JPS6229358Y2 - - Google Patents

Info

Publication number
JPS6229358Y2
JPS6229358Y2 JP17017082U JP17017082U JPS6229358Y2 JP S6229358 Y2 JPS6229358 Y2 JP S6229358Y2 JP 17017082 U JP17017082 U JP 17017082U JP 17017082 U JP17017082 U JP 17017082U JP S6229358 Y2 JPS6229358 Y2 JP S6229358Y2
Authority
JP
Japan
Prior art keywords
temperature
dew point
humidity
pressure
point temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17017082U
Other languages
Japanese (ja)
Other versions
JPS5972199U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17017082U priority Critical patent/JPS5972199U/en
Publication of JPS5972199U publication Critical patent/JPS5972199U/en
Application granted granted Critical
Publication of JPS6229358Y2 publication Critical patent/JPS6229358Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 この考案は、深海潜水装置等の高気圧室内の温
度及び湿度の自動制御装置に関するものである。
[Detailed Description of the Invention] This invention relates to an automatic control device for temperature and humidity in a hyperbaric chamber of a deep-sea diving device or the like.

深海潜水を含む種々の潜水作業に用いられる潜
水装置のDDC(船上減圧室)や深海潜水訓練装
置、潜水医学・高圧生理学・実験・治療装置等の
高気圧室は、内部にダイバーを収容して潜水にと
もなう加圧、保圧、減圧を行なうため、高圧のへ
リウム・酸素混合ガス、ヘリウム・窒素・酸素混
合ガスのほか高圧空気や酸素・窒素の高圧混合ガ
スの環境下にダイバーが長期間居住しなければな
らない。このダイバーの生命及び健康維持のた
め、室内のガス圧力及びガス組成の制御ととも
に、室内温度及び湿度を適切に制御する必要があ
る。
DDC (shipboard decompression chamber), a diving device used for various diving operations including deep-sea diving, deep-sea diving training equipment, and hyperbaric chambers for diving medicine, hyperbaric physiology, experiments, and treatment equipment, are used to house divers while diving. In order to pressurize, hold, and depressurize, divers live for long periods in an environment of high-pressure helium/oxygen mixed gas, helium/nitrogen/oxygen mixed gas, high-pressure air, and high-pressure mixed gas of oxygen/nitrogen. Must. In order to maintain the lives and health of these divers, it is necessary to appropriately control the indoor gas pressure and gas composition, as well as the indoor temperature and humidity.

特にヘリウムガスは空気に比べ熱伝導率が大き
く、ダイバーからの体熱損失が大きくなるので、
ダイバーの安全衛生を維持するため室内の温度・
湿度は極めて狭い許容値範囲内に制御する必要が
ある。
In particular, helium gas has a higher thermal conductivity than air, which increases body heat loss from the diver.
In order to maintain the safety and health of divers, indoor temperature and
Humidity must be controlled within very narrow tolerance ranges.

しかるに、このうち湿度は室内ガスの圧力、温
度、ガスの組成等により相互に影響をうけるもの
である。従来の湿度センサーは毛髪湿度計、木片
湿度計、塩化リチウム湿度計等であるが、これら
はいずれも大気圧空気中で使用されるものであ
り、高圧のヘリウム等の混合ガス下における上記
のような相互影響を考慮したものではない。
However, among these, humidity is mutually influenced by the pressure, temperature, composition of the gas, etc. of the indoor gas. Conventional humidity sensors include hair hygrometers, wood chip hygrometers, lithium chloride hygrometers, etc., but all of these are used in atmospheric pressure air, and as described above under high pressure mixed gases such as helium. It does not take into account mutual influences.

