JPS62293657A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62293657A
JPS62293657A JP61136840A JP13684086A JPS62293657A JP S62293657 A JPS62293657 A JP S62293657A JP 61136840 A JP61136840 A JP 61136840A JP 13684086 A JP13684086 A JP 13684086A JP S62293657 A JPS62293657 A JP S62293657A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
semiconductor
lamination
grains
pad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61136840A
Other languages
Japanese (ja)
Other versions
JPH0560663B2 (en
Inventor
Katsuya Okumura
勝弥 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61136840A priority Critical patent/JPS62293657A/en
Priority to US07/022,371 priority patent/US4807021A/en
Publication of JPS62293657A publication Critical patent/JPS62293657A/en
Publication of JPH0560663B2 publication Critical patent/JPH0560663B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0652Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next and on each other, i.e. mixed assemblies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16237Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bonding area disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain a semiconductor device having a three-dimensional structure characterized by excellent heat radiating characteristic, by fixing and connecting semiconductor substrates, on which semiconductor elements are formed through conducting linking balls. CONSTITUTION:A smiconductor substrate 6 for lamination, on which semiconductor elements, interconnections for the elements, Al interconnections and the like are formed, is etched. Thus tapered linking holes 7 are formed. Au balls 16 are fixed in the holes 7. An insulating organic resin body 18 is embedded in each hole so that a part of each ball 16 on the hole side is exposed. The substrate 6 is overlapped so that an Au ball 23, which is fixed on each pad 22 on a good chip 21, agrees with the ball 16. The ball 23 and the ball 16 are fixed to each other. Similarly another substrate is laminated on the substrate 6. Then, thermal stress is absorbed by the balls 23, 16 and 24. Therefore, yield of cracks can be prevented. Since a required gap is formed between the substrates, the heat radiating characteristic is improved.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [発明の目的] (産業上の利用分野) 本弁明は、半導体装置に関し、半導体素子等が形成され
た半導体基板を複数枚積層した三次元構造を有する半導
体装置に係わる。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) This defense relates to a semiconductor device, and relates to a three-dimensional device in which a plurality of semiconductor substrates on which semiconductor elements, etc. are formed are stacked. It relates to a semiconductor device having a structure.

(従来の技術) 近年、半導体装置の高集積化、多機能化を目的とした三
次元S○f (311icon on l n5ula
口〇n)デバイスの開発が盛んに行なわれている。これ
は、半導体基板表面の非晶買絶ね股上にシリコン単結晶
を形成し、該単結晶層を用いて半導体素子を作り、三次
元的に半導体素子を1411していく技術である。かか
る技術は、例えば日経エレクトロニクス 1985年1
0月17日号 P229〜253の“高集積、多R能デ
バイスとして姿が見えてきた三次元L S I ”に記
載されている。
(Prior art) In recent years, three-dimensional S○f (311 icon on l n5 ula
口〇n) Device development is actively underway. This is a technique in which a silicon single crystal is formed on an amorphous layer on the surface of a semiconductor substrate, a semiconductor element is manufactured using the single crystal layer, and the semiconductor element is three-dimensionally fabricated. Such technology is described, for example, in Nikkei Electronics, 1985, 1.
It is described in the October 17th issue, pages 229-253, "Three-dimensional LSI emerging as a highly integrated, multi-R capability device."

しかしながら、SOI技術は開発の途についたばかりで
あり、実用化の上で数々の欠点を有する。
However, SOI technology has just entered the stage of development and has a number of drawbacks in its practical application.

本質的な欠点としては、■異質なものを多重に積層し、
高温プロセスを経て単結晶化が進められるため、ストレ
スが非常に大きくなり、クランク等が発生し易いこと、
■層間が密@構造を有しているため、放熱性が低く、熱
がこもり易いことが挙げられる。また、シリコン以外の
半導体材料を積層していくことは現在の技術では不可能
である。
The essential drawbacks are: - Layering multiple layers of different materials;
Since single crystallization is progressed through a high-temperature process, the stress is extremely large, making it easy for cracks to occur.
■Since the layers have a dense @ structure, heat dissipation is low and heat is easily trapped. Furthermore, it is impossible with current technology to stack semiconductor materials other than silicon.

(発明が解決しようとする問題点) 本発明は、上述した従来の三次元化によるクラック発生
及び放熱性の悪化を解決し、高信頼性、高集積度で多機
能化を達成した半導体装置を提供しようとするものであ
る。
(Problems to be Solved by the Invention) The present invention solves the problems of cracking and deterioration of heat dissipation caused by the conventional three-dimensional structure described above, and provides a semiconductor device that achieves high reliability, high integration, and multifunctionality. This is what we are trying to provide.

