JPS62295504A - Surface acoustic wave device - Google Patents

Surface acoustic wave device

Info

Publication number
JPS62295504A
JPS62295504A JP13805986A JP13805986A JPS62295504A JP S62295504 A JPS62295504 A JP S62295504A JP 13805986 A JP13805986 A JP 13805986A JP 13805986 A JP13805986 A JP 13805986A JP S62295504 A JPS62295504 A JP S62295504A
Authority
JP
Japan
Prior art keywords
surface acoustic
acoustic wave
electrode
aluminum
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13805986A
Other languages
Japanese (ja)
Inventor
Akitsuna Yuhara
章綱 湯原
Atsushi Sasaki
淳 佐々木
Tetsuya Hirashima
平島 哲也
Jun Yamada
純 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13805986A priority Critical patent/JPS62295504A/en
Publication of JPS62295504A publication Critical patent/JPS62295504A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the dielectric strength, to decrease the resistivity and to stabilize the electrode by forming at least a part of the electrode propagating or reflecting a surface acoustic wave by a metallic film made of aluminum added with an impurity of the metal of the group III element other than aluminum having a specific range of wt.%. CONSTITUTION:As a material for the electrode, an aluminum and 0.2-10wt.% of an impurity of the group III, element other than the aluminum are used. For example, reflector electrodes 10, 10' made of 750 metallic strips are provided at both sides of one set of transmitting/receiving electrodes 2,2' to constitute a two-opening surface acoustic wave resonator. The film thickness of the electrodes 2,2, aud 10, 10' is 0.1mum, the resonance frequency is 697MHz and the Q' is 4000. The electrode material is the aluminum added by 2wt.% of Ga, the film is formed by DC magnetron sputter and the pattern is formed by photoetching. As the result of the acceleration test, the time of deterioration is extended by >=three times in comparison with a conventional device made of EB vapor-deposition of aluminum added with Cu and the dielectric strength is remarkably improved.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は、大電力を伝送する弾性表面波装置または大振
幅の弾性表面波波動が定材波として存在する弾性表面波
共振器として用いて高い信頼性が得られる弾性表面波装
置に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a surface acoustic wave device that transmits large electric power or an elastic The present invention relates to a surface acoustic wave device that can be used as a surface wave resonator and has high reliability.

〔従来の技術〕[Conventional technology]

弾性表面波装置の応用範囲が広がり、大電力を伝送する
弾性表面波フィルタや、動作時に大振幅の表面波波動が
定在波として存在する弾性表面波共振器が使用されるよ
うになってきた。
The range of applications of surface acoustic wave devices has expanded, and surface acoustic wave filters that transmit large amounts of power and surface acoustic wave resonators that generate large-amplitude surface waves as standing waves during operation have come to be used. .

しかし、上記のような大電力または大振幅で用いられる
弾性表面波装置では、その送受波電極、反射器などの微
細なAl電極指が、電子通信学会論文誌、巻J67C号
、278〜285頁(1984年3月)に記載されてい
るように、半導体集積回路のAl配線電極に生ずるエレ
クトロマイグレーションによる突起(ヒロックスhjl
locks) 、空隙(ボイドνoid)等の欠陥と同
様な欠陥が発生し、弾性表面波共振器では共振周波数の
ずれの如き障害が1、また、大電力を伝送する弾性表面
波フィルタではヒロックス生長による短絡、断線などの
故障が頻発していた。」−記文献では、このような欠陥
の発生メカニズムは「弾性表面波によって生ずる基板表
面の歪が、表面」二に形成されたAl薄膜に内部応力を
発生させ、応力が閾値を越えた部分ではA11lの結晶
粒界移動が起り、ボイド及びヒロックスが生ずる。内部
応力による粒界移動は米国電気電子学会論文誌パーツ、
ハイブリッズ、アンドパッケージング(IEEE Tr
ans、:Parts、Hybrids andPac
kaging)巻PHP−7.3号、134−138頁
(1,971年9月)に示される集積回路の温度サイク
ルにおける場合と同じメカニズムと考えられる。」旨を
述べている。上記第一の文献では、このようなAlのマ
イグレーションによる欠陥の対策として、半導体集積回
路で用いられるAlに微量(1〜4%)のCuを添加す
る方法を述べ、そのマイグレーション抑圧に対する有効
性を示している。
However, in the surface acoustic wave device used with high power or large amplitude as described above, the fine Al electrode fingers of the wave transmitting/receiving electrodes and reflectors are (March 1984), protrusions due to electromigration that occur on Al wiring electrodes of semiconductor integrated circuits.
Defects similar to defects such as locks) and voids (νoids) occur, and in surface acoustic wave resonators, defects such as shifts in the resonant frequency occur1, and in surface acoustic wave filters that transmit large power, defects due to hillox growth occur. Failures such as short circuits and disconnections were occurring frequently. ” - The mechanism by which such defects occur is that ``distortion of the substrate surface caused by surface acoustic waves generates internal stress in the Al thin film formed on the surface'', and in areas where the stress exceeds a threshold value, Grain boundary movement of A11l occurs, resulting in voids and hillocks. Grain boundary movement due to internal stress is reported in the Journal of the Institute of Electrical and Electronics Engineers, Parts,
Hybrid, and Packaging (IEEE Tr
ans, :Parts, Hybrids and Pac
The mechanism is considered to be the same as in the case of temperature cycling of integrated circuits as shown in Vol. ”. The first document mentioned above describes a method of adding a small amount (1 to 4%) of Cu to Al used in semiconductor integrated circuits as a countermeasure against defects caused by such Al migration, and discusses its effectiveness in suppressing migration. It shows.