またこのほかの理由もあり、従来の高圧室内の
温度・湿度制御はいまだ適切なものはない。すな
わち、室内圧力、ガス組成はそれぞれの潜水作業
に応じで定められるが、この条件下で上記の相互
影響を考慮して温度と湿度を制御するためには、
従来は乾湿温度計等により人が湿度に関連する湿
球温度と乾球温度の表示を読むことにより上記の
相互影響について人の判断により、最も望ましい
湿度環境とすべくシリカゲル等を使用して手動操
作により湿度制御を行なついる。
For other reasons, there is still no adequate temperature and humidity control in the conventional hyperbaric chamber. The chamber pressure and gas composition are determined according to the diving task, but in order to control the temperature and humidity under these conditions while taking into account the above-mentioned mutual influences,
Conventionally, humidity control is carried out manually using silica gel or the like to create the most desirable humidity environment by manually reading the wet-bulb temperature and dry-bulb temperature displayed on a psychrometric thermometer or the like and judging the above-mentioned mutual influences.

しかし、これを手動操作で行なうことは適正な
制御は期し難く煩雑である。またこのように手動
操作により湿度を調節することは当然温度へ影響
を与え、温度の変動をきたし極めて狭い許容範囲
内で温度制御をする上で多大の困難がある。
However, if this is done manually, proper control is difficult and complicated. Further, adjusting the humidity by manual operation in this way naturally affects the temperature, causing temperature fluctuations, and it is very difficult to control the temperature within an extremely narrow tolerance range.

この考案は、このような従来の装置の欠点を除
去するため、温度及び湿度の適正な自動制御装置
を提供しようとするものである。
This invention aims to provide a suitable automatic control device for temperature and humidity in order to eliminate the drawbacks of such conventional devices.

すなわち、湿度を調節するものとして除湿用冷
気器により湿度を下げていたことは周知である
が、本考案は高圧のヘリウム等の混合ガス環境下
における湿度を露点温度(すなわち、相対湿度
100%となるまでガスを冷却したときの温度)と
してとらえ、ガスを所望の相対湿度に対応する露
点温度まで一旦冷却して余分水分を除去した後、
所望の温度に再び加温することによつて所定の湿
度を得るものであつて、本考案による制御装置は
積極的に所望の相対湿度と温度の高圧ガス環境を
作り出そうとするものである。高気圧下における
適正湿度は気中含有水分、温度、圧力、ガス組成
の各要因によつて変化し定まるものであり、第2
図に示す線図によつて相対湿度が算出される。
In other words, it is well known that a dehumidifying air cooler has been used to lower humidity as a means of regulating humidity, but the present invention measures humidity in a high-pressure mixed gas environment such as helium using the dew point temperature (i.e., relative humidity).
After cooling the gas to the dew point temperature corresponding to the desired relative humidity and removing excess moisture,
A predetermined humidity is obtained by reheating to a desired temperature, and the control device according to the present invention actively attempts to create a high-pressure gas environment with a desired relative humidity and temperature. Appropriate humidity under high pressure varies and is determined by various factors such as moisture content in the air, temperature, pressure, and gas composition.
Relative humidity is calculated using the diagram shown in the figure.

この考案は、これを逆用して設定露点温度演算
器に要因データを入力し、第2図の図表に示す関
係に従つて所望の適正湿度を得るための露点温度
を自動的に算定させ、除湿用冷気器と加湿器の出
力を調節させることにより上記設定露点温度とす
ることにより湿度を自動調整し、併せて温度も適
正に自動調整しようとするものである。
This invention reversely utilizes this to input factor data into the set dew point temperature calculator, and automatically calculates the dew point temperature to obtain the desired appropriate humidity according to the relationship shown in the diagram in Figure 2. The humidity is automatically adjusted by adjusting the output of the dehumidifying cooler and the humidifier to reach the set dew point temperature, and the temperature is also automatically adjusted appropriately.

以下、図面について本考案の実施例を説明する
と、第1図において1は深海潜水装置等の高気圧
室である。これに該室内の温度・湿度を調整し炭
酸ガスを吸収除去するなど環境制御用の循環系が
設けられ、循環送風機2によりガスを循環させて
いる。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In FIG. 1, reference numeral 1 indicates a hyperbaric chamber of a deep-sea diving device or the like. A circulation system for environmental control such as adjusting the temperature and humidity in the room and absorbing and removing carbon dioxide gas is provided, and a circulation blower 2 circulates the gas.

