JPS62293222A - Color display device - Google Patents

Color display device

Info

Publication number
JPS62293222A
JPS62293222A JP61136867A JP13686786A JPS62293222A JP S62293222 A JPS62293222 A JP S62293222A JP 61136867 A JP61136867 A JP 61136867A JP 13686786 A JP13686786 A JP 13686786A JP S62293222 A JPS62293222 A JP S62293222A
Authority
JP
Japan
Prior art keywords
light
diffraction grating
light valve
beams
order
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61136867A
Other languages
Japanese (ja)
Other versions
JP2777989B2 (en
Inventor
Hajime Sakata
肇 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61136867A priority Critical patent/JP2777989B2/en
Publication of JPS62293222A publication Critical patent/JPS62293222A/en
Application granted granted Critical
Publication of JP2777989B2 publication Critical patent/JP2777989B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE:To obtain a color display device characterized by high light utilizing efficiency, low power consumption, hight brightness, and excellent color reproducibility by utilizing a diffraction grating and a light valve. CONSTITUTION:White light beams 1 radiated from a polychromatic light source are condensed by a lenticular plate 5 and the 0-th order, + or -1st order ...diffracted beams are respectively led into the light valve part 3 through the diffraction grating 6. A large part of energy is concentrated into the + or -1st order diffracted beams led into the light valve part 3 by specifying the grating pitches of the diffraction grating 6, a phase change value, and so on. The light valve part 3 is arranged so that spectrum beams of red R, green G and blue B components of respective + or -1st order diffracted beams are made incident upon three light valves 3-1-3-3 corresponding to at least one picture element in the train direction of one picture element train in an area distributing the spectrum beams and a douser to interrupt the transmission of the light beams is arranged on area for concentrating the 0-th order diffracted beams or + or -1st order or more diffracted beams.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明はカラー表示装置に関し、特にテレビ放送用、画
像通信用、医用、工業用そして劇場用等に好適なカラー
表示装置に関するものである。
[Detailed Description of the Invention] 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a color display device, particularly a color display device suitable for television broadcasting, image communication, medical use, industrial use, theater use, etc. This invention relates to display devices.

(従来の技術) 従来より自然光や複数の波長成分を有する光束から所定
の分光特性を有する光束を選択し表示するようにしたカ
ラー表示装置としてカラーフィルターと液晶ライトバル
ブを組み合わせたものが良く知られている。第1図はこ
の種のカラー表示装置の一例の構成の一部分の概略図で
ある。図中1は複数の波長成分を有する多色光源Sから
の白色光束であり、多色光源Sからの光束1を空間的に
配置された1画素毎ド通常、赤色(R)、緑色(G)、
青色(B)の3色のカラーフィルターを有するカラーフ
ィルタ一部2に入射させ色分解を行っている。そして各
カラーフィルター毎に設けた複数のライトバルブ3−1
より成るライトバルブ部3により独立に透過光強度を制
御することにより色再現及び階調出し等を行っている。
(Prior Art) Conventionally, a combination of a color filter and a liquid crystal light valve has been well known as a color display device that selects and displays a light beam having predetermined spectral characteristics from natural light or a light beam having multiple wavelength components. ing. FIG. 1 is a schematic diagram of a portion of the configuration of an example of this type of color display device. In the figure, 1 is a white light beam from a polychromatic light source S having a plurality of wavelength components. ),
Color separation is performed by making the light incident on a color filter part 2 having three color filters of blue (B). And a plurality of light valves 3-1 provided for each color filter.
Color reproduction, gradation, etc. are performed by independently controlling the intensity of transmitted light using the light valve section 3 consisting of the following.

カラーフィルターとして代表的なものに染料、顔料等の
光吸収材を利用した吸収型のもの力下広く使用されてい
る。この導光の進行方向を変化させることにより色を選
択するカラーフィルターとして多重干渉膜や回折格子等
を用いたものが知られている。
A typical color filter is an absorption type that uses light absorbing materials such as dyes and pigments, and is widely used. Color filters using multiple interference films, diffraction gratings, etc. are known as color filters that select colors by changing the traveling direction of this light guide.

液晶ライトバルブとしてはTN(ツイスト・ネマチック
)型、GH(ゲスト・ホスト)型、複屈折制御型、相転
移型そして熱光学効果型等が知られている。
As liquid crystal light valves, there are known types such as TN (twisted nematic) type, GH (guest host) type, birefringence control type, phase change type, and thermo-optic effect type.

これら従来のカラーフィルターとライトバルブを利用し
たカラー表示装置は第1図に示すように空間的に赤色、
緑色、青色の3つのカラーフィルターR,G、Bを配置
して1つの画素を形成している。この為、例えば赤フィ
ルタ一部(R)に入射する白色光(W)のうち緑色成分
と青色成分は吸収、反射あるいは回折等で除去されるの
で光利用効率は原理的に高々届程度である。
These conventional color display devices using color filters and light valves spatially display red and
Three color filters R, G, and B of green and blue are arranged to form one pixel. For this reason, for example, the green and blue components of the white light (W) incident on the red filter part (R) are removed by absorption, reflection, or diffraction, so the light utilization efficiency is in principle only within reach. .

実際にはこれにライトバルブの透過率が掛けられ光利用
効率は更に低下してくる。
In reality, this is multiplied by the transmittance of the light valve, further reducing the light utilization efficiency.

又カラーフィルターの分光特性は染料等の種類、多層膜
の構成あるいは回折格子の位相変調量(格子の高さ等)
等で決定されるが、現実には理想的な分光特性よりかな
り外れる為、良好なる色再現性を得るのが困難であった
The spectral characteristics of a color filter also depend on the type of dye, the structure of the multilayer film, or the amount of phase modulation of the diffraction grating (height of the grating, etc.)
However, in reality, the spectral characteristics deviate considerably from the ideal spectral characteristics, making it difficult to obtain good color reproducibility.

この他従来のカラー表示装置では1画素毎に異なる3つ
のカラーフィルターを1画素の局の大きさで作製しなけ
ればならず、作製工程、作製時間、歩留まり等の点で大
変困難であった。
In addition, in conventional color display devices, three different color filters must be manufactured for each pixel in the size of one pixel, which is very difficult in terms of manufacturing process, manufacturing time, yield, etc.

(発明が解決しようとする問題点) 本発明は回折格子とライトバルブを利用することにより
光利用効率が高く、低消費電力で、かつ明るくしかも色
再現性の優れたカラー表示装置の提供を目的とする。
(Problems to be Solved by the Invention) The purpose of the present invention is to provide a color display device that uses a diffraction grating and a light valve to have high light utilization efficiency, low power consumption, brightness, and excellent color reproducibility. shall be.

(問題点を解決する為の手段) 回折格子と少なくとも該回折格子の回折方向に屈折力を
有する複数の集光素子より成る集光光学部材と複数のラ
イトバルブから成る画素を1次元若しくは2次元的に複
数個並べたライトバルブ部を前記回折格子と前記集光光
学部材の1つの集光素子−を通過した所定次数の回゛折
光が該ライトバルブ部の少なくとも1つの画素に相当す
る領域に入射するように配置し、前記各々の画素に相当
する複数のライトバルブの透過光強度なi制御すること
により通過光の波長選択を行いカラー表示を行ったこと
である。
(Means for Solving the Problem) A pixel consisting of a diffraction grating, a condensing optical member consisting of a plurality of condensing elements having refractive power at least in the diffraction direction of the diffraction grating, and a plurality of light valves is one-dimensional or two-dimensional. A plurality of light valve parts arranged in a row are arranged so that diffracted light of a predetermined order that has passed through the diffraction grating and one condensing element of the condensing optical member is directed to an area corresponding to at least one pixel of the light valve part. By controlling the transmitted light intensity of a plurality of light valves corresponding to each pixel, the wavelength of the transmitted light is selected and color display is performed.

この他木゛発明の特徴−は実施例に゛おいて記載されて
いる。
Other features of the invention are described in the Examples.

(実施例) 第2図(A)は本発明の一実施例の斜視図、第2図(B
)は同図(A)の動作を模式的に表わした平面図である
。図中1は複数の波長成分を有する白色光束、6は1次
元方向に回折する回折格子、5は回折格子6の回折方向
に屈折力を有する複数の集光素子5−1より成る集光光
学部材であり、本実施例ではレンチキュラ板より構成し
ている。尚集光光学部材5は回折格子6と一体化して構
成しているが独立に構成しても良い。3は複数のライト
バルブを2次元的に配置したライトバルブ部で横方向の
3つのライトバルブ3−1.3−2.3−3で1画素を
構成するようにしている。7は拡散板でありライトバル
ブ部3と一体市若しくは独立に構成されている。
(Embodiment) Fig. 2(A) is a perspective view of an embodiment of the present invention, Fig. 2(B) is a perspective view of an embodiment of the present invention.
) is a plan view schematically showing the operation of FIG. In the figure, 1 is a white light beam having a plurality of wavelength components, 6 is a diffraction grating that diffracts in a one-dimensional direction, and 5 is a condensing optical system consisting of a plurality of condensing elements 5-1 having refractive power in the diffraction direction of the diffraction grating 6. It is a member, and in this embodiment, it is composed of a lenticular plate. Although the converging optical member 5 is constructed integrally with the diffraction grating 6, it may be constructed independently. 3 is a light valve section in which a plurality of light valves are two-dimensionally arranged, and three light valves 3-1.3-2.3-3 in the horizontal direction constitute one pixel. Reference numeral 7 denotes a diffusion plate, which is constructed either integrally with the light valve section 3 or independently.