次に半導体集積回路配線のエレクトロマイグレーション
の対策であるが、ジャーナル・オブ・アプライド・フィ
ジクス、第49巻(1,978年) 、 4083〜4
093頁に示されるように、例えばCuを不純物として
添加した第1のAl膜と、第1のAl膜より遥かに薄い
、Alを含まない第2の膜、例えばHfの膜を用いた多
層膜構造が用いられている。
Next, regarding electromigration countermeasures for semiconductor integrated circuit wiring, Journal of Applied Physics, Vol. 49 (1,978), 4083-4.
As shown on page 093, a multilayer film using a first Al film doped with, for example, Cu as an impurity, and a second film that does not contain Al, which is much thinner than the first Al film, such as a Hf film. structure is used.

この第2の従来の技術を大電力用弾性表面波装置、弾性
表面波共振器に適用することも考え得る。
It is also conceivable to apply this second conventional technique to high-power surface acoustic wave devices and surface acoustic wave resonators.

しかし、上記第1の文献に依るAlに微量のCuを添加
する従来の技術では、膜の硬度が過大になり易いため、
ワイヤボンディングが打ち難くなる欠点があり、また高
周波弾性表面波装置に対し、微細電極を高精度に形成す
るためにドライエツチング法を適用した際、電極の腐食
等が発生し易く、歩留りが大幅に低下する欠点があった
However, in the conventional technique of adding a small amount of Cu to Al according to the above-mentioned first document, the hardness of the film tends to be excessive.
It has the disadvantage of making wire bonding difficult, and when dry etching is applied to high-frequency surface acoustic wave devices to form fine electrodes with high precision, corrosion of the electrodes is likely to occur, resulting in a significant reduction in yield. There was a drawback that it deteriorated.

また、高周波では、伝送電力または振幅がそれほど大き
くなくても、表面波の歪としては大きくなるので、上記
第1の文献によるCu添加AU電極では、大電力(大振
m)動作時に十分な寿命が保証できなくなる。
In addition, at high frequencies, even if the transmitted power or amplitude is not so large, the distortion of the surface wave becomes large, so the Cu-doped AU electrode according to the first document mentioned above has a sufficient lifespan during high power (large vibration m) operation. cannot be guaranteed.

一方、」二記第2の文献による従来の技術では、Alを
含まない第2の膜に耐マイグレーシヨン特性は良いが、
Alへの拡散を生じ易く、Alとの合金の抵抗率が大き
な材料を用いた場合には80℃程度の温度でも長時間使
用した場合に第1のAl膜との合金化が進み、膜全体と
しての抵抗率が急激に上昇してしまう。即ち弾性表面波
装置としての損失が急増して使用に耐えなくなる場合が
ある。
On the other hand, in the conventional technology according to the second document, the second film that does not contain Al has good anti-migration properties;
If a material that easily diffuses into Al and has a high alloy resistivity with Al is used, even at a temperature of about 80°C, if used for a long time, alloying with the first Al film will progress and the entire film will deteriorate. As a result, the resistivity increases rapidly. That is, the loss as a surface acoustic wave device increases rapidly, and it may become unusable.