この循環系に上流から順に除湿用冷気器3、露
点計測用温度センサー4及び加温器5と配設す
る。また除湿用冷気器3の出力を制御する露点温
度調節器6及び設定露点温度演算器7を設ける。
また、加温器5を制御する温度調節器8を設け
る。設定露点温度演算器7には圧力、各ガス組
成、設定温度及び設定湿度を入力させる。
A dehumidifying cooler 3, a dew point measuring temperature sensor 4, and a warmer 5 are disposed in this circulation system in this order from upstream. Further, a dew point temperature controller 6 and a set dew point temperature calculator 7 are provided to control the output of the dehumidifying cooler 3.
Further, a temperature regulator 8 for controlling the warmer 5 is provided. The pressure, each gas composition, set temperature, and set humidity are input to the set dew point temperature calculator 7.

露点温度調節器6には設定露点温度演算器7か
らの出力及び露点計測用温度センサー4からの信
号を入力し、その出力で除湿用冷気器3を制御さ
せる。温度調節器8には設定温度及び室内温度を
入力し、その出力で加温器5を制御させる。
The output from the set dew point temperature calculator 7 and the signal from the dew point measuring temperature sensor 4 are input to the dew point temperature regulator 6, and the dehumidifying air cooler 3 is controlled by the output. The set temperature and room temperature are input to the temperature controller 8, and the warmer 5 is controlled by the output.

設定露点温度演算器7は高圧室1内の圧力、ガ
ス組成及び設定温度に応じて、所望の設定湿度を
得るための露点温度を第2図の図表に示す関係に
より算定させるものである。
The set dew point temperature calculator 7 calculates the dew point temperature for obtaining a desired set humidity according to the pressure in the high pressure chamber 1, the gas composition, and the set temperature according to the relationship shown in the diagram of FIG.

この入力として、圧力は圧力センサー11から
圧力計測器12を経て入力される。ガス組成は酸
素濃度計測器13及び窒素濃度計測器14で測定
された信号が入力される。ヘリウムガス濃度は
〔100%−酸素濃度%−窒素濃度%〕で算出される
こととなる。設定湿度は湿度設定器15により、
設定温度は温度設定器16により設定し入力され
る。
As this input, pressure is input from a pressure sensor 11 via a pressure measuring device 12 . As for the gas composition, signals measured by an oxygen concentration meter 13 and a nitrogen concentration meter 14 are input. The helium gas concentration will be calculated as [100% - oxygen concentration % - nitrogen concentration %]. The set humidity is determined by the humidity setting device 15.
The set temperature is set and input using the temperature setting device 16.

設定露点温度演算器7はこれらのデータの入力
信号により所望の相対湿度を得るための露点温度
を計算し、その出力信号は露点温度調節器6に送
る。
The set dew point temperature calculator 7 calculates a dew point temperature for obtaining a desired relative humidity based on the input signals of these data, and sends the output signal to the dew point temperature regulator 6 .

露点温度調節器6は入力された設定露点温度信
号と露点計測用温度センサー4からの信号とを比
較し、その出力を除湿用冷気器3に送り除湿用冷
気器3の出力を増減させる。温度調節器8は入力
される温度設定器16からの設定温度信号と室内
温度センサー17からの信号とを比較し、その出
力を加温器5に送り加温器5の出力を増減させ
る。
The dew point temperature controller 6 compares the input set dew point temperature signal with the signal from the dew point measuring temperature sensor 4, and sends the output to the dehumidifying cooler 3 to increase or decrease the output of the dehumidifying cooler 3. The temperature regulator 8 compares the input set temperature signal from the temperature setting device 16 and the signal from the room temperature sensor 17, and sends the output to the warmer 5 to increase or decrease the output of the warmer 5.

尚、第1図に点線18で示す系統を設けた露点
温度センサー4からの信号を温度調節器8に入力
することを付加すればより応答がはやく精密な温
度制御が可能となる。このように温湿度が制御さ
れている状態において、露点温度調節器6内の信
号から相対湿度演算器7Aを経て湿度表示器15
Aに湿度を表示するとともに温度調節器8内の信
号から温度表示器16Aに温度を表示することに
より、高圧室内の温湿度を常時監視することがで
きる。
If a signal from the dew point temperature sensor 4, which is provided with a system indicated by a dotted line 18 in FIG. 1, is input to the temperature controller 8, a faster response and more precise temperature control will be possible. In a state where the temperature and humidity are controlled in this way, the signal from the dew point temperature controller 6 is sent to the humidity display 15 via the relative humidity calculator 7A.
By displaying the humidity on A and the temperature on the temperature display 16A based on the signal from the temperature controller 8, the temperature and humidity in the high pressure chamber can be constantly monitored.

また、一般的に高圧室内では、ダイバーからの
発汗などで水分が発生する傾向にあることと、高
圧のヘリウム混合ガス環境下においては、大気中
よりも高温に保持する必要があることから、循環
系の中に、上記除湿用冷気器3の前、または、後
に加湿器3Aと、上記加温器5と並列に流量調節
用のダンパー5Aをもつダクトとを設けて、各々
露点温度調節器6、および、温度調節器8によつ
て温、湿制御を行うようにすることもある。ま
た、炭酸ガス吸収器、CO転化器、脱臭器、除菌
フイルター等が循環系に組込まれることもあるが
これらは図面に省略した。
In general, moisture tends to be generated in hyperbaric chambers due to sweating by divers, and in a high-pressure helium mixed gas environment, it is necessary to maintain the temperature at a higher temperature than in the atmosphere. In the system, a humidifier 3A is provided before or after the dehumidifying cooler 3, and a duct having a damper 5A for flow rate adjustment is provided in parallel with the warmer 5, and a dew point temperature controller 6 is provided in each case. , and a temperature regulator 8 may be used to control temperature and humidity. Additionally, carbon dioxide absorbers, CO converters, deodorizers, sterilizing filters, etc. may be incorporated into the circulation system, but these are omitted from the drawing.

また、図面は循環系を外部に設けたものを示し
たが、高圧室内に設けることもできる。外部に設
置した場合は装置の保守、整備に便利であり、内
部に設置した場合は循環系を耐圧構造とする必要
がない利点がある。
Further, although the drawings show a system in which the circulation system is provided outside, it may also be provided in the high pressure chamber. When installed externally, it is convenient for maintenance and maintenance of the device, and when installed internally, there is an advantage that the circulation system does not need to have a pressure-resistant structure.

以上説明したとおり、本考案による高気圧室の
温度・湿度の自動制御装置を設けることにより温
度・湿度を容易に正確に調整することができるこ
ととなり、ダイバーの居住環境条件を良好に保
ち、ダイバーの生命と安全の確保と装置の運用に
著しい改善が期待できる。
As explained above, by providing the automatic temperature and humidity control device of the hyperbaric chamber according to the present invention, it is possible to easily and accurately adjust the temperature and humidity. Significant improvements can be expected in ensuring safety and operating equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案による制御装置の系統図、第2
図は高気圧下における混合ガス中の湿度図表であ
る。 1……高気圧室、2……循環送風機、3……除
湿用冷気器、3A……加湿器、4……露点計測用
温度センサー、5……加温器、5A……冷気器、
6……露点温度調節器、7……設定露点温度演算
器、7A……相対湿度演算器、8……温度調節
器、11……圧力センサー、12……圧力計測
器、13……酸素濃度計測器、14……窒素濃度
計測器、15……湿度設定器、15A……湿度表
示器、16……温度設定器、16A……温度表示
器、17……室内温度センサー。
Figure 1 is a system diagram of the control device according to the present invention;
The figure is a humidity chart in a mixed gas under high pressure. 1... Hyperbaric chamber, 2... Circulating blower, 3... Cooler for dehumidification, 3A... Humidifier, 4... Temperature sensor for dew point measurement, 5... Warmer, 5A... Cooler,
6... Dew point temperature controller, 7... Set dew point temperature calculator, 7A... Relative humidity calculator, 8... Temperature controller, 11... Pressure sensor, 12... Pressure measuring device, 13... Oxygen concentration Measuring device, 14...Nitrogen concentration measuring device, 15...Humidity setting device, 15A...Humidity display device, 16...Temperature setting device, 16A...Temperature display device, 17...Indoor temperature sensor.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 高気圧室のガス循環系に、該室内の圧力、各組
成ガスの濃度、設定温度及び設定湿度の各入力信
号により所要の露点温度を算定する設定露点温度
演算器からの出力信号と循環系中に設けられた露
点計測用温度センサーからの出力信号の各入力信
号を比較して作動する露点温度調節器によつて制
御される除湿用冷気器と、設定温度及び室内温度
センサーからの各入力信号を比較して作動する温
度調節器によつて制御される加温器とを介設せし
めたことを特徴とする高気圧室の温度・湿度の制
御装置。
In the gas circulation system of the hyperbaric chamber, there is an output signal from a set dew point temperature calculator that calculates the required dew point temperature based on the input signals of the pressure in the room, the concentration of each constituent gas, the set temperature, and the set humidity. A dehumidifying air cooler is controlled by a dew point temperature controller that operates by comparing each input signal of the output signal from the provided dew point measuring temperature sensor, and each input signal from the set temperature and room temperature sensor. 1. A temperature/humidity control device for a hyperbaric room, characterized by interposing a warmer controlled by a temperature regulator that operates in comparison.
JP17017082U 1982-11-09 1982-11-09 Temperature and humidity control device for hyperbaric chambers Granted JPS5972199U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17017082U JPS5972199U (en) 1982-11-09 1982-11-09 Temperature and humidity control device for hyperbaric chambers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17017082U JPS5972199U (en) 1982-11-09 1982-11-09 Temperature and humidity control device for hyperbaric chambers

