Photoreceptors In Electrophotography (AREA)
Abstract
Description
【発明の詳細な説明】
3、発明の詳細な説明
〔発明の属する技術分野〕
本発明は正帯電方式で用いられる有機材料系の電子写真
用感光体に係わり、特に長波長域に高感度を有する電子
写真用、感光体に関する。Detailed Description of the Invention 3. Detailed Description of the Invention [Technical Field to Which the Invention Pertains] The present invention relates to an organic material-based electrophotographic photoreceptor used in a positive charging system, and particularly relates to an electrophotographic photoreceptor that has high sensitivity in a long wavelength region. This invention relates to a photoreceptor for electrophotography.
従来より電子写真用感光体(以下、単に感光体とも称す
る)の感光材料としてはセレンまたはセレン合金などの
無機光導電性物質、酸化亜鉛あるいは硫化カドミウムな
どの無機光導電性物質を結着剤樹脂中に分散させたもの
、ポ’J−N−シニール力ルバゾールまたはポリビニー
ルアントラセンなどの有機光導電性物質、フタロシアニ
ン化合物あるいはビスアゾ化合物などの有機光導電性物
質を結着剤樹脂中に分散させたものや真空蒸着させたも
のなどが利用されている。Conventionally, photosensitive materials for electrophotographic photoreceptors (hereinafter simply referred to as photoreceptors) are inorganic photoconductive substances such as selenium or selenium alloys, inorganic photoconductive substances such as zinc oxide or cadmium sulfide, and binder resins. An organic photoconductive material such as polyvinyl anthracene, a phthalocyanine compound or a bisazo compound dispersed in a binder resin. Materials and vacuum-deposited materials are used.
また感光体には暗所で表面電荷を保持する機能。The photoreceptor also has the ability to retain surface charge in the dark.
光を受容して電荷を発生する機能、同じく光を受容して
電荷を輸送する機能とが必要であるが、一つの層でこれ
らの機能をあわせもった、いわゆるtlL層型感型感光
体主として電荷発生に寄与する層と主として暗所での表
面電荷保持と光受容時の電荷輸送に寄与する層とに機能
分離した層を積層した、いわゆる積層型感光体がある。It is necessary to have the function of receiving light and generating charges, and also the function of receiving light and transporting charges, but the so-called tlL layer type photoreceptor, which has both these functions in one layer, is mainly used. There is a so-called laminated photoreceptor in which functionally separated layers are laminated, including a layer that contributes to charge generation and a layer that mainly contributes to surface charge retention in the dark and charge transport during light reception.
これらの感光体を用いた電子写真法による画像形成には
、例えばカールソン方式が適用される。この方式での画
像形成は暗所での感光体へのコロナ放電による帯電、帯
電された感光体表面上への原稿より反射された光による
原稿の文字や絵などの静電潜像の形成、形成された静電
潜像のトナーによる現像、現像されたトナー像の紙など
の支持体への転写、トナー像の紙などの支持体への定着
により行われ、トナー像転写後の感光体は除電、残留ト
ナーの除去、光除電などを行った後、再(重用に供され
る。For example, the Carlson method is applied to image formation by electrophotography using these photoreceptors. Image formation in this method involves charging the photoconductor in a dark place by corona discharge, forming an electrostatic latent image of text or pictures on the document using light reflected from the document onto the surface of the charged photoconductor. This is done by developing the formed electrostatic latent image with toner, transferring the developed toner image to a support such as paper, and fixing the toner image to the support such as paper. After the toner image is transferred, the photoreceptor is After performing static neutralization, residual toner removal, optical static neutralization, etc., it is reused for heavy use.
近年、可とう性、熱安定性、膜形成性などの利点により
、有機材料を用いた積層型感光体が実用化されてきてい
る。この種の積層型感光体は通常導電性基体上に有機電
荷輸送物質を含む電荷発生層、有機電荷輸送物質を含む
電荷輸送−が順次積層されてなり、上述の画像形成に際
して負帯マ方式がとられる。ところが負コロナ放電では
多量のオゾンが発生するため帯電時感光体表面はオゾン
により強く酸化される状態となる。したがって、感光体
自体あるいは装置の機構によるオゾン劣化防止対策が必
要である。。一方、正帯電方式は負コロナ放電に比べて
正コロナ放電が安定している、オゾンの発生が少ない、
さらに適合する現像側の製造が容易であるなど好都合で
あるが、前述の導電性基体−電荷発生層−電荷輸送層の
層構成で正帯電方式を適用できる感光体を形成するに好
適な有機電荷輸送物質、有機電荷輸送性物質はまだ見い
だされていない。In recent years, multilayer photoreceptors using organic materials have been put into practical use due to their advantages such as flexibility, thermal stability, and film formability. This type of laminated photoreceptor usually has a charge generation layer containing an organic charge transporting substance and a charge transporting layer containing an organic charge transporting substance laminated in sequence on a conductive substrate. Be taken. However, in negative corona discharge, a large amount of ozone is generated, so that the surface of the photoreceptor during charging is strongly oxidized by ozone. Therefore, it is necessary to take measures to prevent ozone deterioration by using the photoreceptor itself or the mechanism of the device. . On the other hand, with the positive charging method, positive corona discharge is more stable than negative corona discharge, and less ozone is generated.
Furthermore, it is convenient that it is easy to manufacture a compatible developing side, and the above-mentioned layer structure of the conductive substrate - charge generation layer - charge transport layer has an organic charge suitable for forming a photoreceptor to which a positive charging method can be applied. Transport substances and organic charge transporting substances have not yet been discovered.
そこで、現在実用可能な有機材料を用いて正帯電で使用
可能な感光体を得るために、電荷輸送層の上に電荷発生
層を形成する機能分離型、あるいは電荷輸送物質と電荷
輸送物質とを混合して単一の感光層とする単層型の感光
体が考えられている。Therefore, in order to obtain a photoreceptor that can be positively charged using currently available organic materials, a functionally separated type in which a charge generation layer is formed on a charge transport layer, or a charge transport material and a charge transport material are used. A single-layer type photoreceptor in which the photoreceptors are mixed to form a single photoreceptor layer has been considered.
しかしながら、前者の機能分離型では、電荷輸送層上に
電荷発生層を形成する際、電荷発生層を1μm以下望ま
しくは0.3μm以下の膜厚で、かつ電荷輸送層を変質
させることなく形成することが塗布法では特に困難な課
題である。さらに、蒸着法では蒸着が必要なために製造
が困難で高価になる欠点を有している。However, in the former functionally separated type, when forming the charge generation layer on the charge transport layer, the charge generation layer is formed with a thickness of 1 μm or less, preferably 0.3 μm or less, and without altering the charge transport layer. This is a particularly difficult problem with coating methods. Furthermore, the vapor deposition method has the disadvantage that it is difficult and expensive to manufacture because it requires vapor deposition.
一方、後者の単層型では表面電位が低く、かつ繰り返し
特性も不十分であるとの欠点を有している一単層型のこ
れらの欠点を解決するため特開昭59−116754号
公報にフタロシアニン化合物光導電層を2〜3層以上設
け、かつ各層間のフタロシアニンの結晶形または金属を
異ならしめる方法が開示されている。しかしながら、い
まだ単層の欠点である表面電位の向上が見られない。On the other hand, the latter single-layer type has the disadvantages of low surface potential and insufficient repeatability.In order to solve these disadvantages of the single-layer type, Japanese Patent Application Laid-Open No. 116754/1983 A method is disclosed in which two to three or more phthalocyanine compound photoconductive layers are provided and the crystal forms or metals of the phthalocyanine between the layers are made different. However, the improvement in surface potential, which is a drawback of single layer, has not yet been observed.
また、特開昭59 151!58号公報にフタロシアニ
ン化合物光導電層中にジスアゾ顔料と増感剤とを添加す
る方法が開示されているが感度面でやや劣る欠点を有す
る。Further, JP-A-59-151!58 discloses a method in which a disazo pigment and a sensitizer are added to a phthalocyanine compound photoconductive layer, but this method has the disadvantage that the sensitivity is somewhat inferior.
さらに、本発明者らが先に提案した二層化型のボールミ
ル粉砕無金属フタロシアニンでは連続繰り返し使用時の
安定性は向上したが感度面で充分満足するにはいたらな
い。Further, although the two-layered ball mill pulverized metal-free phthalocyanine proposed by the present inventors has improved stability during continuous repeated use, it is still not fully satisfactory in terms of sensitivity.
本発明は、前述の欠点を除去し、長波長域に高感度を有
する正帯電方式で使用可能な電子写真用感光体を提供す
ることを目的とする。SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and provide an electrophotographic photoreceptor that has high sensitivity in a long wavelength range and can be used in a positive charging system.
本発明の目的は導電性基体上に電荷輸送層と電荷輸送物
質と電荷輸送物質とを結着剤樹脂中に混合分散した感光
層を設けてなる電子写真用感光体において、感光層に含
まれる電荷輸送物質である無金属フタロシアニンのX線
回折図でブラング角度(2θ)67°、8.7°、15
.1°、17.7°、23.8“。An object of the present invention is to provide an electrophotographic photoreceptor comprising a photosensitive layer in which a charge transport layer, a charge transport material, and a charge transport material are mixed and dispersed in a binder resin on a conductive substrate, and in which An X-ray diffraction diagram of metal-free phthalocyanine, which is a charge transport material, shows Brangg angles (2θ) of 67°, 8.7°, and 15.
.. 1°, 17.7°, 23.8".
26.1’ 、 27.4°、 30.0°に明確な強
いピークを示す無金属フタロシアニン(以上、第1の発
明に係る)、同じくX線回折図でブラッグ角度(2θ)
6.7°、7.2°、 13.4°、14.5°、 1
5.2°、 16.0°。Metal-free phthalocyanine (according to the first invention) showing clear strong peaks at 26.1', 27.4°, and 30.0°, also Bragg angle (2θ) in the X-ray diffraction diagram
6.7°, 7.2°, 13.4°, 14.5°, 1
5.2°, 16.0°.
20.2°、21.7°、24.Oo、 24.8°、
26.6°。20.2°, 21.7°, 24. Oo, 24.8°,
26.6°.