即ち、別の故障モードが生じるのである。That is, another failure mode occurs.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上記従来の技術のような膜の硬度が過大にな
り易い、ドライエツチングに際し歩留りが大幅に低下す
る、十分な寿命が得られない、抵抗率が過大になる等の
問題点を解決し、十分な耐電力性を有し、且つ抵抗率も
小さく安定な電極を持った弾性表面波装置を提供するこ
とを目的とする。
The present invention solves the problems of the above-mentioned conventional techniques, such as the hardness of the film tends to be excessive, the yield decreases significantly during dry etching, sufficient life is not obtained, and the resistivity becomes excessive. However, it is an object of the present invention to provide a surface acoustic wave device having stable electrodes with sufficient power resistance and low resistivity.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために本発明においては、電極の
材料として、A、 Qに、0.2〜10重量%のAρ以
外の第■族元素を不純物として添加したものを用いるこ
ととした。
In order to solve the above-mentioned problems, in the present invention, as an electrode material, A and Q are added with 0.2 to 10% by weight of a Group 1 element other than Aρ as an impurity.

これは本発明者等がAlに添加する材料として、Alに
添加した場合のバルク抵抗率の小さな材料を探索した結
果、Alと同じく第■族元素が好ましく、特にGaの添
加が、電極膜の抵抗率を小さくし、かつ耐電力性の点で
も優れていることを見出したからである。
This is because the present inventors searched for materials with low bulk resistivity when added to Al, and found that like Al, group Ⅰ elements are preferable, and in particular, the addition of Ga is effective for forming electrode films. This is because it has been found that the resistivity can be reduced and the resistance to power is also excellent.

添加率が0.2重量%以下では添加した効果を認め難く
、10重量%以上では添加後の融点が低下してしまうの
で、以」二の如き添加率を決定した。
If the addition rate is less than 0.2% by weight, it is difficult to notice the effect of addition, and if it is more than 10% by weight, the melting point after addition will decrease, so the following addition rates were determined.

〔作用〕[Effect]

Alに添加する材料として、抵抗率を小さくするものは
、固体電子論の一般的見地すなわちリンダの法則(たと
えば、F、J、ブラット著、堂山昌男訳「固体の電子論
J 、1970年、丸善刊)により、Alと電子の価数
の等しい元素である。この見地からは第■族の元素が適
しているが、その中がらAlに添加して調べたところ、
Ga添加が弾性表面波装置の耐電力性向上に効果がある
ことが明らかとなった。
Materials added to Al that reduce resistivity are based on the general viewpoint of solid-state electron theory, that is, Linda's law (for example, F. J. Blatt, translated by Masao Doyama, "Electron Theory of Solids J, 1970, Maruzen It is an element with the same valence of electrons as Al.From this point of view, Group Ⅰ elements are suitable, but when we added them to Al and investigated them, we found that
It has become clear that the addition of Ga is effective in improving the power durability of surface acoustic wave devices.

Gaを2重量%の濃度でAlに添加したターゲットを以
て、厚さ0.1 μmのスパッタ膜を作成し、その抵抗
率を測定したところ、3.4μΩ −■で、同じ濃度、
同じ膜厚の従来の技術によるCu添加Aρスパッタ膜の
抵抗率3.8μΩ−■に比べて小さく出来た。一方、耐
電力性を調べたところ、同濃度ではGa添加の場合はC
u添加の場合の約2倍の耐電力性があった。このような
耐電力性の増加は、Alの原子半径1.43Aに対して
Gaの原子半径が1.24Aと小さく、Alの拡散によ
る移動を抑え易いためと考えられる。
A sputtered film with a thickness of 0.1 μm was created using a target containing Ga added to Al at a concentration of 2% by weight, and its resistivity was measured to be 3.4 μΩ −■.
The resistivity was smaller than that of a Cu-added Aρ sputtered film of the same film thickness made by the conventional technique, which was 3.8 μΩ-■. On the other hand, when examining the power durability, it was found that at the same concentration, when Ga was added, C
The power durability was about twice that of the case with u addition. This increase in power durability is thought to be due to the fact that the atomic radius of Ga is 1.24 A, which is smaller than that of Al, 1.43 A, and it is easier to suppress the movement of Al due to diffusion.