[発明の構成] (問題点を解決するための手段) 本発明は、半導体素子が少なくとも形成され、かつ表面
の所定部分にパッドが形成された半導体基板と、厚さ方
向に連結孔を有し、かつ該連結孔の底部を含む周辺にパ
ッドが少なくともその一部を該底面に露出させるように
形成されると共に半導体素子が形成された少なくとも1
つの積層用半導体基板とを具備し、前記積層用半導体基
板の連結孔に対応したパッドの露出部に導電性連結泣を
固着すると共に、前記連結孔内に絶縁物質を前記連結粒
の少なくとも該連結孔の開口部側の部分が露出するよう
に埋め込み、かつ前記積層用半導体基板と前記半導体基
板のパッドとを前記連結粒及び該半導体基板のバッド側
に配置した別の導電性連結粒を介して固着し、積層した
ことを特徴とする半導体装置である。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a semiconductor substrate on which at least a semiconductor element is formed and pads are formed on a predetermined portion of the surface, and a semiconductor substrate having a connecting hole in the thickness direction. , and at least one pad is formed around the connection hole including the bottom so that at least a part of the pad is exposed to the bottom surface, and a semiconductor element is formed.
a semiconductor substrate for lamination, a conductive interconnect is fixed to an exposed portion of a pad corresponding to a connection hole of the semiconductor substrate for lamination, and an insulating material is provided in the connection hole at least for the connection of the connection grain. The hole is buried so that the opening side part thereof is exposed, and the laminated semiconductor substrate and the pad of the semiconductor substrate are connected through the connecting grain and another conductive connecting grain arranged on the pad side of the semiconductor substrate. This is a semiconductor device characterized by being fixed and stacked.

(作用) 本発明は、半導体素子等が形成された半導体基板と同素
子が形成された8!IN用半導体基板の間、更に積層用
半導体基板間を積層用半導体基板の連結孔に対応するパ
ッドの露出部及び相手側のパッドに導電性連結粒を介し
て固着、接続することによって、半導体基板上に8I8
!用半導体基板を三次元的に積層できる。また、半導体
基板相互の積層は連結粒によりなされているため、熱ス
トレスを該M拮粒で吸収でき、従来のSol構造のよう
なりラック発生を防止できる。更に、半導体基板相互の
積層は連結粒によりなされ、それら基板間に所望の隙間
を形成できるため、各基板間に熱がこもることなく、放
熱性が改善される。特に、前記基板間の隙間に冷媒を流
通させることが可能であるため、大幅な放熱効果を発揮
できる。更にまた、連結孔内に絶縁物質をその中に位置
する連結粒の少なくとも該連結孔の開口部側の部分が露
出するように埋め込んでいるため、連結孔内に位置する
連結粒の変形による該連結孔の内側面に露出する半導体
基板と接触して短絡するのを防止できろ。
(Function) The present invention provides a semiconductor substrate on which a semiconductor element or the like is formed, and a semiconductor substrate on which the same element is formed. By fixing and connecting between the IN semiconductor substrates and further between the laminated semiconductor substrates to the exposed part of the pad corresponding to the connection hole of the laminated semiconductor substrate and the mating pad via conductive connection grains, the semiconductor substrates 8I8 on top
! semiconductor substrates can be stacked three-dimensionally. Further, since the semiconductor substrates are laminated with each other using connected grains, thermal stress can be absorbed by the M-like grains, and racking can be prevented from occurring as in the conventional Sol structure. Further, since the semiconductor substrates are laminated with each other by connecting grains, and a desired gap can be formed between the substrates, heat is not trapped between the substrates, and heat dissipation is improved. In particular, since it is possible to circulate the coolant in the gap between the substrates, a significant heat dissipation effect can be exhibited. Furthermore, since the insulating material is embedded in the connecting hole so that at least the portion of the connecting grain located therein on the opening side of the connecting hole is exposed, there is no possibility of damage due to deformation of the connecting grain located within the connecting hole. It should be possible to prevent short circuits due to contact with the semiconductor substrate exposed on the inner surface of the connecting hole.

(発明の実旅例) 以下、本発明の実施例を製造方法を併記して詳細に説明
する。
(Examples of the Invention) Examples of the present invention will be described in detail below along with manufacturing methods.