Publications (2)

Publication Number Publication Date
JPS5972199U JPS5972199U (en) 1984-05-16
JPS6229358Y2 true JPS6229358Y2 (en) 1987-07-28

Family

ID=30371560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17017082U Granted JPS5972199U (en) 1982-11-09 1982-11-09 Temperature and humidity control device for hyperbaric chambers

Country Status (1)

Country Link
JP (1) JPS5972199U (en)

Also Published As

Publication number Publication date
JPS5972199U (en) 1984-05-16

Similar Documents

Publication Publication Date Title
US4164172A (en) Method and apparatus for ventilating an occupied space
US5336131A (en) Differential pressure control apparatus for livestock houses
KR100825879B1 (en) A Auto Climate Control System and processing method
DE69322504D1 (en) CONTROL OF VENTILATION RATE AND ROOM AIR QUALITY
TW347463B (en) An apparatus for controlling climate control system
KR101278245B1 (en) Air conditioner with function of predictively controlling indoor-air quality
CN109883918B (en) Protective mask testing system and method
CA2798396A1 (en) An hvac system, a controller therefor and a method of measuring and managing ventilation airflow of an hvac system
KR20090011711A (en) Controller for broiler housing
Aguilera et al. Description and function of an open-circuit respiration plant for pigs and small ruminants and the techniques used to measure energy metabolism
JPS5663513A (en) Method and apparatus for preventing clouding inside car glass and control moisture for car-air conditioner
CN217154338U (en) Fresh air adjusting device and air conditioning system
JPS6229358Y2 (en)
JPH0331977B2 (en)
DE10122435A1 (en) Regulating air humidity comprises constantly monitoring air humidity and temperature to determine absolute humidity which is then used as regulating parameter for humidity and ventilation system
ES401284A1 (en) Apparatus suitable for growing plants in a regulated climate in an enclosure
Lachica et al. A confinement respiration chamber for short gaseous exchange measurements
Houghten et al. Thermal exchanges between the human body and its atmospheric environment
JPS62153637A (en) Humidifier
JPS61225593A (en) Device to control operation of cooling tower
ES2321064T3 (en) CLIMATIZED ROOM.
JPS6414539A (en) Controlling method for air conditioner
JPH05133560A (en) Air conditioner test room
SU1450783A1 (en) Method of monitoring and automatic regulation of intensity breathing of bulk grain in storehouses
Akgüney Investigation of Design and Performance of an Air Conditioning Experiment Room to Work with Minimum Energy Consumption