〔実施例〕〔Example〕

第1図は本発明一実施例の断面図である。1は弾性表面
波基板でSTカット水晶を用い、この基板表面に1組の
送受波電極2,2′が開口1000μm、電極指対数2
8対で互いに弾性表面波を送受するように設けられてお
り、これらの電極は図示してない母線電極を通してポン
ディングパッド3.3′と接続され、ポンディングパッ
ド3.3IはAl線または金線の図示してないボンディ
ングワイヤでカンパッケージのステムの入出力ピン4.
4′に電気的に接続されており、送受波電極の図示して
ない接地側母線電極は図示してない接地側ポンディング
パッドを通じてカンパッケージのステム6に接地されて
いる。また上記1組の送受波電極2.2′の両側に75
0本の金属ストリップから成る反射器電極10.10′
が設けられ、2開口弾性表面波共振器を構成している。
FIG. 1 is a sectional view of one embodiment of the present invention. 1 is a surface acoustic wave substrate using ST-cut crystal, and on the surface of this substrate, a pair of wave transmitting/receiving electrodes 2, 2' are arranged with an opening of 1000 μm and a number of pairs of electrode fingers.
Eight pairs of electrodes are provided to mutually transmit and receive surface acoustic waves, and these electrodes are connected to a bonding pad 3.3' through a bus electrode (not shown), and the bonding pad 3.3I is made of Al wire or gold. Connect the input/output pins of the stem of the can package using bonding wires (not shown).
4', and a ground side bus electrode (not shown) of the wave transmitting/receiving electrode is grounded to the stem 6 of the can package through a ground side bonding pad (not shown). In addition, 75 mm are placed on both sides of the pair of wave transmitting/receiving electrodes 2.2'.
Reflector electrode 10.10' consisting of 0 metal strips
is provided, constituting a two-aperture surface acoustic wave resonator.

上記送受波電極2.2′、反射器電極10.10′の膜
厚は0.1μmで、共振周波数は697MIヒ、Q’ 
 4000となっている。この実施例に用いた電極材料
はGaを2重量%添加したAlで、DCマグネトロンス
パッタにより膜形成した後、ホトエツチングでパターン
形成されたものである。
The film thickness of the above-mentioned wave transmitting/receiving electrode 2.2' and reflector electrode 10.10' is 0.1 μm, and the resonance frequency is 697 MIhi, Q'
It is 4000. The electrode material used in this example was Al containing 2% by weight of Ga, which was formed into a film by DC magnetron sputtering and then patterned by photoetching.

本実施例の弾性表面波共振器の加速劣化試験の結果を第
2図に示す。この図には比較のためCu添加AI2のE
B無蒸着よる試料の試験結果も併せて示しである。横軸
には添加元素の膜中での濃度を重量%単位で示し、縦軸
には劣化時間TFを共振周波数の変化した時間をもって
示している。加速劣化試験条件は温度120℃、入力電
力100mWである。第2図中の線9で示した本発明実
施例の試験結果は、同図中に線11で示したCu添加A
lのEB無蒸着よる従来の材料を用いた試料の試験結果
に比べて、劣化するまでの時間が3倍以上に伸びて耐電
力性の大幅な向上を示し、しかも膜抵抗率は約0.3μ
Ω−■低下しており1周波数特性の劣化は認められず、
損失はむしろ若干向上して良くなっていた。
FIG. 2 shows the results of an accelerated deterioration test of the surface acoustic wave resonator of this example. This figure shows the E of Cu-added AI2 for comparison.
Test results for samples without B vapor deposition are also shown. The horizontal axis shows the concentration of the additive element in the film in weight percent, and the vertical axis shows the deterioration time TF in terms of the time at which the resonance frequency changed. The accelerated deterioration test conditions were a temperature of 120° C. and an input power of 100 mW. The test results of the present invention example shown by line 9 in FIG.
Compared to the test results of samples using conventional materials made without EB deposition, the time until deterioration was more than three times longer, indicating a significant improvement in power durability, and the film resistivity was approximately 0. 3μ
Ω-■ has decreased, and no deterioration of the 1-frequency characteristics is observed.
In fact, the loss was slightly better.

上記実施例は金属ストリップによる反射器を用いた二開
ロ弾性表面波共振器であるが、本発明は大振幅表面波動
を扱う場合全般に適用できる。
Although the above embodiment is a two-opening surface acoustic wave resonator using a reflector made of a metal strip, the present invention is applicable to all cases where large amplitude surface waves are handled.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、耐電力性が従来の
Cu添加Alの蒸着電極に比し3倍以上に大きくなり、
しかも、抵抗率が小さくなって損失が減少するなど、特
性が改善された信頼性の高い弾性表面波装置が得られる
As explained above, according to the present invention, the power durability is more than three times greater than that of the conventional vapor-deposited electrode of Cu-added Al.
In addition, a highly reliable surface acoustic wave device with improved characteristics such as reduced resistivity and reduced loss can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明一実施例の断面図、第2図は本発明実施
例と従来例の加速劣化試験結果を比較して示す図である
。 1・・・弾性表面波基板、 2.2′・・・送受波電極
、 9・・本発明実施例の不純物添加濃度と劣化時間の
関係を示す線、 10.10’  ・・弾性表面波反射
器。
FIG. 1 is a sectional view of an embodiment of the present invention, and FIG. 2 is a diagram showing a comparison of accelerated deterioration test results of the embodiment of the present invention and a conventional example. DESCRIPTION OF SYMBOLS 1...Surface acoustic wave substrate, 2.2'... Wave transmitting/receiving electrode, 9...Line showing the relationship between impurity doping concentration and deterioration time of the embodiment of the present invention, 10.10'...Surface acoustic wave reflection vessel.

Claims (1)

【特許請求の範囲】 1、弾性表面波基板上に少なくとも1個の送受波電極を
有し、この電極を含めて、弾性表面波を伝搬または反射
する電極の少なくとも一部が、Alに、0.2〜10重
量%のAl以外の第III族元素を不純物として添加した
金属膜より成ることを特徴とする弾性表面波装置。 2、Gaを、Al以外の第III族元素不純物として使用
した特許請求の範囲第1項記載の弾性表面波装置。
[Claims] 1. At least one wave transmitting/receiving electrode is provided on the surface acoustic wave substrate, and at least a part of the electrode that propagates or reflects surface acoustic waves, including this electrode, is made of Al, 0 A surface acoustic wave device comprising a metal film doped with 2 to 10% by weight of a Group III element other than Al as an impurity. 2. The surface acoustic wave device according to claim 1, wherein Ga is used as a Group III element impurity other than Al.
JP13805986A 1986-06-16 1986-06-16 Surface acoustic wave device Pending JPS62295504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13805986A JPS62295504A (en) 1986-06-16 1986-06-16 Surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13805986A JPS62295504A (en) 1986-06-16 1986-06-16 Surface acoustic wave device

Publications (1)

Publication Number Publication Date
JPS62295504A true JPS62295504A (en) 1987-12-22

Family

ID=15213017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13805986A Pending JPS62295504A (en) 1986-06-16 1986-06-16 Surface acoustic wave device

Country Status (1)

Country Link
JP (1) JPS62295504A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906885A (en) * 1987-09-22 1990-03-06 Hitachi Denshi Kabushiki Kaisha Electrode material for surface acoustic wave devices and surface acoustic wave device using the same
US11108375B2 (en) 2018-12-05 2021-08-31 Taiyo Yuden Co., Ltd. Acoustic wave device, method of fabricating the same, filter, and multiplexer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906885A (en) * 1987-09-22 1990-03-06 Hitachi Denshi Kabushiki Kaisha Electrode material for surface acoustic wave devices and surface acoustic wave device using the same
US11108375B2 (en) 2018-12-05 2021-08-31 Taiyo Yuden Co., Ltd. Acoustic wave device, method of fabricating the same, filter, and multiplexer

Similar Documents

Publication Publication Date Title
US4775814A (en) Saw device
CN100576738C (en) Surface acoustic wave device and utilize its mobile communication equipment and transducer
KR930000882B1 (en) Solid electron element
US4906885A (en) Electrode material for surface acoustic wave devices and surface acoustic wave device using the same
JPH09223944A (en) Surface acoustic wave element and its manufacture
US5144185A (en) SAW device
EP0392879B1 (en) Surface acoustic wave device
CN107204750B (en) Acoustic wave device
JP3735550B2 (en) Surface acoustic wave device and manufacturing method thereof
JP2003283282A (en) Electronic component having electrodes, its manufacturing method and communication apparatus
JPH06350377A (en) Surface acoustic wave element
JP3659455B2 (en) Surface acoustic wave device
JP2545983B2 (en) Surface acoustic wave device
JPS62295504A (en) Surface acoustic wave device
JP2555072B2 (en) Solid state electronic device
JPS6298812A (en) Surface acoustic wave device
JPS62163408A (en) Surface acoustic wave device
JPH01128607A (en) Surface acoustic wave device
JPH0314308A (en) Surface acoustic wave filter
US5196753A (en) Surface acoustic wave devices having long-term frequency stability
CN115567027B (en) Transducer, surface acoustic wave resonator, method of forming the same, and filter
JP2019192994A (en) Acoustic wave resonator, filter, and multiplexer
JPH0314309A (en) Surface acoustic wave device
JPH02274008A (en) Solid-state electronic equipment, its manufacture, and device utilizing it
JP2019213042A (en) Acoustic wave device, filter, and multiplexer