(I)まず、二次元のし81製造法により厚さ450t
1mのシリコンウェハ1に半導体素子、素子間の配線く
いずれも図示せず)及びAff膜からなる50μmx5
0μmのパッド2・・・、3・・・を形成した。なお、
これらパッドのうち、後述する連結孔に対応するパッド
3・・・の一部は1.@間絶縁摸に形成された開孔部内
に埋込まれ、かつ該開孔部底部の基板表面には薄い酸化
膜が形成されている。
(I) First, the thickness was 450t using the two-dimensional paper 81 manufacturing method.
A 50 μm x 5 semiconductor device, wiring between the devices (all not shown) and an Aff film were placed on a 1 m silicon wafer 1.
Pads 2..., 3... of 0 μm were formed. In addition,
Among these pads, some of the pads 3 . . . corresponding to the connection holes described below are 1. A thin oxide film is embedded in the opening formed in the insulator and is formed on the substrate surface at the bottom of the opening.

この酸化膜は、ダイソートテストの障害となるパッドの
基板表面への電気的な接続を防止するために用いられる
。但し、前記薄い酸化膜の代わりに開孔部の底部を含む
周辺の基板表面にpn接合を作るための不純物拡散層を
形成してもよい。つづいて、前記パッド3・・・に対応
するシリコンウェハ1の裏面に等方性エツチングと異方
性エツチングの組合わせにより開口30μmX3Qμm
、深さ50umのワインカップ状の孔4を開孔したく第
1図(a)図示)。なお、エツチングは、いずれもフッ
素系ガスのプラズマを用いて行なった。
This oxide film is used to prevent the pad from being electrically connected to the substrate surface, which would interfere with the die sort test. However, instead of the thin oxide film, an impurity diffusion layer for forming a pn junction may be formed on the peripheral substrate surface including the bottom of the opening. Subsequently, openings of 30 μm x 3 Q μm are formed on the back surface of the silicon wafer 1 corresponding to the pads 3 by a combination of isotropic etching and anisotropic etching.
, I wanted to drill a wine cup-shaped hole 4 with a depth of 50 um (as shown in FIG. 1(a)). Note that etching was performed using fluorine-based gas plasma in both cases.

(If)次いで、前記シリコンウェハのダイソートテス
トを行なった後、ダイシングを施して個々のチップを作
り、選別を行なって良品チップ5を得た(第1図(b)
図示)。つづいて、良品チップ5の裏面全体を異方性エ
ツチングを行なって厚さ45μmの薄板状の積層用半導
体基板6を作製した(第1図(C)図示)。この異方性
エツチングの工程において、裏面に開口されたワインカ
ップ状の孔4は略その形状が保持されながらエツチング
されるため、テーバ状の連結孔7が形成された。
(If) Next, after performing a die sort test on the silicon wafer, dicing was performed to produce individual chips, and the good chips 5 were obtained by sorting (Fig. 1 (b)).
(Illustrated). Subsequently, the entire back surface of the non-defective chip 5 was subjected to anisotropic etching to produce a thin plate-shaped semiconductor substrate 6 for lamination having a thickness of 45 μm (as shown in FIG. 1C). In this anisotropic etching process, the wine cup-shaped hole 4 opened on the back surface is etched while substantially maintaining its shape, so that a tapered connecting hole 7 is formed.

また、前記エツチングに際して前述した開孔部底部の薄
い酸化膜除去を行なって、該連結孔7の底部に開孔部に
対応してバッド3の一部を露出させた。
Further, during the etching, the thin oxide film at the bottom of the opening was removed, so that a part of the pad 3 was exposed at the bottom of the connecting hole 7 corresponding to the opening.

(III)次いで、前記積層用半導体基板6の連結孔7
に例えばAUからなる球状の連結粒を固着するが、この
方法を第2図Ca>〜(C)に示す外部にヒータ11が
配設された内径30umの銃筒12からなる連結粒固着
機ユと、半導体基板がセットされるヒータ14を内蔵し
た保持台15とから構成される装買を参照して説明する
(III) Next, the connecting hole 7 of the semiconductor substrate 6 for lamination
For example, spherical connected grains made of AU are fixed to the surface.This method is carried out using a connected grain fixing machine unit consisting of a gun barrel 12 with an inner diameter of 30 um and equipped with a heater 11 on the outside, as shown in FIG. This will be explained with reference to a device consisting of a holding table 15 having a built-in heater 14 and a holding table 15 on which a semiconductor substrate is set.

まず、保持台15上に前記積層用半導体基板6をその連
結孔7の開口部が上になるようにセットした後、銃筒1
2を前記半導体基板6の連結孔7に位置合せした(第2
図(a)図示)。つづいて、内蔵されたヒータ14によ
って保持台15を300℃に昇温した後、銃筒12の外
部をヒータ11によって約350℃に保持し、該銃筒1
2に内径30μmの球状をなすAu粒16を挿入し、圧
縮窒素17により前記AU粒16を加熱しながら加速度
をもたせて放射して第2図(b)に示すように連結孔7
底部のバッド3の露出部上に熱圧接して固着する。なお
、第2図(b)中の8は基板6とバッド3とを電気的に
絶縁するための居間絶l!躾、9は該絶縁膜8に形成さ
れ、バッド3の一部を前記連結孔7底部に露出させるた
めの開孔部である。ひきつづき、積層用半導体基板6の
連結孔7内に4. O0℃までの耐熱性を有するポリイ
ミドからなる絶縁性有機樹脂体を注入し、加熱硬化させ
て第2図<C>に示すように連結孔7内に絶縁性有機樹
脂体18を該連結孔7の開ロ部側へU粒16部分が露出
するように埋め込んだ。なお、この工程において、Au
粒16の連結孔7の開口部側の部分に樹脂、摸が被着さ
れた場合には硬化後に酸素プラズマ等で灰化処理を施し
て同AL116部分に残存している樹脂膜を除去しても
よい。
First, the semiconductor substrate 6 for lamination is set on the holding table 15 so that the opening of the connecting hole 7 is facing upward, and then the gun barrel 1
2 to the connecting hole 7 of the semiconductor substrate 6 (second
Figure (a) shown). Subsequently, the temperature of the holding base 15 is raised to 300°C by the built-in heater 14, and then the outside of the gun barrel 12 is maintained at about 350°C by the heater 11, and the gun barrel 12 is heated to about 350°C.
A spherical Au particle 16 with an inner diameter of 30 μm is inserted into the connecting hole 7 as shown in FIG.
It is fixed by hot pressure welding onto the exposed part of the bottom pad 3. In addition, 8 in FIG. 2(b) is a living space l! for electrically insulating the board 6 and the pad 3! A hole 9 is an opening formed in the insulating film 8 to expose a part of the pad 3 to the bottom of the connecting hole 7. Continuing, 4. An insulating organic resin body made of polyimide having heat resistance up to 00°C is injected and cured by heating to form an insulating organic resin body 18 in the connecting hole 7 as shown in FIG. The U grain was embedded so that 16 portions of the U grain were exposed to the opening side. Note that in this step, Au
If resin or paper is deposited on the part of the particle 16 on the opening side of the connecting hole 7, after curing, perform ashing treatment with oxygen plasma or the like to remove the resin film remaining on the AL116 part. Good too.

こうした工程により第1図(d)に示す連結孔7に対応
するバッド3の露出部にAU粒16が固着されると共に
、連結孔7内に絶縁性有機樹脂体18が該連結孔7の開
ロ部側Au粒16部分を露出するように埋め込んだ積層
用半導体基板6を育だ。
Through these steps, the AU grains 16 are fixed to the exposed portions of the pads 3 corresponding to the connecting holes 7 shown in FIG. A semiconductor substrate 6 for lamination is grown in which the Au grains 16 on the bottom side are embedded so as to be exposed.

(TV)次いで、二次元のし$1製造法により厚さ45
0μmのシリコンウェハに半導体素子、素子間の配線及
びAa摸からなる50μmX50f1mのバッドを形成
した。つづいて、ダイソートテストの後、前記シリコン
ウェハをダイシングし、良品チップ21を選別し、この
良品チップ21表面のバッド22上に前述の連結粒固着
渫を用いて40μm径の球状をなすAu粒23を固着し
たく第1図(eン図示)。
(TV) Next, the thickness was 45 mm using the two-dimensional papermaking $1 manufacturing method.
A 50 μm x 50 f1 m pad consisting of a semiconductor element, wiring between the elements, and an Aa pattern was formed on a 0 μm silicon wafer. Subsequently, after the die sort test, the silicon wafer is diced, good chips 21 are selected, and Au particles having a spherical shape with a diameter of 40 μm are placed on the pads 22 on the surface of the good chips 21 using the above-mentioned connected particle fixing filter. 23 is shown in Figure 1 (e-illustration).

(Vl次いで、前記(1v)の工程で作製した良品チッ
プ21上に前記(I)〜(III)の工程により作製し
た積層用半導体基板6を該チップ21のバッド22上の
Au粒23と該半導体基板6の連結孔7内のAu粒16
とが合致するように重ねた後。
(Vl) Next, the semiconductor substrate 6 for lamination produced in the steps (I) to (III) above is placed on the good chip 21 produced in the step (1v) above, and the Au grains 23 on the pads 22 of the chip 21 and the Au grains 16 in the connecting hole 7 of the semiconductor substrate 6
After overlapping so that they match.

300℃に加熱しながら積層用半導体基板6をチップ2
1に対して押し付けることによりAIJ粒23.16を
互いに固着したく第1図(f)図示〉。
The semiconductor substrate 6 for lamination is attached to the chip 2 while being heated to 300°C.
1 (f) shown in FIG.

つづいて、積層された半導体基板6表面の所定のバッド
2.3上に前述した連結固着閲を用いて球状をなすAu
粒24を熱圧接して固着した(第1図(1図示)。
Next, a spherical Au film is formed on a predetermined pad 2.3 on the surface of the stacked semiconductor substrate 6 using the above-mentioned connection fixing method.
The grains 24 were fixed by hot pressure welding (FIG. 1 (1 diagram)).

(Vl)次いで、前記(I)〜(III)と同様な工程
により複数枚のWj根板状積11用半導体基板を作製し
、これら半導体基板を前記第1図(0)により積1@シ
た半導体基板6の上に前記(V)と同様な工程により順
次積層し、多層積み重ねた半導(A装置(図示せず)を
製造した。
(Vl) Next, a plurality of semiconductor substrates for the Wj root plate-like stack 11 are manufactured by the same steps as in (I) to (III) above, and these semiconductor substrates are assembled into a stack 1@shield according to FIG. 1(0) above. A multilayer semiconductor (device A (not shown)) was manufactured by sequentially laminating the semiconductor substrate 6 on the semiconductor substrate 6 using the same steps as in (V) above.

しかして、本発明の半導体装置は半導体素子等が形成さ
れた良品チップ21と同素子が形成された積層用半導体
基板6の間、更に各81居用半導体基板6Bを積層用半
導体基板6の連結孔7に対応するパッド3の露出部及び
相手側のパッド22に連結粒としてのAu粒23.16
.24を介して固着、積層するため、高集積度で多機能
の三次元構造を有する半導体装置を得ることができる。
Therefore, in the semiconductor device of the present invention, between the non-defective chip 21 on which a semiconductor element etc. is formed and the semiconductor substrate 6 for lamination on which the same element is formed, each of the 81 semiconductor substrates 6B is connected to the semiconductor substrate 6 for lamination. Au grains 23.16 are connected to the exposed part of the pad 3 corresponding to the hole 7 and to the mating pad 22 as connected grains.
.. Since the semiconductor devices are fixed and laminated via the semiconductor device 24, it is possible to obtain a semiconductor device having a highly integrated and multifunctional three-dimensional structure.

また、良品チップ21と積層用半導体基板6及び各積層
用半導体基板6間の積層は、連結粒としてのAu粒23
.16.24によりなされいるため、熱ストレスを咳A
u粒23.16.24で吸収できるため、従来の801
構造のようなりラック発生を防止できる。しかも、同様
な理由により良品チップ21と積層用半導体基板6の間
、各半導体基板6の間に所望の隙間を形成できるため、
各基板間に熱がこもることなく、放熱性が改善される。
In addition, the lamination between the non-defective chip 21, the semiconductor substrate for lamination 6, and each semiconductor substrate for lamination 6 is performed using Au grains 23 as connection grains.
.. 16.24 Cough A due to heat stress
Since it can be absorbed by U-grain 23.16.24, the conventional 801
It is possible to prevent the occurrence of racks due to the structure. Moreover, for the same reason, a desired gap can be formed between the non-defective chip 21 and the laminated semiconductor substrate 6, and between each semiconductor substrate 6.
Heat dissipation is improved without heat being trapped between each board.

従って、高信頼性の三次元構造を有する半導体装置を得
ることができる。
Therefore, a semiconductor device having a highly reliable three-dimensional structure can be obtained.

更に、積層用半導体基板6の連結孔7内に絶縁物質とし
ての絶縁性有機樹脂体18を該連結孔7に位置する球状
をなすAu粒16の連結孔7の開口部側の部分、つまり
相手側のAu粒23との接触部が露出するように埋め込
んでいるため、該連結孔7内のAu粒16と基板21の
Au粒23との固着に際して該AU粒16が変形しても
、積層用半導体基板6の連結孔7の内側面にAu粒16
が接触するのを該絶縁性有機樹脂体18により防止でき
る。その結果、AU粒16と積層用半導体基板6とり接
触に伴う短絡を防止できる。
Furthermore, an insulating organic resin body 18 as an insulating material is placed in the connecting hole 7 of the laminated semiconductor substrate 6 at a portion of the spherical Au grain 16 located in the connecting hole 7 on the opening side of the connecting hole 7, that is, the other side. Since the contact portion with the side Au grains 23 is buried so as to be exposed, even if the Au grains 16 are deformed when the Au grains 16 in the connecting holes 7 and the Au grains 23 of the substrate 21 are fixed, the lamination will not occur. Au grains 16 are formed on the inner surface of the connecting hole 7 of the semiconductor substrate 6 for
The insulating organic resin body 18 can prevent the insulating organic resin body 18 from coming into contact. As a result, short circuits caused by contact between the AU grains 16 and the laminating semiconductor substrate 6 can be prevented.

なお、上記実施例では連結粒として球状のAu粒を用い
たが、コストの低減化等を目的として球状のステンレス
粒の表面にALI膜を被覆した連結粒を用いてもよい。
In the above embodiment, spherical Au grains were used as the connected grains, but for the purpose of cost reduction, etc., connected grains in which the surfaces of spherical stainless steel grains were coated with an ALI film may be used.

具体的には、直径30μmの球状をなすステンレス粒の
表面にメッキ法により厚さ約3μmのニッケル膜32を
形成し、更に該ニッケル膜上にメッキ法により厚さ約3
μmのAIJ膜を形成した連結粒を用いてもよい。この
場合、ステンレス粒の代わりに、他の金属、ガラス、セ
ラミックス又は耐熱性のプラスチックの粒を使用しても
よい。更に、連結粒の形状に関しても、球状に限定され
ず円柱状等任意の形状としてもよい。但し、熱ストレス
の緩和効果や操作性の点から、球状の連結粒を吏用する
ことが望ましい。
Specifically, a nickel film 32 with a thickness of about 3 μm is formed on the surface of a spherical stainless grain with a diameter of 30 μm by a plating method, and a nickel film 32 with a thickness of about 3 μm is further formed on the nickel film by a plating method.
Connected grains formed with a μm-sized AIJ film may also be used. In this case, particles of other metals, glass, ceramics, or heat-resistant plastics may be used instead of stainless steel particles. Further, the shape of the connected grains is not limited to a spherical shape, but may be any shape such as a cylindrical shape. However, from the viewpoint of thermal stress alleviation effect and operability, it is desirable to use spherical connected grains.

上記実施例では、絶縁物質としてポリイミド系樹脂を用
いたが、シリコーン系樹脂やエポキシ系樹脂等の他の絶
縁性有機樹脂を用いてもよい。
In the above embodiment, polyimide resin was used as the insulating material, but other insulating organic resins such as silicone resin and epoxy resin may also be used.

上記実諧例では、シリコンからなる積層用半導体基板の
みを複数枚用い、これら積層用半導体基板をチップ上に
積層した構造について説明したが、これに限定されない
。例えば、積層用半導体基板の間に配線基板を連結粒を
介して挿入し、該配線基板を境にして下層側の積層用半
導体基板等と上@側のW4層用半導体基板との間の電流
経路を変更するようにしてもよい。また、第3図に示す
ようにチップ31をシリコンで形成し、このシリコンチ
ップ31上にシリコン半導体基板32とガリウム砒素半
導体基板33とを積層し、更にこれらシリコン半導体基
板32及びガリウム砒素半導体基板33にシリコン半導
体基板34を積層した三次元構造の半導体装置としても
よい。こうした第3図図示の構成とすれば、従来の5o
il造に比べてより一層多別能化が図られた三次元構造
の半導体装置を簡単に実現できる。
In the above practical example, a structure is described in which only a plurality of laminated semiconductor substrates made of silicon are used and these laminated semiconductor substrates are laminated on a chip, but the present invention is not limited to this. For example, a wiring board is inserted between the semiconductor substrates for lamination via a connecting grain, and the current between the semiconductor substrate for lamination on the lower layer side and the semiconductor substrate for W4 layer on the upper @ side with the wiring substrate as a boundary. The route may be changed. Further, as shown in FIG. 3, a chip 31 is formed of silicon, a silicon semiconductor substrate 32 and a gallium arsenide semiconductor substrate 33 are laminated on this silicon chip 31, and further these silicon semiconductor substrate 32 and gallium arsenide semiconductor substrate 33 are laminated. The semiconductor device may have a three-dimensional structure in which a silicon semiconductor substrate 34 is stacked on top of the semiconductor substrate. If the configuration shown in FIG. 3 is adopted, the conventional 5o
A semiconductor device with a three-dimensional structure that is more versatile than that of an IL structure can be easily realized.

[発明の効果] 以上詳述した如く、本発明によれば熱ストレスによるク
ラック発生を防止し、かつ放熱性に擾れ、更に従来のS
ol構造に比べて多機能化が可能な高集積度で高信頼性
の三次元構造の半導体装置を提供できる。
[Effects of the Invention] As detailed above, the present invention prevents the occurrence of cracks due to thermal stress, improves heat dissipation, and further improves the conventional S
It is possible to provide a semiconductor device with a three-dimensional structure that is highly integrated and highly reliable and can be multi-functional compared to the OL structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(Q)は1本光明の三次元1霧造の半R
体装固を得るための製造工程を示す断面図、第2図(a
)〜(C)は、積層用半導体基板の連結孔のパッドにA
LL粒を固着すると共に、連結孔内に絶縁物質を埋込む
工程を示す断面図、第3図は、本発明に使用する連結粒
の池の例を示す断面図、第3図は、本発明の他の実施例
を示す三次元構造の半導体装置を示す断面図である。 1・・・シリコンウェハ、2.3.22・・・パッド、
6・・・積層用半導体基板、7・・・連結孔、8・・・
層間絶縁膜、9・・・開孔部、12・・・銃筒、ユ・・
・連結粒固着機、15・・・保持台、16.23.24
・・・AU粒、18・・・絶縁性有滋樹脂体(絶縁物質
)、21・・・良品チップ、31・・・シリコンチップ
、32.34・・・シリコン半導体基板、33・・・ガ
リウム砒素半導体基板。 出願人代理人 弁理士  鈴江武彦 第1図 第1図 第2図
Figure 1 (a) to (Q) are three-dimensional, one-kiri, half-R of one light.
Cross-sectional view showing the manufacturing process for obtaining body rigidity, Figure 2 (a
) to (C) are A to the pad of the connecting hole of the semiconductor substrate for lamination
FIG. 3 is a cross-sectional view showing the process of fixing LL grains and embedding an insulating material in the connecting holes. FIG. 3 is a cross-sectional view showing an example of the connected grain pond used in the present invention. FIG. 3 is a cross-sectional view showing a three-dimensional structure semiconductor device showing another example. 1... Silicon wafer, 2.3.22... Pad,
6...Semiconductor substrate for lamination, 7...Connection hole, 8...
Interlayer insulating film, 9... Opening part, 12... Gun barrel, Yu...
・Connected grain fixing machine, 15...holding stand, 16.23.24
... AU grain, 18 ... Insulating resin body (insulating material), 21 ... Good chip, 31 ... Silicon chip, 32.34 ... Silicon semiconductor substrate, 33 ... Gallium Arsenic semiconductor substrate. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)、半導体素子が少なくとも形成され、かつ表面の
所定部分にパッドが形成された半導体基板と、厚さ方向
に連結孔を有し、かつ該連結孔の底部を含む周辺にパッ
ドが少なくともその一部を該底面に露出させるように形
成されると共に半導体素子が形成された少なくとも1つ
の積層用半導体基板とを具備し、前記積層用半導体基板
の連結孔に対応したパッドの露出部に導電性連結粒を固
着すると共に、前記連結孔内に絶縁物質を前記連結粒の
少なくとも該連結孔の開口部側の部分が露出するように
埋め込み、かつ前記積層用半導体基板と前記半導体基板
のパッドとを前記連結粒及び該半導体基板のパッド側に
配置した別の導電性連結粒を介して固着し、積層したこ
とを特徴とする半導体装置。
(1) A semiconductor substrate having at least a semiconductor element formed thereon and a pad formed on a predetermined portion of the surface, and a semiconductor substrate having a connecting hole in the thickness direction, and at least a pad around the bottom of the connecting hole. at least one laminated semiconductor substrate formed such that a portion thereof is exposed on the bottom surface and on which a semiconductor element is formed, and a conductive material is provided in the exposed portion of the pad corresponding to the connection hole of the laminated semiconductor substrate. At the same time as fixing the connecting grains, embedding an insulating material in the connecting hole so that at least a portion of the connecting grain on the opening side of the connecting hole is exposed, and connecting the semiconductor substrate for lamination and the pad of the semiconductor substrate. A semiconductor device characterized in that the connecting grains are fixed to each other through another conductive connecting grain arranged on the pad side of the semiconductor substrate and stacked.
(2)、積層用半導体基板は複数枚からなり、それらは
連結孔に対応する領域以外にもパッドを有し、一層目の
積層用半導体基板の連結孔以外のパッドと二層目の積層
用半導体基板の連結孔に対応するパッドの露出部とを2
つの導電性連結粒を介して固着、積層し、同様に三層目
以降の積層用半導体基板を順次導電性連結粒を介して固
着、積層することを特徴とする特許請求の範囲第1項記
載の半導体装置。
(2) The semiconductor substrate for lamination consists of multiple sheets, each of which has pads in areas other than the area corresponding to the connecting holes, and the pads other than the connecting holes of the semiconductor substrate for lamination of the first layer and the pads for lamination of the second layer. The exposed part of the pad corresponding to the connection hole of the semiconductor substrate is
Claim 1, characterized in that the semiconductor substrates for lamination of the third and subsequent layers are fixed and laminated through two conductive connecting grains, and similarly, the third and subsequent layers of semiconductor substrates are successively fixed and laminated through the conductive connecting grains. semiconductor devices.
(3)積層用半導体基板の厚さと連結粒の大きさとが略
同じであることを特徴とする特許請求の範囲第1項記載
の半導体装置。
(3) The semiconductor device according to claim 1, wherein the thickness of the semiconductor substrate for lamination and the size of the connected grains are substantially the same.
JP61136840A 1986-03-10 1986-06-12 Semiconductor device Granted JPS62293657A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61136840A JPS62293657A (en) 1986-06-12 1986-06-12 Semiconductor device
US07/022,371 US4807021A (en) 1986-03-10 1987-03-05 Semiconductor device having stacking structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61136840A JPS62293657A (en) 1986-06-12 1986-06-12 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS62293657A true JPS62293657A (en) 1987-12-21
JPH0560663B2 JPH0560663B2 (en) 1993-09-02

Family

ID=15184730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61136840A Granted JPS62293657A (en) 1986-03-10 1986-06-12 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62293657A (en)

Also Published As

Publication number Publication date
JPH0560663B2 (en) 1993-09-02

Similar Documents

Publication Publication Date Title
JP4594934B2 (en) Integrated electronic chip and interconnect device, and method for manufacturing the same
TWI374531B (en) Inter-connecting structure for semiconductor device package and method of the same
TWI229890B (en) Semiconductor device and method of manufacturing same
US7691672B2 (en) Substrate treating method and method of manufacturing semiconductor apparatus
US5380681A (en) Three-dimensional multichip package and methods of fabricating
US6548391B1 (en) Method of vertically integrating electric components by means of back contacting
US4812191A (en) Method of forming a multilevel interconnection device
US20030060034A1 (en) Method of transferring ultra-thin substrates and application of the method to the manufacture of a multi-layer thin film device
TW200903773A (en) Three-dimensional dice-stacking package structure and method for manufactruing the same
WO2011108327A1 (en) Method for producing reconstituted wafers and method for producing semiconductor devices
US20080009124A1 (en) Method of forming a semiconductor device
KR102019551B1 (en) Semiconductor device including die bond pads at a die edge
JP2001068618A (en) Semiconductor chip and its manufacture, semiconductor device, computer, circuit board and electronic equipment
WO2009146588A1 (en) Bonding method for through-silicon-via based 3d wafer stacking
US20040229446A1 (en) Method of production of semiconductor device
WO2016137892A1 (en) Microelectronic assemblies formed using metal silicide, and methods of fabrication
JP2013074263A (en) Semiconductor device
US20190164936A1 (en) 3d stacked dies with disparate interconnect footprints
JP4320492B2 (en) Semiconductor device mounting structure and method of manufacturing semiconductor device mounting structure
WO1994005039A1 (en) Semiconductor wafer for lamination applications
TWI241695B (en) Structure of an electronic package and method for fabricating the same
JPS62293657A (en) Semiconductor device
JPS62209845A (en) Semiconductor device
JPS62293658A (en) Semiconductor device
Paik Development of 3-dimensional memory die stack packages using polymer insulated sidewall technique

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees