JPS62295017A - Optical scanner - Google Patents

Optical scanner

Info

Publication number
JPS62295017A
JPS62295017A JP13950386A JP13950386A JPS62295017A JP S62295017 A JPS62295017 A JP S62295017A JP 13950386 A JP13950386 A JP 13950386A JP 13950386 A JP13950386 A JP 13950386A JP S62295017 A JPS62295017 A JP S62295017A
Authority
JP
Japan
Prior art keywords
rotor
mirror surface
outer peripheral
polygon mirror
magnetic phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13950386A
Other languages
Japanese (ja)
Inventor
Kiyoto Nakazawa
中澤 清人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13950386A priority Critical patent/JPS62295017A/en
Publication of JPS62295017A publication Critical patent/JPS62295017A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To allow an optical scanner to resist rapid rotation, to improve its scanning efficiency and setting up the reflection factor of a non-magnetic phase polygon mirror surface >=eighty and several % by forming different anisotropic structures on the inner and outer peripheral parts of a carbon group alloy magnet rotor by a specific simple process. CONSTITUTION:A required outer peripheral part of the rotor 7 consisting of manganese- aluminium-carbon group alloy magnet is formed as a part 7b obtained by orientating easy magnetization axes in prior on the plane vertical to the rotary shaft direction of the rotor 7. A non-magnetic phase part 7c consisting of alloy is formed on a required surface layer part of the outer peripheral part, its surface is formed as a mirror surface and the easy magnetization axes are orientated in prior on a large part of the portion opposed to an electromagnetic coil 8 out of the part other than the outer peripheral part of the magnet rotor 7 at least in the direction parallel with the rotary shaft direction of the rotor 7. Since the surface is finished as a mirror surface, a polygon mirror surface having a high reflection factor >=eighty and several % can be obtained and extremely excellent picture quality (multigradation) can be obtained. Thus, the optical scanner resisting rapid rotation and having high scanning efficiency can be obtained.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は、レーザプリンタ、複写機等のスキャナ、ビデ
オ等の情報記録装置等に使用する光走査装置に関するも
のである。
Detailed Description of the Invention 3. Detailed Description of the Invention Field of Industrial Application The present invention relates to an optical scanning device used in laser printers, scanners such as copying machines, information recording devices such as videos, and the like.

従来の技術 レーザプリンタ、複写機などのスキャナとして高速モー
タの回転側にポリゴンミラーを取着し、信号変調された
レーザビームを発光器(図示せず)からこのポリゴンミ
ラーに投射し、偏向し、これによって例えば光導電層を
有する走行感光体(受光器の一例)に光を走査して潜像
を形成し、これを公知の電子写真手法によってコピーを
作製するようなものが従来からすでに提案されている。
Conventional technology A polygon mirror is attached to the rotating side of a high-speed motor used in scanners such as laser printers and copying machines, and a signal-modulated laser beam is projected onto the polygon mirror from a light emitter (not shown) and is deflected. As a result, it has already been proposed that, for example, a traveling photoreceptor (an example of a light receiver) having a photoconductive layer is scanned with light to form a latent image, and copies of this are made using known electrophotographic techniques. ing.

また近年の情報処理装置の薄形化、低コスト化、さらに
部品点数の削減、一体化:でよる精度向上環の強い要請
に応えて、光走査装置におけるモータの磁石製回転子と
ポリゴンミラーを一体化する114造もとられている。
In addition, in response to the recent strong demand for thinner information processing equipment, lower cost, reduction in the number of parts, and improved precision due to integration, we have developed a magnet rotor and polygon mirror for the motor in optical scanning equipment. A 114-structure structure is also being used to integrate the structure.

これは例えば、特開昭59−197010号公報に示さ
れているように、第4図のような構造になっている。
This has a structure as shown in FIG. 4, for example, as shown in Japanese Unexamined Patent Publication No. 59-197010.

第4図において、ハウジング部材1の上Vてはカバ一部
材2が載置され、さらに・・ウジング部材1の下方には
軸受スリーブ11が固着されており、磁石回転子兼ポリ
ゴンミラー6を支持する軸4の延長部が前記スリーブ1
1内に、これと数ミクロン程度の間隙を存して遊嵌され
ており、さらに前記軸4の延長部外周にはスパイラル状
、ヘリンポーン状の条溝が多数刻設してあり動圧軸受が
形成され、また軸4の中間よりやや上方部位には回転子
受け6が形成してあり、これに磁石回転子兼ポリゴンミ
ラー6が載置され、その上方から回転子固定板3により
押えられている。
In FIG. 4, a cover member 2 is placed on the upper side of the housing member 1, and a bearing sleeve 11 is fixed to the lower part of the housing member 1 to support the magnet rotor and polygon mirror 6. The extension of the shaft 4 is connected to the sleeve 1.
The hydrodynamic bearing is loosely fitted into the shaft 1 with a gap of several microns between the shaft 4 and the shaft 4, and a large number of spiral and herringbone grooves are cut on the outer periphery of the extension of the shaft 4. A rotor receiver 6 is formed at a portion slightly above the middle of the shaft 4, on which a magnet rotor/polygon mirror 6 is placed, and is held down from above by a rotor fixing plate 3. There is.

また、磁石回転子兼ポリゴンミラー6としては、銅メッ
キあるいは無電解ニッケルメッキの鏡面部を表面に形成
したバリウムフェライト磁石、アルニコ磁石、さらに表
面を研磨し鏡面としたマンガン−アルミニウム−炭素系
合金磁石が開示されている。
The magnet rotor/polygon mirror 6 may be a barium ferrite magnet with a copper-plated or electroless nickel-plated mirror surface formed on the surface, an alnico magnet, or a manganese-aluminum-carbon alloy magnet with a mirror-polished surface. is disclosed.

前記ハウジング1内面底部には前記磁石回転子兼ポリゴ
ンミラー6と対向して電磁コイル8がプリント基板9を
介して所定数配設してあり、ステータを形成している。
A predetermined number of electromagnetic coils 8 are disposed at the bottom of the inner surface of the housing 1, facing the magnet rotor/polygon mirror 6, via a printed circuit board 9, forming a stator.

符号10は電磁コイル8の位相切換え、回転数のチェッ
クに用いるセンサとして磁石に対向して配したホール素
子で、プリント基板9に設けである。
Reference numeral 10 denotes a Hall element disposed opposite the magnet as a sensor used for changing the phase of the electromagnetic coil 8 and checking the rotation speed, and is provided on the printed circuit board 9.

発明が解決しようとする問題点 しかし、前述の公報に記載された回転子6を使用したポ
リゴンミラ一体型光走査装置には以下のような問題点が
ある。
Problems to be Solved by the Invention However, the polygon mirror-integrated optical scanning device using the rotor 6 described in the above-mentioned publication has the following problems.

バリウムフェライト磁石は、反射率が非常に低いため、
銅、アルミニウム、ニッケル等の層を回転子6外周面に
形成し、さらに精密切削、研磨等によって所望の鏡面を
得なければならず非常に加工工程が増しコストアップと
なるばかりでなく、バリウムフェライト磁石の機械的強
度が小さく、高走査能率にするための高速回転には不向
きである。
Barium ferrite magnets have very low reflectance, so
A layer of copper, aluminum, nickel, etc. must be formed on the outer circumferential surface of the rotor 6, and then a desired mirror surface must be obtained by precision cutting, polishing, etc., which not only increases the number of processing steps and increases costs, but also prevents the use of barium ferrite. The mechanical strength of the magnet is low, making it unsuitable for high-speed rotation to achieve high scanning efficiency.

またアルニコ磁石は、上記問題に加えて磁石のiHc 
(保磁力)が非常に小さいため、薄形にすると発生磁束
が低下しモータ効率が非常に悪くなる。
In addition to the above problems, alnico magnets also have the iHc of the magnet.
(coercive force) is very small, so if it is made thinner, the generated magnetic flux will decrease and the motor efficiency will be extremely poor.

マンガン−アルミニウム−炭素系合金磁石は、すでに特
開昭51−89434号公報に開示されているように、
7o%以上という高い反射率があるが、高画質(多階調
)用途に利用するには80数係以上の反射率が望まれる
The manganese-aluminum-carbon alloy magnet is already disclosed in Japanese Patent Application Laid-Open No. 51-89434,
Although it has a high reflectance of 70% or more, a reflectance of 80 or more is desired for use in high image quality (multi-gradation) applications.

また、高解像度を得ようとするために回転子の外径を大
きくしなければならないが、マンガン−アルミニウム−
炭素系合金磁石において強磁性相を安定的に得、同時に
簡易プロセスで回転軸方向に磁化容易軸を優先配向させ
高い磁気特性を得ようとするとどうしても回転子外径を
小さくせざるを得ない。
In addition, in order to obtain high resolution, the outer diameter of the rotor must be increased, but manganese-aluminum
In order to stably obtain a ferromagnetic phase in a carbon-based alloy magnet and at the same time preferentially orient the axis of easy magnetization in the direction of the rotational axis using a simple process to obtain high magnetic properties, the outer diameter of the rotor must be reduced.

以上のように、回転子とポリゴンミラーが一体構造、薄
形偏平でありポリゴンミラーの外径も大きく、モータ効
率も高く、かつ高速回転にも耐えるような構造であり、
さらにポリゴンミラー面の反射率が8o数係以上の光走
査装置の実現は極めて困難であった。
As described above, the rotor and polygon mirror are integrated, thin and flat, the outer diameter of the polygon mirror is large, the motor efficiency is high, and the structure can withstand high speed rotation.
Furthermore, it has been extremely difficult to realize an optical scanning device in which the reflectance of the polygon mirror surface is 8o or more.

問題点を解決するだめの手段 本発明は、上記問題点を解決するためになされたもので
、マンガン−アルミニウム−炭素系合金磁石よりなる回
転子−の所望する外周部は前記回転子の回転軸方向と垂
直な平面内に磁化容易軸が優先的に配向され、さらに前
記外周部の所望の表層部には、前記合金の非磁性相部分
が設けられ、かつ前記非磁性相部分の表面は鏡面とされ
、さらに前記磁石回転子の外周部以外の内、前記電磁コ
イルと対向する部分の大半は少なくとも前記回転子の回
転軸方向と平行な方向に磁化容易軸が優先的に配向され
るようにしたものである。
Means for Solving the Problems The present invention has been made to solve the above problems, and the desired outer circumference of a rotor made of manganese-aluminum-carbon alloy magnets is aligned with the rotation axis of the rotor. The axis of easy magnetization is preferentially oriented in a plane perpendicular to the direction, and a non-magnetic phase portion of the alloy is provided in a desired surface layer portion of the outer peripheral portion, and the surface of the non-magnetic phase portion is mirror-finished. Further, the axis of easy magnetization is preferentially oriented at least in a direction parallel to the rotational axis direction of the rotor in most of the portion of the magnetic rotor other than the outer peripheral portion facing the electromagnetic coil. This is what I did.

作用 すなワチ、マンガン−アルミニウム−炭素系合金磁石回
転子において、電磁コイルと対向する部分は、回転駆動
用の大きなパワーを発生するために磁化容易軸を回転軸
方向と平行な方向に優先的に配向させ、高い磁気特性を
実現させ、同時に高解像度を得るために簡易プロセスで
磁石回転子兼ポリゴンミラー外径を大きくしなければな
らない問題に対しては、マンガン−アルミニウム−炭素
合金磁石の温間塑性加工性に着目し、前記磁石回転子の
所望の外周部のみを回転軸方向と平行な方向に加圧圧縮
し、磁化容易軸を回転子の回転11111方向と垂直な
平面内に優先配向させることにより可能にしている。
In a manganese-aluminum-carbon alloy magnet rotor, the part facing the electromagnetic coil preferentially aligns the axis of easy magnetization in a direction parallel to the rotational axis direction in order to generate large power for rotational drive. To solve the problem of increasing the outer diameter of the magnet rotor and polygon mirror using a simple process in order to achieve high magnetic properties and high resolution at the same time, we developed a manganese-aluminum-carbon alloy magnet. Focusing on plastic workability, only the desired outer peripheral part of the magnet rotor is pressurized and compressed in a direction parallel to the rotational axis direction, and the axis of easy magnetization is preferentially oriented in a plane perpendicular to the 11111 direction of rotation of the rotor. This is made possible by allowing

また、前記外周部の所望の表層部に面心正方晶の強磁性
相(τ相)が変態してできる非磁性相(AIMn(τ相
)が主体の相)を形成し、この表面を鏡面に仕上げるこ
とによシ、8o数係以上の高い反射率のポリゴンミラー
面が得られることに基づくもので、これにより非常に良
好な画質(多階調)となる。
In addition, a nonmagnetic phase (mainly composed of AIMn (τ phase)) formed by transformation of a face-centered tetragonal ferromagnetic phase (τ phase) is formed on a desired surface layer portion of the outer peripheral portion, and this surface is mirror-finished. This is based on the fact that a polygon mirror surface with a high reflectance of 8o coefficient or more can be obtained by finishing the polygon mirror, resulting in very good image quality (multi-gradation).

また回転子の機械的強度が大きいことから高速回転にも
耐え、非常に走査効率の高い光走査装置が実現できる。
Furthermore, since the rotor has high mechanical strength, it can withstand high-speed rotation, and an optical scanning device with extremely high scanning efficiency can be realized.

実施例 以下、本発明の一実施例を添付図面に基づいて説明する
。第2図に本発明の光走査装置の外観断面図を示す。但
し、第2図において磁石回転子兼ポリゴンミラーを有す
る面対向型のフラットモータである点は、第4図に示し
た従来例のものと同様である。従って、従来例と対応す
る部分には同一の符号を付しである。しかし、大きく異
なる点は磁石回転子兼ポリゴンミラーの構造であり、具
体的には同一磁石(マンガン−アルミニウム−炭素系合
金磁石)回転子内に異なる異方性構造を有すると同時に
外周面は前記合金の非磁性相からなる鏡面である点であ
る。
EXAMPLE Hereinafter, an example of the present invention will be described based on the accompanying drawings. FIG. 2 shows an external sectional view of the optical scanning device of the present invention. However, it is similar to the conventional example shown in FIG. 4 in that FIG. 2 is a surface-facing flat motor having a magnet rotor and polygon mirror. Therefore, the same reference numerals are given to the parts corresponding to those of the conventional example. However, the major difference is the structure of the magnet rotor and polygon mirror. Specifically, the same magnet (manganese-aluminum-carbon alloy magnet) has different anisotropic structures within the rotor, and at the same time the outer peripheral surface is The point is that it is a mirror surface made of the non-magnetic phase of the alloy.

従って、以下の本発明の詳細な説明も差異のある異なる
異方性構造を有するマ/ガン−アルミニウムー炭素系合
金磁石回転子兼前記合金の非磁性相ポリゴンミラー(以
下複合異方性磁石回転子兼非磁性相ポリゴンミラーと略
す)7の細部を主として第1図で説明する。
Therefore, the detailed description of the present invention below will also be described as follows. The details of the secondary non-magnetic phase polygon mirror 7 will be explained mainly with reference to FIG.

マンガン69.8重量%、アルミニウム29.7重量%
、炭素0.5重量%の組成からなるマンガン−アルミニ
ウム−炭素系合金の正八角柱ビレットを溶解鋳造により
作成し、1000°Cで保持後冷却する熱処理を施した
のち、700’Cの温度で正八角形に押出加工(押出比
=6)し正八角柱ビレット(外接円直径33H)を作成
した。この状態では回転軸方向と平行な方向(押出方向
)に磁化容易軸が優先配向していた。
Manganese 69.8% by weight, aluminum 29.7% by weight
A regular octagonal prism billet of manganese-aluminum-carbon alloy having a composition of 0.5% by weight of carbon was prepared by melting and casting, heat treated by holding at 1000°C and then cooling, and then molded at a temperature of 700'C. It was extruded into a square shape (extrusion ratio = 6) to produce a regular octagonal prism billet (circumference diameter: 33H). In this state, the axis of easy magnetization was preferentially oriented in a direction parallel to the rotation axis direction (extrusion direction).

上記の正八角柱ビレットを回転軸と垂直な方向に適轟な
長さに切断し、内面が正八角形の形をした所望の大きさ
の金型に前記正八角形のビレットを入れ、ビレットの片
端面側を平面ポンチに対向載置し、もう一方の片端面側
を適尚な大きさの凹型をした内外周正八角形ポンチで圧
縮据込みすることにより、第1図のように外周部側の高
さが内部の高さよりも低い段付状態(外周部を強く圧縮
している。)で元の正八角柱ビレットよりも外径が大き
く、外接円直径55朋のポリゴンが得られた。
The above regular octagonal prism billet is cut to a suitable length in the direction perpendicular to the rotation axis, and the regular octagonal billet is placed in a mold of desired size with a regular octagonal inner surface, and one end of the billet is cut into a suitable length. The height of the outer periphery side is increased by placing the other end face on a flat punch and compressing and upsetting the other end face using a regular octagonal punch with a concave shape of an appropriate size. A polygon with a stepped state in which the height was lower than the internal height (the outer periphery was strongly compressed), the outer diameter was larger than the original regular octagonal prism billet, and the circumscribed circle diameter was 55 mm was obtained.

上記同様のプロセスにより作成したサンプルについて、
その内部の磁気異方性構造をX線回折。
Regarding samples created using the same process as above,
X-ray diffraction of the internal magnetic anisotropic structure.

トルク測定により確認したところ、偏平状に形成された
電磁コイル8と対向する内部は回転軸方向と平行な方向
に磁化容易軸が優先配向した部分(以下軸異方性部分と
略す)7aの壕まで、外周部a+のみ回転軸方向と垂直
な平面内に磁化容易軸が優先配向した部分(以下面内異
方性部分と略す)7bとなっていた。
As confirmed by torque measurement, the inside facing the electromagnetic coil 8 formed in a flat shape has a groove 7a in which the axis of easy magnetization is preferentially oriented in a direction parallel to the rotational axis direction (hereinafter abbreviated as axially anisotropic part). Until now, only the outer peripheral portion a+ was a portion 7b (hereinafter abbreviated as in-plane anisotropic portion) in which the axis of easy magnetization was preferentially oriented in a plane perpendicular to the direction of the rotation axis.

また第1図の軸異方性部分7ILに相当する個所の磁気
特性を測定したところ、回転軸方向と平行な方向におい
て(BH)m、=e、3sMG−Oe という高い値を
示した。
Furthermore, when the magnetic properties of a portion corresponding to the axially anisotropic portion 7IL in FIG. 1 were measured, they showed a high value of (BH)m,=e,3sMG-Oe in the direction parallel to the rotational axis direction.

以上により、回転駆動のパワーを発生する部分の磁気特
性を低下させることなしに、高解像度を実現するための
大きな外径のポリゴンの形成が簡易プロセスで可能とな
った。
As a result of the above, it has become possible to form polygons with large outer diameters to achieve high resolution using a simple process without degrading the magnetic properties of the portion that generates rotational drive power.

また得られた上記ポリゴン外周面に炭酸ガスレーザを照
射して780°Cに加熱し、非磁性相へ変態させこの面
を再び鏡面に仕上げた。そして、この鏡面のX線回折を
行なったところ、人IMn(τ相)と呼ばれる非磁性相
の回折線が主体で、これに回折線強度が6%以下のわず
かなβ−Mn相と呼ばれる非磁性相の回折線が混在した
回折線パターンが得られ、鏡面部分は非磁性相であるこ
とが確められた。(強度もアップしている。)次に得ら
れた上記ポリゴン外周面を所望の精度まで中仕上し、最
後に鏡面仕上げを行ない最終精度まで仕上げた。
Further, the obtained outer circumferential surface of the polygon was irradiated with a carbon dioxide laser and heated to 780° C. to transform it into a non-magnetic phase, and the surface was again finished to a mirror surface. When we performed X-ray diffraction on this mirror surface, we found that the main diffraction lines were from a non-magnetic phase called IMn (τ phase), with a slight non-magnetic phase called β-Mn phase with a diffraction line intensity of 6% or less. A diffraction line pattern containing a mixture of magnetic phase diffraction lines was obtained, and it was confirmed that the mirror surface portion was a non-magnetic phase. (The strength has also been increased.) Next, the outer circumferential surface of the polygon thus obtained was semi-finished to the desired precision, and finally mirror-finished to the final precision.

さらに上記のようにして得られた非磁性相鏡面部分7C
の分光反射率を測定したところ、76.3〜84.7チ
(λ=400〜800nm)であった。
Furthermore, the non-magnetic phase mirror surface portion 7C obtained as above
When the spectral reflectance was measured, it was 76.3 to 84.7 inches (λ=400 to 800 nm).

これらのポリゴン外周面にさらにアルミニウム。Further aluminum on the outer circumferential surface of these polygons.

銅、銀、金等の高反射率体を蒸着等の方法により形成し
鏡面とすることにより、より高い反射率が得られること
は当然である。さらに必要に応じて誘電体材料をコーテ
ィングし増反射効果を得ることも当然可能である。
It goes without saying that a higher reflectance can be obtained by forming a highly reflective material such as copper, silver, or gold by a method such as vapor deposition to obtain a mirror surface. Furthermore, it is naturally possible to obtain an increased reflection effect by coating with a dielectric material as necessary.

上記により得られた本発明の複合異方性磁石回転子兼非
磁性相ポリゴンミラー7の中心に軸4を通すための穴7
dをあけた後、偏平状に形成された電磁コイル8と対向
するように複合異方性磁石回転子兼非磁性相ポリゴンミ
ラー7の端面(磁極形成面)76に所定の着磁を行ない
、第2図に示すように組立てることにより、高解像度を
実現する大きな外径のポリゴンミラー面が回転子と一体
構造、薄形偏平で構成でき、しかも高速回転に耐えるた
め非常に走査効率が高くなると同時にポリゴンミラー面
の反射率が80数係以上と高いために非常に良好な画質
(多階調)の光走査装置が実現できる。
Hole 7 for passing the shaft 4 through the center of the composite anisotropic magnet rotor/non-magnetic phase polygon mirror 7 of the present invention obtained as described above
d, the end surface (magnetic pole forming surface) 76 of the composite anisotropic magnet rotor/non-magnetic phase polygon mirror 7 is magnetized in a predetermined manner so as to face the electromagnetic coil 8 formed in a flat shape. By assembling as shown in Figure 2, a polygon mirror surface with a large outer diameter that achieves high resolution can be integrated with the rotor, making it thin and flat, and can withstand high-speed rotation, resulting in extremely high scanning efficiency. At the same time, since the reflectance of the polygon mirror surface is as high as a coefficient of 80 or more, an optical scanning device with very good image quality (multi-gradation) can be realized.

第3図は、本発明の別の実施例であり、第2図に示した
光走査装置において全体構造をさらに薄形にするために
、第1図に示す軸異方性部分7aを切削し、面内異方性
部分7bとの段差を除いた構成としたものである。
FIG. 3 shows another embodiment of the present invention, in which the axially anisotropic portion 7a shown in FIG. 1 is cut in order to make the overall structure even thinner in the optical scanning device shown in FIG. , the structure is such that the step with the in-plane anisotropic portion 7b is removed.

発明の効果 本発明によれば、面心正方晶の強磁性相を主体とするマ
ンガン−アルミニウム−炭素系合金磁石回転子の内部、
外周部にそれぞれ異なった異方性構造を簡易プロセスで
形成させることにより、内部に回転駆動用のパワーを発
生する高い磁気特性が形成可能であり、かつ外周部には
高解像度を実現する大きな外径のポリゴンミラー面が一
体構造。
Effects of the Invention According to the present invention, the inside of a manganese-aluminum-carbon alloy magnet rotor mainly composed of a face-centered tetragonal ferromagnetic phase,
By forming different anisotropic structures on the outer periphery using a simple process, it is possible to create high magnetic properties that generate power for rotational drive inside, and a large external structure on the outer periphery that achieves high resolution. The polygon mirror surface of the diameter is integrated.

薄形偏平で構成でき、しかも高速回転にも耐えるため非
常に走査効率が高くなると同時に、非磁性相ポリゴンミ
ラー面の反射率が80数係以上と高いために非常に良好
な画質(多階調)の光走査装置が実現できる。
It can be configured with a thin flat structure and can withstand high-speed rotation, resulting in extremely high scanning efficiency.At the same time, the reflectance of the non-magnetic phase polygon mirror surface is high, with a coefficient of over 80, resulting in very good image quality (multi-gradation). ) optical scanning device can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例として示す光走査装置の複合
異方性磁石回転子兼非磁性相ポリゴンミラーの構造を説
明するための断面図、第2図は本発明の一実施例を示す
光走査装置の断面図、第3図は本発明の別の実施例を示
す光走査装置の断面図、第4図は従来の光走査装置の断
面図である。 1・・・・・・ハウジング部材、2・・・・・・カバ一
部材、3・・・・・・回転子固定板、4・・・・・・軸
、5・・・・・・回転子受け、7・・・・・・複合異方
性磁石回転子兼非磁性相ポリゴンミラー、7a・・・・
・・軸異方性部分、7b・・・・・・面内異方性部分、
7C・・・・・・非磁性相鏡面部分、7d・・・・・・
軸取付穴、7e・・・・・・磁極形成面、8・・・・・
・電磁コイル、9・・・・・・プリント基板、1o・・
・・・・ホール素子、11・・・・・・軸受スリーブ。
FIG. 1 is a sectional view for explaining the structure of a composite anisotropic magnet rotor/non-magnetic phase polygon mirror of an optical scanning device shown as an embodiment of the present invention, and FIG. 2 is a sectional view showing an embodiment of the present invention. FIG. 3 is a sectional view of an optical scanning device showing another embodiment of the present invention, and FIG. 4 is a sectional view of a conventional optical scanning device. 1...Housing member, 2...Cover member, 3...Rotor fixing plate, 4...Shaft, 5...Rotation Child support, 7... Composite anisotropic magnet rotor and non-magnetic phase polygon mirror, 7a...
... Axial anisotropic part, 7b... In-plane anisotropic part,
7C...Non-magnetic phase mirror surface part, 7d...
Shaft mounting hole, 7e...Magnetic pole forming surface, 8...
・Electromagnetic coil, 9...Printed circuit board, 1o...
... Hall element, 11 ... Bearing sleeve.

Claims (1)

【特許請求の範囲】[Claims] 発光器と、この発光器からの光を走査するマンガン−ア
ルミニウム−炭素系合金よりなる回転子と、この回転子
を駆動する電磁コイルと、前記回転子によって走査され
た光を受ける受光器とを備え、前記磁石回転子の所望す
る外周部は、その回転軸方向と略垂直な平面内に磁化容
易軸が優先的に配向され、さらに前記外周部の所望の表
層部には、前記合金の非磁性相部分が設けられ、かつ前
記非磁性相部分の表面は鏡面とされ、さらに前記回転子
の外周部以外の内、前記電磁コイルと対向する部分の大
半は少なくとも前記回転子の回転軸方向と略平行な方向
に磁化容易軸が優先的に配向されている光走査装置。
A light emitter, a rotor made of a manganese-aluminum-carbon alloy that scans light from the light emitter, an electromagnetic coil that drives the rotor, and a light receiver that receives the light scanned by the rotor. A desired outer circumferential portion of the magnet rotor has an axis of easy magnetization preferentially oriented in a plane substantially perpendicular to the direction of its rotational axis, and a desired surface layer portion of the outer circumferential portion has a non-magnetic layer of the alloy. A magnetic phase portion is provided, and the surface of the non-magnetic phase portion is a mirror surface, and most of the portion of the rotor other than the outer circumferential portion facing the electromagnetic coil is at least parallel to the rotation axis direction of the rotor. An optical scanning device in which the axis of easy magnetization is preferentially oriented in substantially parallel directions.
JP13950386A 1986-06-16 1986-06-16 Optical scanner Pending JPS62295017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13950386A JPS62295017A (en) 1986-06-16 1986-06-16 Optical scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13950386A JPS62295017A (en) 1986-06-16 1986-06-16 Optical scanner

Publications (1)

Publication Number Publication Date
JPS62295017A true JPS62295017A (en) 1987-12-22

Family

ID=15246800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13950386A Pending JPS62295017A (en) 1986-06-16 1986-06-16 Optical scanner

Country Status (1)

Country Link
JP (1) JPS62295017A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08266030A (en) * 1995-03-27 1996-10-11 Ricoh Co Ltd Rotor device of brushless motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08266030A (en) * 1995-03-27 1996-10-11 Ricoh Co Ltd Rotor device of brushless motor

Similar Documents

Publication Publication Date Title
US5500994A (en) Method of manufacturing a rotor
US10151965B2 (en) Motor, gimbal, and unmanned aerial vehicle
US5062095A (en) Actuator and method of manufacturing thereof
CN1971336A (en) Light deflecting apparatus
US6591066B2 (en) Motor and photographing apparatus
US6809451B1 (en) Galvanometer motor with composite rotor assembly
JPH05683B2 (en)
JPS62295017A (en) Optical scanner
WO2004068675A1 (en) Galvanometer motor with composite stator assembly
US5430570A (en) Light deflector
US7635931B2 (en) Stepping motor
JPS62295016A (en) Optical scanner
JPS62295018A (en) Optical scanner
JPS62295019A (en) Optical scanner
JPS62296404A (en) Permanent magnet
JPS62295020A (en) Optical scanner
JPS62296403A (en) Permanent magnet
JPS62296405A (en) Permanent magnet
CN100449916C (en) Stepping motor and drive device
JP2006171346A (en) Lens drive device and imaging apparatus equipped with device
JP3128352B2 (en) Rotating polygon mirror scanning device
CN101203791A (en) Movable mirror optical scanner and related method
JPH0847236A (en) Electromagnetic driving device
JPH05264921A (en) Deflection scanner
JP2000305358A (en) Magnet roller