27.3°に強いピークを示す無金属フタロシアニン(
以上第2の発明に係る)のうち、上記無金属フタロシア
ニン粒子の長袖径が0.5μm以上7.0μm以下であ
り、長軸径/短軸径の比が3以上10以下である無金属
フタロシアニンを使用することにより達成される。Metal-free phthalocyanine (
According to the second invention), the metal-free phthalocyanine particles have a long sleeve diameter of 0.5 μm or more and 7.0 μm or less, and a ratio of major axis diameter/minor axis diameter of 3 or more and 10 or less. This is achieved by using
第4図、第2図、第3図はそれぞれ無金属フタロシアニ
ンのα型、第1の発明に係る無金属フタロシアニン、第
2の発明に係る無金属フタロシアニンのX線回折図形(
Cu −Ka )である。本発明の好ましいglである
無金属フタロシアニンは次のような特徴的なX線回折図
を有する。FIGS. 4, 2, and 3 are X-ray diffraction patterns of the α-type metal-free phthalocyanine, the metal-free phthalocyanine according to the first invention, and the metal-free phthalocyanine according to the second invention, respectively (
Cu-Ka). The metal-free phthalocyanine, which is a preferred GL of the present invention, has the following characteristic X-ray diffraction pattern.
第1の発明に係る無金属フタロシアニンは、ブラッグ角
度(2θ)6.7°、8.7°、!5.1°、 17
.7°。The metal-free phthalocyanine according to the first invention has a Bragg angle (2θ) of 6.7°, 8.7°,! 5.1°, 17
.. 7°.
23.3°、26.1°、27.4°、 30.0°に
明確な強いピークを示し、他の結晶形のそれとを比較す
ると、α型およびβ型とは明らかな相違点があり、X型
。It shows distinct strong peaks at 23.3°, 26.1°, 27.4°, and 30.0°, and when compared with those of other crystal forms, there are clear differences from the α and β forms. , X type.
γ型、η型等公知の結晶形とは異なる。It is different from known crystal forms such as γ type and η type.
第20発明に係る無金属フタロシアニンは、ブラッグ角
度(2θ)6.7°、7.2°、 13.4°、 1
4.5°。The metal-free phthalocyanine according to the 20th invention has a Bragg angle (2θ) of 6.7°, 7.2°, 13.4°, 1
4.5°.
15.2°、 16.0°、20.2°、21.7°
、24.0°。15.2°, 16.0°, 20.2°, 21.7°
, 24.0°.
24.8°、26.6°、27.3°に明確な強いe−
りを示し、他の結晶形のそれと比較すると、α型に部分
的に類似しているが、β型とは明らかな相違点があり、
X型、γ型、η型等公知の結晶形とは異なる。Clear strong e- at 24.8°, 26.6°, 27.3°
When compared with other crystal forms, it is partially similar to the α-form, but has clear differences from the β-form.
It is different from known crystal forms such as X type, γ type, and η type.
さらに、上記2種の結晶形で針状粒子が見られるもの、
詳しくは、第65図に示すように、粒子に接する面積が
最小となる長方形を作り、長辺の長さを長袖径b1短辺
の長さを短軸径aと定義した場合、長袖径すが0.5μ
m以上7.0μm以下であり、長袖径b/短軸径aの比
が3以上10以下であることを特徴とするものは、優れ
た電子写真特性を示す。以下実施例を示す。Furthermore, those in which acicular particles are seen in the above two types of crystal forms,
In detail, as shown in Figure 65, if a rectangle is made with the minimum area in contact with the particles, and the length of the long side is defined as the long sleeve diameter b1, and the length of the short side is defined as the short axis diameter a, then the long sleeve diameter is is 0.5μ
Those characterized by having a length of m or more and 7.0 μm or less and a ratio of long sleeve diameter b/short axis diameter a of 3 or more and 10 or less exhibit excellent electrophotographic properties. Examples are shown below.
第1図は本発明の感光体の一実施例を示す概念的断面図
で、1は導電性基体、2は電荷輸送層、3は感光層であ
る。FIG. 1 is a conceptual cross-sectional view showing one embodiment of the photoreceptor of the present invention, in which 1 is a conductive substrate, 2 is a charge transport layer, and 3 is a photosensitive layer.
導電性基体1 it感光体の電極としての役目と同時に
他の2つの1の支持体となっており形状はフィルム状、
板状あるいは円筒状いずれでもよく、また材質的にはア
ルミニウム、ステンレス銅などの金属、またはガラス、
セラミック、樹脂などの表面に導電処理を施したもので
もよい。The conductive substrate 1 acts as an electrode for the photoreceptor and at the same time serves as a support for the other two 1, and has a film-like shape.
It may be plate-shaped or cylindrical, and the material may be metal such as aluminum, stainless copper, glass,
It may also be made of ceramic, resin, etc. whose surface is subjected to conductive treatment.
電荷輸送層2は有機電荷輸送物質を結着剤樹脂中に分散
させてなるlであり、暗所では絶縁体層として感光体の
表面電荷の保持に寄与し、光受容時には感光層3より注
入される電荷を輸送する機能を発揮する。The charge transport layer 2 is made by dispersing an organic charge transport substance in a binder resin, and serves as an insulating layer in the dark, contributing to retaining the surface charge of the photoreceptor, and when receiving light, is injected from the photoreceptor layer 3. It exhibits the function of transporting electric charges.
感光層3は有機電荷輸送物質と有機電荷輸送物質とを結
合剤樹脂中に分散させてなる層であり、光を受容して電
荷を発生する機能と同時に、発生した電荷を輸送する機
能も有している。The photosensitive layer 3 is a layer formed by dispersing an organic charge transport substance in a binder resin, and has the function of receiving light and generating electric charge, and at the same time has the function of transporting the generated electric charge. are doing.
電荷輸送M2.感光感光に用いられる有機電荷輸送物質
としては、ピラゾリン、ヒドラゾン、トリフェニルメタ
ン、オキサジアゾールなどの誘導体が考えられる。また
、結合剤(封脂としては、公知の電気絶縁性で皮膜形成
性を有する熱可塑性あるいは熱硬化性樹脂など一般のす
べての結着剤樹脂が使用できる。適当な結着剤樹脂の例
は、これ1=限定されるものではないが、飽和ポリエス
テルl!を指、ポリアミド樹脂、アクリル樹脂、ポリカ
ーボネート樹脂、エチレン−酢酸ビニル重合体、塩化ビ
ニール、セルロースエステルなどの熱可塑性結着剤樹脂
、エポキン樹脂、ウレタン樹脂、シリコン樹脂、フェノ
ール樹脂、熱硬化性アクリル(封脂などの熱硬化性結着
剤樹脂である。Charge transport M2. Photosensitivity As the organic charge transport substance used for photosensitization, derivatives such as pyrazoline, hydrazone, triphenylmethane, and oxadiazole can be considered. In addition, as the binder (sealant), all general binder resins such as thermoplastic or thermosetting resins that have electrical insulation and film-forming properties can be used. Examples of suitable binder resins are: , this 1 = saturated polyester l!, thermoplastic binder resins such as, but not limited to, polyamide resins, acrylic resins, polycarbonate resins, ethylene-vinyl acetate polymers, vinyl chloride, cellulose esters, Epoquin Thermosetting binder resins such as resins, urethane resins, silicone resins, phenolic resins, and thermosetting acrylics (sealants).
電荷輸送層2の膜厚は実用的に有効な表面電位を維持す
るためには3.〜30μmの範囲が好ましく、より好適
には5〜20μmである。また、感光層3の膜厚は0.
5〜10μmの範囲が好ましく、より好適には1〜5μ
mである。感光層3の膜厚が0.5μm以下では光感度
が悪くなり、かつそのような薄膜の形成が困難であるな
ど製造上の問題があり、膜厚が10μm以上になると表
面電位が低くなり実用的でなくなる。The thickness of the charge transport layer 2 must be 3. in order to maintain a practically effective surface potential. The range is preferably 30 μm, more preferably 5 μm to 20 μm. Further, the film thickness of the photosensitive layer 3 is 0.
The range is preferably 5 to 10 μm, more preferably 1 to 5 μm.
It is m. If the film thickness of the photosensitive layer 3 is less than 0.5 μm, there are manufacturing problems such as poor photosensitivity and difficulty in forming such a thin film, and if the film thickness is more than 10 μm, the surface potential becomes low, making it impractical for practical use. It becomes irrelevant.
本発明の感光体の層構成として感光層上に被覆層を形成
しても良い。被覆層の膜厚は表面性状を変化しうる厚み
であればよ<0.01〜3μmが適当である。被覆層の
膜厚が0.01μm以下と薄すぎる場合には電荷受容能
すなわち表面電位の向上が望めずまた耐刷性の向上も期
待できず3μm以上と厚い場合には繰り返し連続使用時
に残留電位が増大するので好ましくない。被覆層の形成
は被覆しようとする感光層に応じて塗布法あるいは気相
法で行われ被覆材料としては感光層に含まれる電荷輸送
物質の光の吸収極大の波長領域でできるだけ透明である
ことが望ましい。As a layer structure of the photoreceptor of the present invention, a coating layer may be formed on the photosensitive layer. The thickness of the coating layer is preferably <0.01 to 3 μm as long as it can change the surface properties. If the thickness of the coating layer is too thin (less than 0.01 μm), no improvement in charge-accepting ability, that is, surface potential, or improvement in printing durability can be expected. is undesirable because it increases The coating layer is formed by a coating method or a vapor phase method depending on the photosensitive layer to be coated, and the coating material should be as transparent as possible in the wavelength region where the light absorption of the charge transport substance contained in the photosensitive layer is maximum. desirable.
以下、具体的な実施例について説明する。Specific examples will be described below.
〔実施例1.〕(第1の発明に係る)
まず、第4図に示すようなX線回折図(Cu −Ka)
を有するα型無金嘱フタロシアニンを出発物質とし、2
つのリニアモーターを対向して配置した間にα型無金属
フタロシアニンと作用小片としてテフロンピースを内蔵
した非磁性罐体を菅いて粉砕するLl!JMAC(Li
near Induction !Jator Mi
xing andCrashing:富士電機製)処理
を20分間行い微粉末化した。この微粉末化された試料
1重量部とDMF(N、 N’−ジメチルホルムアミド
)溶剤50重量部とを超音波ホモジナイザーで1時間超
音波分散処理を行った。その後、試料とDMF とを分
離・濾過して、乾燥して目的の試料を得た。このような
処理した後の試料のX線回折図が第2図である。第2図
にお:するα型無金属フタロシアニンのX線回折図から
上記の処理により明らかに結晶が変化していることがわ
かる。[Example 1. ] (Regarding the first invention) First, an X-ray diffraction diagram (Cu-Ka) as shown in FIG.
Starting material is α-type gold-free phthalocyanine having 2
Between two linear motors placed facing each other, α-type metal-free phthalocyanine and a non-magnetic case containing a Teflon piece as a working piece are passed through and crushed.Ll! JMAC(Li
Near induction! Jator Mi
xing and crushing (manufactured by Fuji Electric) for 20 minutes to form a fine powder. 1 part by weight of this finely powdered sample and 50 parts by weight of DMF (N, N'-dimethylformamide) solvent were subjected to ultrasonic dispersion treatment for 1 hour using an ultrasonic homogenizer. Thereafter, the sample and DMF were separated, filtered, and dried to obtain the target sample. FIG. 2 is an X-ray diffraction diagram of the sample after such treatment. From the X-ray diffraction diagram of the α-type metal-free phthalocyanine shown in FIG. 2, it can be seen that the crystals have clearly changed due to the above treatment.
さらに、走査型電子顕微鏡(SE!J)により観察する
と、針状粒子が見られ、それが長軸径bo、5μm以上
7μm以下、長軸、径b/短軸径aの比が3以上10以
下の範囲内にあることがわかる。Further, when observed with a scanning electron microscope (SE!J), acicular particles were observed, with a major axis diameter bo of 5 μm or more and 7 μm or less, and a ratio of major axis diameter b/minor axis diameter a of 3 or more and 10 It can be seen that it is within the following range.
次に電荷輸送物質1−フェニル−3−(P−ジエチルア
ミノスチリル)−5−(パラジエチルアミノフェニル)
−2−ピラゾリン(ASPP :亜南呑料製)100重
量部をテトラヒドロフラン(THF)700重量部に溶
かした液とポリメタクリル酸メチルポリマー(PMMA
:東京化成製)100重量部をトルエン700重量部
に溶かした液とを混合してできた塗液をアルミ蒸着ポリ
エステルフィルム基体上にワイヤーバーにて塗布し、乾
燥後の膜厚が102mになるように電荷輸送店を形成し
た。このようにして得られた電荷輸送層上に上記の各処
理された無金属フタロシアニン50重量部とASPP
100重量部をポリニスチル樹脂(商品名バイロン20
0:東洋紡製)100重量部とTHF溶剤とともに3時
間混合機により混練して塗布液を調整し、ワイヤーバー
にて塗布し、乾燥後の膜厚が2μlになるように単層型
感光層を形成し感光体を作製した。Next, the charge transport substance 1-phenyl-3-(P-diethylaminostyryl)-5-(para-diethylaminophenyl)
A solution prepared by dissolving 100 parts by weight of -2-pyrazoline (ASPP: manufactured by Anan Drinks Co., Ltd.) in 700 parts by weight of tetrahydrofuran (THF) and polymethyl methacrylate polymer (PMMA)
A coating solution prepared by mixing 100 parts by weight of (manufactured by Tokyo Kasei) dissolved in 700 parts by weight of toluene is applied onto an aluminum-deposited polyester film substrate using a wire bar, resulting in a film thickness of 102 m after drying. A charge transport store was formed. 50 parts by weight of each of the above-treated metal-free phthalocyanines and ASPP were added to the charge transport layer thus obtained.
100 parts by weight of polynystyl resin (trade name: Vylon 20)
A coating solution was prepared by kneading 100 parts by weight (manufactured by Toyobo Co., Ltd.) and a THF solvent for 3 hours in a mixer, and then applied with a wire bar to form a single-layer photosensitive layer so that the film thickness after drying was 2 μl. A photoreceptor was prepared.
〔実施例2〕 (第2の発明に係る)
実施例1と同様に第1図に示すα型無金属フタロシアニ
ンを粉砕のための乾式−次処理を行う。[Example 2] (According to the second invention) In the same manner as in Example 1, the α-type metal-free phthalocyanine shown in FIG. 1 is subjected to a dry process for pulverization.
この処理により微粉末化された試料を、実施例1の0肝
溶剤をDEG (ジエチレングリコール)溶剤にかえて
処理をする他は全〈実施例1と同様の処理を行う。その
後、試料とDEGとを分離・濾過して、乾燥して目的の
試料を得た。このような処理した後の試料のX線回折図
が第3図である。第3図から、第4図に示すα型無金属
フタロシアニンのX線回折図および第2図に示す第1の
発明に係るもののX線回折図と部分的に同様な所もある
が、新たなピーク等が出現しており、上記の処理により
明らかに結晶が変化していることがわかる。SEMによ
る観察結果、粒子径は、実施例1と同様、長軸径b0.
5μm以上7μm以下、長軸径b/短軸径aの比が3以
上lO以下の範囲にあった。The sample pulverized by this treatment was treated in the same manner as in Example 1, except that the zero liver solvent in Example 1 was replaced with a DEG (diethylene glycol) solvent. Thereafter, the sample and DEG were separated, filtered, and dried to obtain a target sample. FIG. 3 shows an X-ray diffraction diagram of the sample after such treatment. From FIG. 3, there are some parts that are similar to the X-ray diffraction diagram of the α-type metal-free phthalocyanine shown in FIG. 4 and the X-ray diffraction diagram of the one according to the first invention shown in FIG. Peaks and the like appear, indicating that the crystals have clearly changed due to the above treatment. As a result of observation by SEM, the particle diameter was the same as in Example 1, with the major axis diameter b0.
The ratio of major axis diameter b/minor axis diameter a was in the range of 5 μm or more and 7 μm or less, and 3 or more and 1O or less.
続いて実施例1の場合の処理と同様の処理により感光体
を作製した。Subsequently, a photoreceptor was produced by the same process as in Example 1.
〔比較例1〕
無金属フタロシアニンを5℃以下で硫酸に一度溶解し、
氷水中に注ぎ再析出させ、実施例2のDEG処理と同様
の処理をした無金属フタロシアニンは、実施例2と同様
なX線回折ピークを示す。[Comparative Example 1] Metal-free phthalocyanine was once dissolved in sulfuric acid at 5°C or lower,
The metal-free phthalocyanine, which was poured into ice water and reprecipitated and subjected to the same DEG treatment as in Example 2, shows the same X-ray diffraction peak as in Example 2.
託)。1により観察した所、実施例1および2で観察さ
れた針状粒子は見られなかった。この無金属フタロシア
ニンを電荷輸送物質として用いた以外は、実施例1に準
じて感光体を作製した。entrustment). When observed using Example 1, the acicular particles observed in Examples 1 and 2 were not observed. A photoreceptor was produced in accordance with Example 1, except that this metal-free phthalocyanine was used as the charge transport material.
〔比較例2〕
ボールミルで150時間粉砕処理した無金属フタロシア
ニンを電荷輸送物質として用いた以外は実施例1に準じ
て感光体を作製した。[Comparative Example 2] A photoreceptor was produced according to Example 1, except that metal-free phthalocyanine that had been pulverized in a ball mill for 150 hours was used as the charge transport material.
実施例1.2および比較例1.2で作製した咳光体の電
子写真特性を川口電機製静電記録紙試験装着rSP−4
28Jを用いて測定した。感光体の表面電位Vs (ボ
ルト)は暗所で+6. (lkVのコロナ放電を10秒
間行って感光体表面を正帯電せしめたときの初期の表面
電位であり、続いてコロナ放電を中止した状態で2秒間
暗所保持したときの表面電位Vd (ボルト)を測定し
、さらに続いて感光体表面をlkVの790r+m波長
光を照射したときの表面電位がVdの半分になるまでの
時間(秒)を求め、その時間に光照度1μWをかけた渣
を半減衰露光量E ’A (μJ/cIIl )とした
。また、1μwの7901mの波長光を10秒間感光体
表面に照射したときの表面電位を残留電位Vr (ボル
ト)とした。これらの測定結果を第1表に示す。The electrophotographic characteristics of the cough photoreceptors produced in Example 1.2 and Comparative Example 1.2 were measured using Kawaguchi Electric's electrostatic recording paper test mounting rSP-4.
Measured using 28J. The surface potential Vs (volts) of the photoreceptor is +6. (This is the initial surface potential when corona discharge of lkV is performed for 10 seconds to positively charge the surface of the photoreceptor, and then the surface potential is Vd (volts) when the corona discharge is stopped and the surface is kept in the dark for 2 seconds. Then, when the surface of the photoconductor is irradiated with lkV 790r+m wavelength light, the time (seconds) until the surface potential becomes half of Vd is determined, and the residue is half-attenuated by multiplying that time by the light intensity of 1 μW. The exposure amount E'A (μJ/cIIl) was defined as the residual potential Vr (volts).The surface potential when the surface of the photoreceptor was irradiated with 1 μW of 7901 m wavelength light for 10 seconds was defined as the residual potential Vr (volts). It is shown in Table 1.
第1表
第1表に見られるように実施例1および実施例2は正帯
電方式においても比較例1および比較例2に比べて79
0nmの長波長光域で非常に高感度で優れた電子写真特
性を示す感光体であることが分かる。Table 1 As shown in Table 1, Examples 1 and 2 were 79% lower than Comparative Examples 1 and 2 even in the positive charging method.
It can be seen that the photoreceptor exhibits extremely high sensitivity and excellent electrophotographic properties in the long wavelength light region of 0 nm.
〔実施例3および実施例4〕
実施例1および実施例2のそれぞれの電荷輸送層に替え
て、P−ジエチルアミノベンズアルデヒド−ジフェニル
ヒドラゾン(ABPH:亜南呑I!り60重量部、ポリ
エステル(封脂(商品名バイロン200:東洋紡製)4
0重量部、 tHF1400重量部よりなる塗液を乾燥
後の膜厚が10μmになるようにアルミ蒸着ポリエステ
ルフィルム基体上にワイヤーバーで塗布して電荷輸送層
とした以外は実施例1に準じて実施例3および実施例4
の感光体を作製した。これらの感光体について実施例1
と同じ条件で電子写真特性を測定した。その結果を第2
表に示す。[Example 3 and Example 4] In place of each of the charge transport layers of Example 1 and Example 2, P-diethylaminobenzaldehyde-diphenylhydrazone (ABPH: 60 parts by weight of Asanan I!), polyester (sealing (Product name Byron 200: manufactured by Toyobo) 4
The procedure was carried out according to Example 1, except that a coating liquid consisting of 0 parts by weight and 1400 parts by weight of tHF was coated with a wire bar onto an aluminum-deposited polyester film substrate so that the film thickness after drying was 10 μm to form a charge transport layer. Example 3 and Example 4
A photoreceptor was fabricated. Example 1 about these photoreceptors
The electrophotographic properties were measured under the same conditions. The result is the second
Shown in the table.
第2表に見られるように充分高い表面電位であり、さら
に高感度な特性を示す感光体であることが分かる。As seen in Table 2, it can be seen that the photoreceptor has a sufficiently high surface potential and exhibits highly sensitive characteristics.
本発明によれば、α型無金属フタロシアニンをL l
>A M A C等の乾式−次処理後DEC等の溶剤で
湿式処理することにより、X線回折図のブラッグ角度(
2θ)6.7° 、7.2° 、 13.4° 、
14.5° 、 15.2°。According to the present invention, the α-type metal-free phthalocyanine is L l
> Dry treatment such as AMAC, followed by wet treatment with a solvent such as DEC, to improve the Bragg angle (
2θ) 6.7°, 7.2°, 13.4°,
14.5°, 15.2°.
16.0°、20.2’ 、21.7°124.0°
、24.8° 。16.0°, 20.2', 21.7°124.0°
, 24.8°.
26.6°、27.3°に強いピークを有する無金属フ
タロシアニンおよび6.7°、8,7°、15.1°、
17.7°。Metal-free phthalocyanine with strong peaks at 26.6°, 27.3° and 6.7°, 8.7°, 15.1°,
17.7°.
238°、26.1°、27.4°、 30.(1°に
強いピークを有する無金萬フタロシアニンが得られる。238°, 26.1°, 27.4°, 30. (Gold-free phthalocyanine with a strong peak at 1° is obtained.
このような無金属フタロシアニンを感光)として用いた
感光体は乾式−次処理(ボールミル等)した無金属フタ
ロシアニンを感光層として用いた感光体に比べて、長波
長域での光感度を著しく向上させることができた。また
、上記のX線回折ピークを有する無金属フタロシアニン
のうち、針状粒子を有するものは、同様のx′8回折ピ
ークを有し、針状粒子てないものに比べて、さらに長波
長域での光感度を著しく向上させることができた。した
がって、半導体レーザの発振波長域に正帯電方式で高感
度を有する感光体が得られ、半導体レーザプリンターに
有効に使用できる。A photoreceptor using such metal-free phthalocyanine as the photosensitive layer has significantly improved photosensitivity in the long wavelength range compared to a photoreceptor using dry-processed (ball milled, etc.) metal-free phthalocyanine as the photosensitive layer. I was able to do that. Furthermore, among the metal-free phthalocyanines having the above-mentioned X-ray diffraction peaks, those with acicular particles have similar x'8 diffraction peaks, and in longer wavelength ranges than those without acicular particles. It was possible to significantly improve the photosensitivity of . Therefore, a positively charged photoreceptor having high sensitivity in the oscillation wavelength range of a semiconductor laser can be obtained, and can be effectively used in a semiconductor laser printer.
第1図は本発明の感光体の一実箱例を示す川念的断面図
である。第4図、第2図および第3図はそれぞれα型無
金属フタロシアニン、第1および第2の発明に係る無金
属フタロシアニンのX線回折図、第5図は、粒子の形状
の定義を示す図である。
1 導電性基体、2 電荷輸送層、3 感光層。
第 1 図
?θ
第2図
2θ
夷3図
2θ
第 4図
叢5図FIG. 1 is a conceptual cross-sectional view showing an example of a photoreceptor box according to the present invention. Figures 4, 2 and 3 are X-ray diffraction diagrams of α-type metal-free phthalocyanine and metal-free phthalocyanine according to the first and second inventions, respectively, and Figure 5 is a diagram showing the definition of particle shape. It is. 1 conductive substrate, 2 charge transport layer, 3 photosensitive layer. Figure 1? θ Figure 2 2θ Figure 3 2θ Figure 4 Series 5
Claims (1)
と、X線回折において、ブラッグ角度(2θ)6.7°
、8.7°、15.1°、17.7°、23.8°、2
6.1°、27.4°、30.0°に強いピークを示す
無金属フタロシアニンからなる有機電荷発生物質と有機
電荷輸送物質とを結着剤樹脂中に混合分散した感光層を
設けてなる電子写真用感光体において、無金属フタロシ
アニンの粒子の長軸径が0.5μm以上7.0μm以下
であり、さらに長軸径/短軸径の比が3以上10以下で
あることを特徴とする電子写真用感光体。 2)導電性基体上に有機電荷輸送物質を含む電荷輸送層
と、X線回折において、ブラッグ角度(2θ)6.7°
、7.2°、13.4°、14.5°、15.2°、1
6.0°、20.2°、21.7°、24.0°、24
.8°、26.6°、27.3°に強いピークを示す無
金属フタロシアニンからなる有機電荷発生物質と有機電
荷輸送物質とを結着剤樹脂中に混合分散した感光層を設
けてなる電子写真用感光体において、無金属フタロシア
ニンの粒子の長軸径が0.5μm以上7.0μm以下で
あり、さらに長軸径/短軸径の比が3以上10以下であ
ることを特徴とする電子写真用感光体。[Claims] 1) A charge transport layer containing an organic charge transport substance on a conductive substrate and a Bragg angle (2θ) of 6.7° in X-ray diffraction.
, 8.7°, 15.1°, 17.7°, 23.8°, 2
A photosensitive layer is provided in which an organic charge-generating substance made of metal-free phthalocyanine and an organic charge-transporting substance, which exhibit strong peaks at 6.1°, 27.4°, and 30.0°, are mixed and dispersed in a binder resin. The electrophotographic photoreceptor is characterized in that the major axis diameter of the metal-free phthalocyanine particles is 0.5 μm or more and 7.0 μm or less, and the ratio of major axis diameter/minor axis diameter is 3 or more and 10 or less. Photoreceptor for electrophotography. 2) A charge transport layer containing an organic charge transport substance on a conductive substrate and a Bragg angle (2θ) of 6.7° in X-ray diffraction.
, 7.2°, 13.4°, 14.5°, 15.2°, 1
6.0°, 20.2°, 21.7°, 24.0°, 24
.. Electrophotography comprising a photosensitive layer in which an organic charge-generating substance made of metal-free phthalocyanine and an organic charge-transporting substance showing strong peaks at 8°, 26.6°, and 27.3° are mixed and dispersed in a binder resin. Electrophotographic photoreceptor, characterized in that the major axis diameter of the metal-free phthalocyanine particles is 0.5 μm or more and 7.0 μm or less, and the ratio of major axis diameter/minor axis diameter is 3 or more and 10 or less. Photoreceptor for use.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13979186A JPS62296150A (en) | 1986-06-16 | 1986-06-16 | Electrophotographic sensitive body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13979186A JPS62296150A (en) | 1986-06-16 | 1986-06-16 | Electrophotographic sensitive body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62296150A true JPS62296150A (en) | 1987-12-23 |
Family
ID=15253509
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13979186A Pending JPS62296150A (en) | 1986-06-16 | 1986-06-16 | Electrophotographic sensitive body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62296150A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5405725A (en) * | 1991-10-08 | 1995-04-11 | Fuji Electric Co., Ltd. | Photoconductor for electrophotography |
-
1986
- 1986-06-16 JP JP13979186A patent/JPS62296150A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5405725A (en) * | 1991-10-08 | 1995-04-11 | Fuji Electric Co., Ltd. | Photoconductor for electrophotography |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01102469A (en) | Electrophotographic sensitive body | |
JPS62296150A (en) | Electrophotographic sensitive body | |
US5405725A (en) | Photoconductor for electrophotography | |
JP2589705B2 (en) | Optical semiconductor material and electrophotographic photosensitive member using the same | |
JP3248638B2 (en) | Electrophotographic photoreceptor | |
JP2002040693A (en) | Electrophotographic photoreceptor, its manufacturing method, method for manufacturing dispersing/applying liquid of charge-generating layer, method and device for forming image and process cartridge | |
JPS62217252A (en) | Electrophotographic sensitive body | |
JPH01273049A (en) | Electrophotographic sensitive body | |
JPS6348555A (en) | Laminated type electrophotographic sensitive body | |
JP2643216B2 (en) | Electrophotographic photoreceptor | |
US4980255A (en) | Electrophotographic photoreceptor composition | |
JPS60233656A (en) | Electrophotographic sensitive body | |
JP2554360B2 (en) | Electrophotographic photoreceptor | |
JP3297152B2 (en) | Electrophotographic photoreceptor | |
JPH0477906B2 (en) | ||
JPH02139571A (en) | Electrophotographic sensitive body | |
JPS6341856A (en) | Lamination type electrophotographic sensitive body | |
JPS63157160A (en) | Electrophotographic sensitive body | |
JPH06324503A (en) | Electrophotographic photoreceptor | |
JPS63158559A (en) | Electrophotographic sensitive body | |
JPH0529109B2 (en) | ||
JPH0194348A (en) | Laminate type electrophotographic sensitive body | |
JPS63157161A (en) | Electrophotographic sensitive body | |
JPH01152463A (en) | Electrophotographic sensitive body | |
JPH01107263A (en) | Electrophotographic sensitive body |