本実施例では光源からの白色光束1がレンチキュラ板5
に略垂直に入射している。
In this embodiment, the white light beam 1 from the light source is transmitted to the lenticular plate 5.
is incident almost perpendicularly to

本実施例では多色性光源からの白色光束1をレンチキュ
ラ板5で集光させ、回折格子6を介し0茨、±1次・・
・の各回折光をライトバルブ部3に導光させている。特
に本実施例では回折格子6の格子ピッチ、位相変化量等
を特定することによりライトバルブ部3に導光する±1
次の回折光にエネルギーの大半が集中するようにして′
光利用効率の向上を図っている。
In this embodiment, a white light beam 1 from a polychromatic light source is condensed by a lenticular plate 5, and transmitted through a diffraction grating 6 to 0 rays, ±1st order...
The diffracted lights are guided to the light valve section 3. In particular, in this embodiment, by specifying the grating pitch, phase change amount, etc. of the diffraction grating 6, the light is guided to the light valve section 3 by ±1.
Most of the energy is concentrated in the next diffracted light.
Efforts are being made to improve light usage efficiency.

ライトバルブ部3は第2図(B)に示すように±1次の
各回折光の赤色R1緑色G、青色B等のスペクトル光が
分布する領域め1画素列の列方向の少なくとも1画素に
相当する3つのライトバルブ3−1.3−2.3−3に
入射するように配置されている。そしてスペクトル光と
して利用しない領域、例えば0次回折光や±2次以上の
回折光が集中する領域には光束を不透過とする為の遮光
板を配置している。
As shown in FIG. 2(B), the light valve section 3 is arranged in at least one pixel in the column direction of one pixel column in the region where spectrum lights such as red R1 green G and blue B of the ±1st order diffracted light are distributed. The light is arranged so as to be incident on three corresponding light valves 3-1.3-2.3-3. In areas that are not used as spectral light, for example, areas where 0th-order diffracted light and ±2nd-order or higher diffracted light are concentrated, a light shielding plate is placed to prevent the light beam from passing through.

これにより本実施例では各ライトバルブを通過する透過
光強度を制御することにより透過光の波長選択を行って
いる。
Accordingly, in this embodiment, the wavelength of the transmitted light is selected by controlling the intensity of the transmitted light passing through each light valve.

次に具体的な数値をもって説明する。Next, it will be explained using specific numerical values.

本実施例では回折格子6を格tどツナ1.2μm。深さ
0.5μm、山と谷との比率が1.2の台形状のレリー
フ型より構成し、その裏面をレンチキュラ面とし、その
−要素のピッチを600μmとしポリカーボネイトで一
体成形したものを用いている。
In this embodiment, the diffraction grating 6 has a diameter of 1.2 μm. It consists of a trapezoidal relief mold with a depth of 0.5 μm and a peak-to-valley ratio of 1.2, the back side of which is a lenticular surface, and the pitch of the elements is 600 μm, which is integrally molded with polycarbonate. There is.

ライトバルブ3はTN結晶を用い裏面を拡散面7として
いる。
The light valve 3 is made of TN crystal and has a diffusion surface 7 on the back surface.

レンチキュラ板5の尾根から谷に向かって肖、緑、赤の
色光を得るようにライトバルブ部を配置している。そし
て3つのライトバルブより1画素を形成し、3つのライ
トバルブの間隙部には0次回折光及び±2次以上の回折
光を遮光する為の遮光板を設けている。3−1.3−2
.3−3の3つのライトバルブはピーク波長が440n
m。
The light valve portion is arranged so as to obtain colored light of portrait, green, and red from the ridge of the lenticular plate 5 toward the valley. Three light valves form one pixel, and a light shielding plate is provided in the gap between the three light valves to shield zero-order diffracted light and ±second-order or higher diffracted light. 3-1.3-2
.. The three light valves in 3-3 have a peak wavelength of 440n.
m.

550nm、620nmでバンド幅が順に±40n m
 、±40nm、±30nmとなる位置に開口部を設け
ている。
Bandwidth is ±40nm at 550nm and 620nm
, ±40 nm, and ±30 nm.

そして回折格子面6とライトバルブ部3との間隔が0.
5mmのとき、レンチキュラ板の尾根の中心位置から見
て青色開口部は200μm、緑色開口部は250μm、
赤色開口部は300μmの位置を中心として各々のライ
トバルブが設置されている。
The distance between the diffraction grating surface 6 and the light valve section 3 is 0.
When the diameter is 5 mm, the blue opening is 200 μm and the green opening is 250 μm when viewed from the center position of the ridge of the lenticular plate.
In the red opening, each light valve is installed centered at a position of 300 μm.

波長440nm、550nm、620nmでスペクトル
ど−クを有する演色性の全光灯を用いたとき1次回折光
への変換効率、即ち光源からライトバルブ部までの光利
用効率は70%程度であり、液晶ライトバルブの透過率
が約35%であり全系としての光利用効率は役20数%
であった。
When using a color-rendering all-light lamp with spectral peaks at wavelengths of 440 nm, 550 nm, and 620 nm, the conversion efficiency to first-order diffracted light, that is, the light utilization efficiency from the light source to the light valve section, is about 70%, and the liquid crystal The transmittance of the light valve is approximately 35%, and the light utilization efficiency as a whole system is about 20%.
Met.

これは従来のカラー表示装置の光利用効率に比べ4〜5
倍である。
This is 4-5% compared to the light usage efficiency of conventional color display devices.
It's double.

第2図に示す実施例ではレンチキュラ板5の一要素5−
1を通過した光束を回折格子6で回折した後、2画素列
に対応する領域に入射させているが、例えば第3図(A
)に示す如く回折格子6へ斜め方向から光束を入射させ
一1次の回折光を利用したり、若しくは同図(B)に示
す如く回折格子6の格子を非対称性形状で、所謂ブレー
ズ化することにより+1次若しくは一1次の回折光のみ
を利用し、レンチキュラ板5の一要素5−1を1画素列
に対応した領域に入射させるようにしても良い。
In the embodiment shown in FIG. 2, one element 5- of the lenticular plate 5
1 is diffracted by a diffraction grating 6, and then incident on an area corresponding to two pixel rows.
), a light beam is incident on the diffraction grating 6 from an oblique direction to utilize the 11th order diffracted light, or the grating of the diffraction grating 6 is made into an asymmetrical shape, so-called blazed, as shown in FIG. 6(B). Alternatively, only the +1st order or 11th order diffracted light may be used and one element 5-1 of the lenticular plate 5 may be made to enter an area corresponding to one pixel column.

例えば第3図(八)に示す実施例では光束1のレンチキ
ュラ板5への入射角は30度、回折格子6の形状は、格
子ピッチ0.6μm、深さ2μm、山と谷の比率1:4
の台形状であり、レンチキュラ板5の一要素5−1のピ
ッチは600μmである。
For example, in the embodiment shown in FIG. 3 (8), the angle of incidence of the light beam 1 on the lenticular plate 5 is 30 degrees, the shape of the diffraction grating 6 is such that the grating pitch is 0.6 μm, the depth is 2 μm, and the peak-to-valley ratio is 1: 4
It has a trapezoidal shape, and the pitch of one element 5-1 of the lenticular plate 5 is 600 μm.

回折格子6とライトバルブ部3との間隔を0.5mmと
した場合、ライトバルブの開口部の中心位置はレンチキ
ュラ板5の一要素の尾根の中心部から青色用が120μ
m、緑色用か230μm、赤色用か300μmの位置に
設定されている。
When the distance between the diffraction grating 6 and the light valve part 3 is 0.5 mm, the center position of the opening of the light valve is 120 μm from the center of the ridge of one element of the lenticular plate 5 for blue color.
m, 230 μm for green color, and 300 μm for red color.

ライトバルブの他の部分、例えば−1次回折光が入射す
る領域以外は遮光板か設けられている。
A light shielding plate is provided in other parts of the light valve, for example, in areas other than the area where -1st-order diffracted light is incident.

不図示の拡散面7はライトバルブ部3から約0.5mm
1lれた位置にあり、赤、緑、青色の分離した光が再び
重なり合い加法混色により任意の色を出すカラー表示装
置を達成している。
The diffusion surface 7 (not shown) is approximately 0.5 mm from the light valve portion 3.
A color display device is achieved in which the separated red, green, and blue lights overlap again to produce any color by additive color mixture.

第6図は本発明の他の一実施例の概略図であり、本実施
例では第1図の実施例の拡散板7の代わりに投写用のレ
ンチキュラ板8とレンズ9をライトバルブ部3の出射側
に設は結像面にスクリーン10を配置した投写型のカラ
ー表示装置に適用したものである。
FIG. 6 is a schematic diagram of another embodiment of the present invention. In this embodiment, a lenticular plate 8 for projection and a lens 9 are used in the light valve section 3 instead of the diffuser plate 7 of the embodiment shown in FIG. The arrangement is applied to a projection type color display device in which a screen 10 is arranged on the image forming plane on the emission side.

本発明では以上の各実施例で用いたレンチキュラ板の代
わりに複数の微少レンズを2次元的に配置した所謂ハエ
の眼レンズやセルフォックレンズを用い、1つの微少レ
ンズを通過し、回折した所定次数の回折光を少なくとも
1つの画素に相当する領域に入射させるようにしても良
い。
In the present invention, a so-called fly's eye lens or selfoc lens in which a plurality of microlenses are arranged two-dimensionally is used instead of the lenticular plate used in each of the above embodiments. The diffracted light of the order may be made to enter an area corresponding to at least one pixel.

尚本実施例で用いる多色性光源が点光源に近いときは、
例えば第5図に示すように光源51からの光束をコリメ
ーターレンズ52で平行光束として回折格子6に入射さ
せるのが好ましい。
Note that when the polychromatic light source used in this example is close to a point light source,
For example, as shown in FIG. 5, it is preferable that the light beam from the light source 51 is made into a parallel light beam by a collimator lens 52 and made incident on the diffraction grating 6.

本実施例では第2図の実施例に比べて回折格子6を光源
側に配置することにより回折格子からの反射光を外へ逃
がし迷光を少なくしている。又多色性光源としては特定
波長域に発光を集中させた高演色性の光源を用いるのが
光利用効率及び色再現性等の点で好ましい。
In this embodiment, compared to the embodiment shown in FIG. 2, the diffraction grating 6 is placed closer to the light source, thereby allowing reflected light from the diffraction grating to escape to the outside, thereby reducing stray light. Further, as the polychromatic light source, it is preferable to use a light source with high color rendering properties that concentrates light emission in a specific wavelength range from the viewpoint of light utilization efficiency and color reproducibility.

本実施例におけるライトバルブとしては光透過を制御す
ることが出来るものであればどのようなものであっても
良く、前述した液晶ライトバルブの他に電気光学結晶や
°薄膜磁性ガーネット等を用いたもの、変形ミラニを利
用したもの、EC(エレクトロクロミック)現象やpC
(フォトクロミック)現象等を利用したものであっても
良い。
The light valve in this embodiment may be of any type as long as it can control light transmission, and in addition to the above-mentioned liquid crystal light valve, an electro-optic crystal, a thin film magnetic garnet, etc. may be used. things, things using deformed Milani, EC (electrochromic) phenomenon and pC
(Photochromic) phenomenon or the like may be used.

ライトバルブの配置位置及び開口面積は必要とされる色
再現範囲により決定される。即ちライトバルブ面に集光
された1次回折光は波長により空間的に分離されており
各色要素に対応するライトバルブの開口部をどの波長領
域に設定するかにより再現できる色範囲が決定される。
The arrangement position and opening area of the light valve are determined by the required color reproduction range. That is, the first-order diffracted light focused on the light valve surface is spatially separated by wavelength, and the reproducible color range is determined by which wavelength region the opening of the light valve corresponding to each color element is set.

第4図はこのときの色再現の様子をCIE色度図上で示
した説明図である。同図において(a)で示す領域はス
ペクトル光のうち波長450nm。
FIG. 4 is an explanatory diagram showing the state of color reproduction at this time on a CIE chromaticity diagram. In the figure, the region indicated by (a) has a wavelength of 450 nm in the spectrum of light.

550nm、620nmに相当する位置にライトバルブ
の1つの開口部の中心を選択゛した場合である。
This is a case where the center of one opening of the light valve is selected at a position corresponding to 550 nm and 620 nm.

開口部のスリット幅を拡げるに従って色再現範囲は同図
の矢印の光源位置Pに近づいてくる。又同図の(b)で
示す領域は同様に開口部の中心を波長480nm、52
0nm、650nmに設定した場合であり、実線で囲ま
れる範囲内で色再現が可能となる。尚実際には多色性光
源のスペクトル分布に合わせた位置やスリット幅等も著
慮して設置されている。
As the slit width of the opening increases, the color reproduction range approaches the light source position P indicated by the arrow in the figure. Similarly, in the region shown in (b) of the same figure, the center of the opening is set to a wavelength of 480 nm, 52 nm.
This is the case where the wavelength is set to 0 nm and 650 nm, and color reproduction is possible within the range surrounded by the solid line. In reality, the slits are installed with careful consideration of the position, slit width, etc. that match the spectral distribution of the polychromatic light source.

ライトバルブ部3から出射する光束はカラー表示装置の
形態によって種々と処理される。例えば直視型の場合は
ライトバルブの直後に透過型の拡散板7を設ければ、こ
れにより画像の観察が可能となる。尚このときライトバ
ルブ部3の片面を拡散面としても良い。又投写型の場合
は投写レンズ若しくは投写ミラーとシュミットレレ女専
から成る投写系によりスクリーン上に投影するようにし
ても良い。
The light flux emitted from the light valve section 3 is processed in various ways depending on the form of the color display device. For example, in the case of a direct view type, if a transmission type diffuser plate 7 is provided immediately after the light valve, images can be observed. In this case, one side of the light valve section 3 may be used as a diffusion surface. In the case of a projection type, the image may be projected onto a screen using a projection system consisting of a projection lens or a projection mirror and a Schmidtler.

画像のアドレスはライトバルブの種類に応じて電気アド
レス、光アドレス等、任意に設定することが可能である
。□ 尚以上の各実施例においてレンチキュラ板の光源側に集
光力を有した光学部材、例えばラレネルレンズプレート
を設置す゛れば光源からの光束の有効利用を図ることが
出来るので好ましい。
The image address can be arbitrarily set, such as an electrical address or an optical address, depending on the type of light valve. □ In each of the above embodiments, it is preferable to install an optical member having a light-converging power, such as a larynel lens plate, on the light source side of the lenticular plate, since this makes it possible to effectively utilize the luminous flux from the light source.

又本実施例では透過型のカラー表示装勿について示した
が反射型としても同様に使□用可能である。
Although the present embodiment shows a transmissive type color display device, a reflective type can be used as well.

(発明の効果) ゛本発明によれば従来のように3色のカラーフィルター
を用いずに、回折格子とライトバルブを利用することに
より高い光利用効率でしかも所定の分光特性を有する色
光な得ることが出来、明るく色再現性に優れたカラー表
示装置を達成することができる。゛
(Effects of the invention) ゛According to the present invention, by using a diffraction grating and a light valve, instead of using three color filters as in the past, colored light with high light utilization efficiency and predetermined spectral characteristics can be obtained. This makes it possible to achieve a bright color display device with excellent color reproducibility.゛

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のカラー表示装置の概略図、第2図(A)
 、 (B)は各々本発明の力→−表示装置の一実施例
の斜視図と平面図、第3図(A)’、 (B)は各々本
発明の他の実施例の説明図、第4図は本発明のカラー表
示装置における色再現範囲の説明図、第5図、第6図は
各々本発明の他の一実施例の説明図である。図中1は白
色光束、2はカラーフィルター、3はライトバルブ部、
5はレンチキュラ板、6は回折格子、7は拡散板、8は
投写用のレンズ、9はレンズ、10はスクリーンである
。  ・ □  特許出願人 キャノン株式会社 第    4    口 第    5    区 第    G    図 手−条んネ市JF ’f−4−::(自発)2、発明の
名称 カラー表示装置 3、補正をする者 事件との関係     特許出願人 住所 東京都大田区下丸子3−30−2名称 (100
)  キャノン株式会社代表者 賀  来  龍 三 
部 4、代理人 居所 〒158東京都[l′田谷区奥沢2−17−3ベ
ルハイム自由か丘301  号(電話718−5614
)(1)明細書の発明の詳細な説明の欄 (2)明細書の図面の簡単な説明の欄 → 6、補正の内容 (1)(イ)明細書第7頁第9行目の「深さ0.5μm
」を「深さ06μm」と補正する。 ’−”(0)明細書第1O頁第11行目の「投写用」を
「投射用」と補正する。 (ハ)明細書第13頁第3行目の「投写型」を「投射型
」と又「投写レンズ」を「投射レンズ」と同第4行目の
「投写ミラー」を「投射ミラー」と同第5行目の「投写
系」を「投射系」と補正する。 (2) (A)明細書第14頁第13行目から第14行
目にかけての「投写用のレンズ」を「投射用のレンズ」
と補正する。
Figure 1 is a schematic diagram of a conventional color display device, Figure 2 (A)
, (B) are respectively a perspective view and a plan view of one embodiment of the power→-display device of the present invention, FIG. FIG. 4 is an explanatory diagram of the color reproduction range in the color display device of the present invention, and FIGS. 5 and 6 are explanatory diagrams of other embodiments of the present invention. In the figure, 1 is a white light beam, 2 is a color filter, 3 is a light valve part,
5 is a lenticular plate, 6 is a diffraction grating, 7 is a diffuser plate, 8 is a projection lens, 9 is a lens, and 10 is a screen.・ □ Patent Applicant: Canon Co., Ltd. No. 4, No. 5, Ward No. G Utsute-Jonne City JF 'f-4-:: (Voluntary) 2. Title of invention color display device 3. Amendment person case and Relationship Patent applicant address 3-30-2 Shimomaruko, Ota-ku, Tokyo Name (100
) Canon Co., Ltd. Representative Ryuzo Kaku
Part 4, Agent's residence Address: 301 Jiyukaoka, Belheim, 2-17-3 Okusawa, Taya-ku, Tokyo 158 (Telephone: 718-5614)
) (1) Column for detailed explanation of the invention in the specification (2) Column for brief explanation of drawings in the specification → 6. Contents of amendment (1) (a) " depth 0.5μm
" is corrected to "depth 06 μm". '-' (0) "For projection" on page 1, page 1, line 11 of the specification is corrected to "for projection". (c) "Projection type" in the third line of page 13 of the specification is referred to as "projection type";"projectionlens" is referred to as "projection lens"; and "projection mirror" in the fourth line of the same specification is referred to as "projection mirror". "Projection system" in the fifth line is corrected to "projection system". (2) (A) "Lens for projection" from line 13 to line 14 on page 14 of the specification is "lens for projection"
and correct it.

Claims (2)

【特許請求の範囲】[Claims] (1)回折格子と少なくとも該回折格子の回折方向に屈
折力を有する複数の集光素子より成る集光光学部材と複
数のライトバルブから成る画素を1次元若しくは2次元
的に複数個並べたライトバルブ部を前記回折格子と前記
集光光学部材の1つの集光素子を通過した所定次数の回
折光が該ライトバルブ部の少なくとも1つの画素に相当
する領域に入射するように配置し、前記各々の画素に相
当する複数のライトバルブの透過光強度を制御すること
により通過光の波長選択を行いカラー表示を行ったこと
を特徴とするカラー表示装置。
(1) A light in which a plurality of pixels are arranged one-dimensionally or two-dimensionally, each consisting of a diffraction grating, a condensing optical member consisting of a plurality of condensing elements having refractive power in at least the diffraction direction of the diffraction grating, and a plurality of light valves. The bulb section is arranged such that diffracted light of a predetermined order that has passed through the diffraction grating and one condensing element of the condensing optical member is incident on a region corresponding to at least one pixel of the light valve section, and each of the above-mentioned 1. A color display device characterized in that a color display is performed by selecting the wavelength of passing light by controlling the transmitted light intensity of a plurality of light valves corresponding to pixels.
(2)前記ライトバルブ部の各々の画素の0次回折光が
入射する領域を不透過部としたことを特徴とする特許請
求の範囲第1項記載のカラー表示装置。
(2) The color display device according to claim 1, wherein a region on which the zero-order diffracted light of each pixel of the light valve section is incident is an opaque section.
JP61136867A 1986-06-12 1986-06-12 Color display Expired - Fee Related JP2777989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61136867A JP2777989B2 (en) 1986-06-12 1986-06-12 Color display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61136867A JP2777989B2 (en) 1986-06-12 1986-06-12 Color display

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP8180089A Division JPH0915600A (en) 1996-06-20 1996-06-20 Color image forming device
JP01191998A Division JP3206534B2 (en) 1998-01-05 1998-01-05 Color image forming equipment

Publications (2)

Publication Number Publication Date
JPS62293222A true JPS62293222A (en) 1987-12-19
JP2777989B2 JP2777989B2 (en) 1998-07-23

Family

ID=15185376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61136867A Expired - Fee Related JP2777989B2 (en) 1986-06-12 1986-06-12 Color display

Country Status (1)

Country Link
JP (1) JP2777989B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5090400A (en) * 1987-03-31 1992-02-25 Kabushiki Kaisha Toshiba Measuring endoscope
US5161042A (en) * 1990-06-28 1992-11-03 Sharp Kabushiki Kaisha Color liquid crystal display device using dichroic mirrors for focusing different colors in different directions
JPH05257114A (en) * 1992-03-13 1993-10-08 Hitachi Ltd Liquid crystal projection type display
EP0583150A1 (en) * 1992-08-11 1994-02-16 Sharp Kabushiki Kaisha Display device
EP0647326A1 (en) * 1992-06-25 1995-04-12 Lockheed Martin Corporation Dispersive microlens
WO1995022773A1 (en) * 1994-02-18 1995-08-24 Massachusetts Institute Of Technology Diffractive microstructures for color separation and fusing
US5566007A (en) * 1993-09-06 1996-10-15 Kabushiki Kaisha Toshiba Reflection type liquid crystal display device capable of color display
US5889567A (en) * 1994-10-27 1999-03-30 Massachusetts Institute Of Technology Illumination system for color displays
US5930044A (en) * 1997-01-09 1999-07-27 U.S. Philips Corporation Deflecting element having a switchable liquid crystalline material
US5959704A (en) * 1996-02-08 1999-09-28 Fujitsu Limited Display device having diffraction grating
US6351334B1 (en) * 2000-10-10 2002-02-26 Industrial Technology Research Institute Reflective diffraction grating for use in display devices
US6417967B1 (en) * 1994-10-27 2002-07-09 Massachusetts Institute Of Technology System and method for efficient illumination in color projection displays

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61210328A (en) * 1985-03-14 1986-09-18 Seiko Epson Corp Color display
JPS61230117A (en) * 1985-04-03 1986-10-14 Seiko Instr & Electronics Ltd Exposure device for dot matrix type color printer
JPS62150317A (en) * 1985-12-25 1987-07-04 Casio Comput Co Ltd Color liquid crystal projector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61210328A (en) * 1985-03-14 1986-09-18 Seiko Epson Corp Color display
JPS61230117A (en) * 1985-04-03 1986-10-14 Seiko Instr & Electronics Ltd Exposure device for dot matrix type color printer
JPS62150317A (en) * 1985-12-25 1987-07-04 Casio Comput Co Ltd Color liquid crystal projector

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5090400A (en) * 1987-03-31 1992-02-25 Kabushiki Kaisha Toshiba Measuring endoscope
US5161042A (en) * 1990-06-28 1992-11-03 Sharp Kabushiki Kaisha Color liquid crystal display device using dichroic mirrors for focusing different colors in different directions
JPH05257114A (en) * 1992-03-13 1993-10-08 Hitachi Ltd Liquid crystal projection type display
EP0647326A1 (en) * 1992-06-25 1995-04-12 Lockheed Martin Corporation Dispersive microlens
EP0647326A4 (en) * 1992-06-25 1997-12-17 Lockheed Missiles Space DISPERSIVE MICRO LENS.
EP0583150A1 (en) * 1992-08-11 1994-02-16 Sharp Kabushiki Kaisha Display device
US5615024A (en) * 1992-08-11 1997-03-25 Sharp Kabushiki Kaisha Color display device with chirped diffraction gratings
US5566007A (en) * 1993-09-06 1996-10-15 Kabushiki Kaisha Toshiba Reflection type liquid crystal display device capable of color display
US5682265A (en) * 1994-02-18 1997-10-28 Massachusetts Institute Of Technology Diffractive microstructures for color separation and fusing
WO1995022773A1 (en) * 1994-02-18 1995-08-24 Massachusetts Institute Of Technology Diffractive microstructures for color separation and fusing
US5889567A (en) * 1994-10-27 1999-03-30 Massachusetts Institute Of Technology Illumination system for color displays
US6417967B1 (en) * 1994-10-27 2002-07-09 Massachusetts Institute Of Technology System and method for efficient illumination in color projection displays
US6560018B1 (en) 1994-10-27 2003-05-06 Massachusetts Institute Of Technology Illumination system for transmissive light valve displays
US6791756B2 (en) 1994-10-27 2004-09-14 Massachusetts Institute Of Technology System and method for efficient illumination in color projection displays
US5959704A (en) * 1996-02-08 1999-09-28 Fujitsu Limited Display device having diffraction grating
US6639642B1 (en) 1996-02-08 2003-10-28 Fujitsu Limited Display device having diffraction grating
US5930044A (en) * 1997-01-09 1999-07-27 U.S. Philips Corporation Deflecting element having a switchable liquid crystalline material
US6351334B1 (en) * 2000-10-10 2002-02-26 Industrial Technology Research Institute Reflective diffraction grating for use in display devices

Also Published As

Publication number Publication date
JP2777989B2 (en) 1998-07-23

Similar Documents

Publication Publication Date Title
US5721598A (en) High efficiency, high color purity, on-axis holographic color filter and full-color liquid crystal display
JPS62293223A (en) Color display device
US6359719B1 (en) Optical modulator and projector
JPS62293222A (en) Color display device
US6256120B1 (en) Spatial light modulation device and color display apparatus
JP4132080B2 (en) Small lighting device
JP3206534B2 (en) Color image forming equipment
JP3649360B2 (en) Hologram color filter system
JP3200335B2 (en) Optical modulation device and color image display device using the same
JPH0915600A (en) Color image forming device
JP3200334B2 (en) Optical modulation device and color image display device using the same
JP3302267B2 (en) Optical modulation device and color image display device using the same
JP3365101B2 (en) Liquid crystal display
JP3236194B2 (en) Optical modulation device and color image display device using the same
JP3236202B2 (en) Liquid crystal device and color image display device using the same
JPH1164846A (en) Liquid crystal projection display
JPH0950024A (en) Liquid crystal display device using hologram color filter
JPH09244017A (en) Full-color liquid crystal picture display device
JPH09274252A (en) Light condensing spectroscopic device
US6088076A (en) Liquid crystal display apparatus using holographic optical element
JP3236195B2 (en) Optical modulation device and color image display device using the same
JP4479982B2 (en) Projection display device using hologram color filter
JPH103077A (en) Color filter system and liquid crystal display device using the same
JPH08152616A (en) Liquid crystal display device
JPH11212050A (en) Optical modulator and projector using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees