JPS62294234A - Exposure device - Google Patents

Exposure device

Info

Publication number
JPS62294234A
JPS62294234A JP61138556A JP13855686A JPS62294234A JP S62294234 A JPS62294234 A JP S62294234A JP 61138556 A JP61138556 A JP 61138556A JP 13855686 A JP13855686 A JP 13855686A JP S62294234 A JPS62294234 A JP S62294234A
Authority
JP
Japan
Prior art keywords
light source
reticle
optical system
reduction projection
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61138556A
Other languages
Japanese (ja)
Inventor
Masaru Sasako
勝 笹子
Masataka Endo
政孝 遠藤
Kazufumi Ogawa
一文 小川
Takeshi Ishihara
健 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61138556A priority Critical patent/JPS62294234A/en
Priority to US07/061,263 priority patent/US4805002A/en
Publication of JPS62294234A publication Critical patent/JPS62294234A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/702Reflective illumination, i.e. reflective optical elements other than folding mirrors, e.g. extreme ultraviolet [EUV] illumination systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Projection-Type Copiers In General (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To set the height of a reduction projection exposure device to a required minimum value by arranging a concave reflective mirror in the optical path between an excimer laser light source optical system and a reticle. CONSTITUTION:A concaves reflective mirror 3 is arranged in the optical path between the optical system of an excimer light source 1 and a reticle 4 to make a condenser lens unnecessary. Consequently, a height l2 is considerably shortened, and a height l1+l2 of the reduction projection exposure device is held down to a required minimum value.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は、露光装置特に半導体素子製造に用いるフォト
リソグラフィー技術による露光装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION 3. Detailed Description of the Invention Field of Industrial Application The present invention relates to an exposure apparatus, particularly an exposure apparatus using photolithography technology used in the manufacture of semiconductor devices.

さらに詳しくは、半導体素子製造におけるフォトリソグ
ラフィ一工程の超微細加工を実現するために考案された
、不連続な例えばパルス状のエネルギー線、更に詳しく
はエキシマレーザ等を用いた露光装置に関するものであ
る。
More specifically, it relates to an exposure device that uses discontinuous, e.g., pulsed energy beams, more specifically excimer laser, etc., devised to realize ultra-fine processing in one step of photolithography in semiconductor device manufacturing. .

従来の技術 従来、すでに半導体素子、特にLSI、VLSI等の微
細加工用として超高圧水銀灯を光源として用いた縮小投
影露光装置(ステッパー)が市販されている。しかしな
がら、従来のステッパーは、超高圧水銀灯のq線(43
6nm)やi線(365nm)を用いているため、解像
度はq線で0.8μm、i線で0.6μmが限界であっ
た。これらの波長では、今後、4Mないしは1eMビッ
ト製造に必要とされる0、5μmの解像度を得ることは
不可能に近い。
2. Description of the Related Art Conventionally, reduction projection exposure apparatuses (steppers) using an ultra-high pressure mercury lamp as a light source have already been commercially available for microfabrication of semiconductor devices, particularly LSIs, VLSIs, and the like. However, conventional steppers only use the q-ray (43
6 nm) and i-line (365 nm), the resolution was limited to 0.8 μm for q-line and 0.6 μm for i-line. At these wavelengths, it will be nearly impossible to obtain the 0.5 μm resolution required for 4M or 1eM bit production in the future.

そこで、近年、q線やi線に比べより波長の短いXeC
l!(308nm)やKrF(249nm)やArF(
193nm)  等のエキシマ光源を用いた露光装置の
開発が検討されるようになってきた。
Therefore, in recent years, XeC, which has a shorter wavelength than the q-line and i-line, has been
l! (308 nm), KrF (249 nm), ArF (
Development of an exposure apparatus using an excimer light source such as 193 nm) is now being considered.

発明が解決しようとする問題点 しかしながら、エキシマレ・−ザを用いた縮小投影露光
においては次に掲げる問題点がある。
Problems to be Solved by the Invention However, reduction projection exposure using an excimer laser has the following problems.

1)露光波長が短波長のため、縮小投影レンズに用いる
光学材料ガラス(硝材)の材料選択に、透過率の関係で
限定範囲が発生する。ちなみにKrF(249nm)、
ArF(193nm)のレーザ波長では、石英(S i
O2)あるいは金石(Ca F 2 )の2種類ぐらい
に限定される。従って縮小投影レンズ設計において、レ
ンズを構成するガラス材料のわずかな屈折率と分散の差
を利用して、色収差等の諸収差を波長の数分の1の単位
で補正しなければならない。しかしながら、エキシマレ
ーザ光等の遠紫外線では前述のように使用しえる材料が
限られるため、縮小投影レンズの設計時必然的に同一屈
折率の材料の球面の曲率半径をわずかづつ変化させる方
法しか使用できず、縮小投影レンズだけで、1m程度と
非常にレンズが長いものとなってしまうという問題があ
る。
1) Since the exposure wavelength is short, there is a limited range in material selection for the optical material glass (glass material) used in the reduction projection lens due to transmittance. By the way, KrF (249nm),
At the laser wavelength of ArF (193 nm), quartz (Si
It is limited to two types: O2) and goldstone (CaF2). Therefore, in designing a reduction projection lens, various aberrations such as chromatic aberration must be corrected in units of a fraction of a wavelength by utilizing the slight difference in refractive index and dispersion of the glass materials that constitute the lens. However, as mentioned above, the materials that can be used for deep ultraviolet light such as excimer laser light are limited, so when designing a reduction projection lens, the only method used is to gradually change the radius of curvature of the spherical surface of a material with the same refractive index. However, there is a problem in that the reduction projection lens alone is extremely long, about 1 m.

(2)一方、エキシマレーザに限らず縮小投影露光装置
では、その占有面積あるいは装置の高さを出来るだけ小
さく、かつ、低くする必要がある。しかしながら、縮小
投影露光の一般的な光学系に前述のレンズを用いると第
2図に示すような形態となる。エキシマレーザ7より発
射された光は、インテグレータ2.平板ミラー8により
長さ13が1m弱程度のレンズ11に光を集束させて入
射させるための垂直なコンデンサレンズを用いた照明光
学系9に係わり、ここでレチクル1oを均一に照明しレ
ンズ長11が1m程度の長い縮小投影レンズ11を介し
てウェノ・−12に転写される。
(2) On the other hand, in not only excimer lasers but also reduction projection exposure apparatuses, it is necessary to make the occupied area or the height of the apparatus as small and low as possible. However, if the above-mentioned lens is used in a general optical system for reduction projection exposure, a configuration as shown in FIG. 2 will be obtained. The light emitted from the excimer laser 7 is transmitted to the integrator 2. It involves an illumination optical system 9 that uses a vertical condenser lens for converging light onto a lens 11 with a length 13 of about 1 m by a flat mirror 8, which uniformly illuminates the reticle 1o and has a lens length 11. is transferred to Weno-12 through a reduction projection lens 11 that is about 1 m long.

従って、第2図の従来の装置では照明光学系9が必要で
あり、11+13が2m程度に長くなり、装置自身の高
さが2m以上と非常に高かくなり、0.6μm程度のパ
ターンを形成する超高精度な露光装置では光軸ズレ等が
発生し極めて不都合となる。さらに高くなると振動等の
問題で設計上困難さを増すことなり、発振ごとに振動音
が出るエキシマ−光源7を用いるとこの高さの問題は大
きいものとなる。そして、ウエノ1−12とし、レチク
ル10との間に、アライメント系の光学系を配置するこ
とが非常に難しいという問題点がある。
Therefore, in the conventional device shown in Fig. 2, an illumination optical system 9 is required, 11+13 is long, about 2 m, and the height of the device itself is very high, more than 2 m, and a pattern of about 0.6 μm can be formed. In ultra-high-precision exposure equipment, optical axis misalignment and the like occur, which is extremely inconvenient. If the height is further increased, problems such as vibration will increase design difficulties, and if an excimer light source 7 that generates a vibration sound every time it oscillates is used, this height problem becomes even more serious. There is a problem in that it is very difficult to arrange an optical system for alignment between the Ueno 1-12 and the reticle 10.

そこで本発明では、エキシマ縮小投影露光において、そ
のレーザ光源光学系とレチクルとの光路軸間に凹面状の
反射ミラーを配置することにより、全体光学系、しいて
いえば縮小投影露光装置の高さを必要最小限にすること
を目的とする。
Therefore, in the present invention, in excimer reduction projection exposure, by arranging a concave reflecting mirror between the optical path axis of the laser light source optical system and the reticle, the height of the entire optical system, or in other words, the reduction projection exposure apparatus, can be reduced. The aim is to keep it to the minimum necessary.

問題点を解決するだめの手段 すなわち、光路順の構成を述べると、光発生源であるエ
キシマレーザ光学系、レーザ光の均一性とビームを整形
するだめのインテグレータ系、従来のミラーおよび照明
光学系の代わりに光路を変換する(方向を変化させる)
凹面状の反射ミラーを、前記レチクルとエキシマレーザ
光源との光路間に配置し、従来の照明光学系9に用いら
れているコンデンサーレンズの代りとする。さらに、望
ましくは凹面状のミラーの反射面をたとえば高反射率の
アルミニウム膜及び誘電体膜よりなる多層膜から構成す
る。
The means to solve the problem, that is, the configuration of the optical path order, are as follows: an excimer laser optical system as a light generation source, an integrator system to ensure uniformity of the laser beam and shape the beam, and a conventional mirror and illumination optical system. Transform the optical path (change direction) instead of
A concave reflecting mirror is placed between the optical path of the reticle and the excimer laser light source, and is used in place of the condenser lens used in the conventional illumination optical system 9. Further, preferably, the reflective surface of the concave mirror is composed of a multilayer film made of, for example, a high reflectance aluminum film and a dielectric film.

作  用 従って、本発明では前述の凹面状の反射ミラーを前述の
構成つまりエキシマレーザ光源光学系とレチクルとの光
路間に配置することにより、装置高が低くかつ、光学系
の設計に自由度が得ることができ、さらに、防振対策上
も大きな効果となり、超微細なパターンをウェハー上に
露光形成する高精度な装置に格別である。
Therefore, in the present invention, by arranging the above-mentioned concave reflecting mirror between the optical path of the excimer laser light source optical system and the reticle, the height of the apparatus can be reduced and the degree of freedom can be increased in the design of the optical system. Furthermore, it has a great effect on anti-vibration measures, and is especially suitable for high-precision equipment that forms ultra-fine patterns on wafers by exposure.

実施例 以下、本発明の実施例を第1図を用いて説明する。すな
わち、光源部として例えばKrFエキシマレーザ光源(
発振波長249nm)1とレーザ光源を用い、この光源
から発振励起発射された光をインテグレータ2で整形及
び均一化する。このインテグレータ2はビーム径を拡大
発射する機能をもつ。さらに、レチクル有効領域を照射
でき、かつ縮小投影レンズ6の入射瞳に入射するように
曲率と口径を定めた凹面状ミラー3を、インテグレータ
2とレチクル4の間の光路に配置する。そして、レンズ
6を通してレチクル4のパターンをウェハー(半導体基
板)6を露光する。本実施例においては、光軸o1と0
2が垂直になるようにミラー3を設置したが、凹面状ミ
ラー3の曲率等変えることにより、光軸o、+02の長
さは任意にすることができる。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to FIG. That is, for example, a KrF excimer laser light source (
Using an oscillation wavelength (249 nm) 1 and a laser light source, the integrator 2 shapes and homogenizes the oscillated and emitted light from this light source. This integrator 2 has a function of expanding the beam diameter and emitting it. Furthermore, a concave mirror 3 whose curvature and aperture are determined so that it can illuminate the effective area of the reticle and enter the entrance pupil of the reduction projection lens 6 is arranged in the optical path between the integrator 2 and the reticle 4. Then, the pattern of the reticle 4 is exposed onto the wafer (semiconductor substrate) 6 through the lens 6. In this embodiment, optical axes o1 and 0
Although the mirror 3 was installed so that the optical axes o and +02 are vertical, the lengths of the optical axes o and +02 can be made arbitrary by changing the curvature of the concave mirror 3.

更に、凹面状ミラー3の反射面は、反射率を高めるため
まず高反射率アルミニウム膜及び誘電体膜よりなる多層
膜をコートしたものを用いた。々お、この条件によると
99チ以上の反射率が得られた。
Further, the reflective surface of the concave mirror 3 was first coated with a multilayer film consisting of a high reflectance aluminum film and a dielectric film in order to increase the reflectance. According to these conditions, a reflectance of 99 cm or more was obtained.

この第1図の光学系では、従来のコンデンサレンズが省
略できるため、12は13に比べ相当短くでき、装置高
1.+12は約1.6m程度に低く押えることが可能と
なった。
In the optical system shown in FIG. 1, the conventional condenser lens can be omitted, so 12 can be considerably shorter than 13, and the device height is 1. +12 can now be held as low as approximately 1.6m.

第2図は、光軸01と02の交差角度が鋭角になるよう
に比較的重いエキシマ−光源1を下の方に斜め上向きに
設置した例であり、装置全体の重心が低くでき、防振対
策上極めて有効となる。
Figure 2 shows an example in which a relatively heavy excimer light source 1 is installed diagonally upward at the bottom so that the intersection angle of optical axes 01 and 02 is an acute angle. This is extremely effective as a countermeasure.

装置全体の高さ!、+lI2が短くなると、振動による
光軸o2のズレが押えられ、サブミクロンパターン形式
の露光装置としては極めて高性能なものとなる。ウェハ
ー6上に0.6μm程度の超微細なパターンをレジスト
に露光する場合、光軸02は数μmズしても解像度が劣
化する。したがって、数’1ocW1程度も高さを小さ
くできることは光軸のズレが生じに<<、超微細な露光
パターンの形成に極めて有用である。
The height of the entire device! , +lI2 become shorter, the deviation of the optical axis o2 due to vibration is suppressed, and the exposure apparatus becomes extremely high-performance for a submicron pattern type exposure apparatus. When exposing an ultra-fine pattern of about 0.6 μm to a resist on the wafer 6, the resolution deteriorates even if the optical axis 02 is shifted by several μm. Therefore, being able to reduce the height by as much as several 1 ocW1 is extremely useful for forming ultra-fine exposure patterns without causing deviation of the optical axis.

発明の効果 エキシマレーザ露光装置において、本発明の構成、すな
わち、凹面状ミラーをエキシマレーザ光学系とレチクル
間に配置することにより、従来のコンデンサレンズが不
要となり、装置高を低くすることが可能となり、コンパ
クトかつ高精度なエキシマ露光装置及び光学系設計の簡
易度及び自由度が拡大することになる。また、防振対策
上も効果大なるものであり、本発明は、半導体装置等に
おける超微細パターンの形成に極めてすぐれた効果を有
するものである。
Effects of the Invention In an excimer laser exposure device, by using the configuration of the present invention, that is, arranging a concave mirror between the excimer laser optical system and the reticle, a conventional condenser lens is not required, and the height of the device can be reduced. , the degree of simplicity and freedom in designing a compact and highly accurate excimer exposure device and optical system will be expanded. Moreover, it is highly effective in terms of anti-vibration measures, and the present invention has extremely excellent effects in forming ultra-fine patterns in semiconductor devices and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明一実施例によるエキシマ露光装置の概略
構成図、第2図は同他の実施例の装置の概略構成図、第
3図は従来の縮小投影露光装置の概略構成図である。 1・・・・・・エキシマ光源、3・・・・・・凹面状ミ
ラー、4・・・・・・レチクル、6・・・・・・縮小投
影レンズ、6・・・・・・ウェハー0 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 ミラーインチクb−7 第2図      3
FIG. 1 is a schematic diagram of an excimer exposure apparatus according to one embodiment of the present invention, FIG. 2 is a schematic diagram of an apparatus according to another embodiment, and FIG. 3 is a schematic diagram of a conventional reduction projection exposure apparatus. . 1... Excimer light source, 3... Concave mirror, 4... Reticle, 6... Reduction projection lens, 6... Wafer 0 Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure mirror ink b-7 Figure 2 3

Claims (2)

【特許請求の範囲】[Claims] (1)縮小投影レンズとウェハーステージとレチクルス
テージとエキシマレーザ光源を含む光学系を有する露光
装置において、前記レチクルステージとエキシマレーザ
光源との間の光路に、凹面状の反射ミラーを配置し、前
記光源からのエキシマレーザ光を前記反射ミラーで反射
させ前記レチクルレンズを通して前記ウェハーに照射す
ることを特徴とした露光装置。
(1) In an exposure apparatus having an optical system including a reduction projection lens, a wafer stage, a reticle stage, and an excimer laser light source, a concave reflecting mirror is disposed in the optical path between the reticle stage and the excimer laser light source, and the An exposure apparatus characterized in that excimer laser light from a light source is reflected by the reflecting mirror and irradiated onto the wafer through the reticle lens.
(2)凹面状の反射ミラーの反射面が、高反射率アルミ
ニウム膜及び誘電体膜よりなる多層膜からなることを特
徴とする特許請求の範囲第1項に記載の露光装置。
(2) The exposure apparatus according to claim 1, wherein the reflective surface of the concave reflective mirror is made of a multilayer film consisting of a high reflectance aluminum film and a dielectric film.
JP61138556A 1986-06-13 1986-06-13 Exposure device Pending JPS62294234A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61138556A JPS62294234A (en) 1986-06-13 1986-06-13 Exposure device
US07/061,263 US4805002A (en) 1986-06-13 1987-06-12 Exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61138556A JPS62294234A (en) 1986-06-13 1986-06-13 Exposure device

Publications (1)

Publication Number Publication Date
JPS62294234A true JPS62294234A (en) 1987-12-21

Family

ID=15224903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61138556A Pending JPS62294234A (en) 1986-06-13 1986-06-13 Exposure device

Country Status (1)

Country Link
JP (1) JPS62294234A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354568A (en) * 1989-07-21 1991-03-08 Dainippon Screen Mfg Co Ltd Optical system for illuminating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354568A (en) * 1989-07-21 1991-03-08 Dainippon Screen Mfg Co Ltd Optical system for illuminating

Similar Documents

Publication Publication Date Title
US6934009B2 (en) Illumination apparatus, illumination-controlling method, exposure apparatus, device fabricating method
US9568838B2 (en) Projection objective for microlithography
JP2003092253A (en) Illumination optical system, projection aligner, and manufacturing method of microdevice
JP4340266B2 (en) Method and apparatus for controlling density bias in lithography
US6762823B2 (en) Illumination system and scanning exposure apparatus using the same
JPH07111512B2 (en) Compensated optical system
KR20080015143A (en) Multiple-use projection system
US20030147155A1 (en) Optical element holding device
JP2002353090A (en) Illumination device, aligner, method for manufacturing the device and aligner
JP2004214653A (en) Lithographic apparatus, device manufacturing method, and substrate holder
JP3239881B2 (en) Optical system and projection device using the same
JP3368227B2 (en) Optical element manufacturing method
US7079321B2 (en) Illumination system and method allowing for varying of both field height and pupil
JP2004226661A (en) Method for forming three-dimensional structure
JPS62294234A (en) Exposure device
JP2005209769A (en) Aligner
JP4393227B2 (en) Exposure apparatus, device manufacturing method, and exposure apparatus manufacturing method
JPS631030A (en) Aligner
JP3870118B2 (en) Imaging optical system, exposure apparatus having the optical system, and aberration reduction method
JP4393226B2 (en) Optical system, exposure apparatus using the same, and device manufacturing method
JP4537087B2 (en) Exposure apparatus and device manufacturing method
TWI841580B (en) Illumination optical system, exposure device and article manufacturing method
US4805002A (en) Exposure apparatus
JP2004029458A (en) Projection optical system and stepper
JPS62294202A (en) Integrator and exposure device using it