JPS62292212A - Automatic shape control method for rolling mill - Google Patents

Automatic shape control method for rolling mill

Info

Publication number
JPS62292212A
JPS62292212A JP61133742A JP13374286A JPS62292212A JP S62292212 A JPS62292212 A JP S62292212A JP 61133742 A JP61133742 A JP 61133742A JP 13374286 A JP13374286 A JP 13374286A JP S62292212 A JPS62292212 A JP S62292212A
Authority
JP
Japan
Prior art keywords
rolling
rolling mill
rolling speed
shape control
proportional gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61133742A
Other languages
Japanese (ja)
Other versions
JPH0667522B2 (en
Inventor
Yasunobu Hayama
葉山 安信
Sadamu Terado
寺戸 定
Mitsuhiro Abe
阿部 光博
Takayuki Kachi
孝行 加地
Takashi Mikuriya
御厨 尚
Akihiko Fukuhara
福原 明彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Kawasaki Steel Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61133742A priority Critical patent/JPH0667522B2/en
Publication of JPS62292212A publication Critical patent/JPS62292212A/en
Publication of JPH0667522B2 publication Critical patent/JPH0667522B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2275/00Mill drive parameters
    • B21B2275/02Speed
    • B21B2275/06Product speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To restrain an increase of setting length accompanying with an increase of rolling velocity and to perform an automatic shape control with high accuracy by setting a proportional gain and an integral times of a controller according to the rolling velocity. CONSTITUTION:Based on the momentary rolling velocity (v) detected by a velocimeter 11, the proportional gain and the integral times of the controller 9a and 9b are calculated momentarily and set by a velocity correcting arithmetic device 12. In this way, a response time is reduced accompanying with the increase of the rolling velocity, an optimum response is allowed to get at each rolling velocity to perform the automatic shape control with high accuracy.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〈産業−トの利用分野〉 本発明は圧延材の形状制御を自動的に行う圧延機の自動
形状制御方法に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an automatic shape control method for a rolling mill that automatically controls the shape of a rolled material.

〈従来の技術〉 第4図は従来の自動形状制御方法を実施する4段式圧延
機の構成図であり、1は圧延機、2はバックアップロー
ル、3はワークロール、4はロールベンディング装置、
5は圧下装置、6は圧延材、7は形状検出器、8は形状
演算装置、9a、 9bはコントローラをそれぞれ示す
<Prior art> Fig. 4 is a block diagram of a four-high rolling mill that implements a conventional automatic shape control method, in which 1 is a rolling mill, 2 is a backup roll, 3 is a work roll, 4 is a roll bending device,
5 is a rolling device, 6 is a rolled material, 7 is a shape detector, 8 is a shape calculation device, and 9a and 9b are controllers, respectively.

この圧延機によると、形状検出器7で検出した圧延材6
の板幅方向の伸び率分布から1吹成分A1と2水成分A
2とを形状演算装置8で求める。尚、1水成分AIと2
水成分A2とは、同図中に示すように、それぞれ非対称
伸びと対称伸びとの大きさを表わすものであり、板幅方
向の伸び率分布からこれら成分A、、A、を求める方法
としては、例えば特願昭60−97980号に示される
ように直交関数による方法や特開昭55−194旧号公
報に示されるようにべき級数によって求める方法等が知
られている。
According to this rolling mill, the rolled material 6 detected by the shape detector 7
From the elongation rate distribution in the board width direction, the 1st blowing component A1 and the 2nd water component A
2 is calculated by the shape calculation device 8. In addition, 1 water component AI and 2
As shown in the figure, water component A2 represents the magnitude of asymmetrical elongation and symmetrical elongation, respectively, and the method for determining these components A, A, from the elongation rate distribution in the sheet width direction is as follows: For example, a method using an orthogonal function as shown in Japanese Patent Application No. 60-97980, and a method using a power series as shown in Japanese Unexamined Patent Publication No. 55-194 are known.

そして、上記1吹成分A、が■標値A16(通常A 、
”= Oと設定する)になるようにコントローラ9aで
圧1装置5を駆動する。例えば、目標値に対して駆動側
の伸び率が大きい場合には、駆動側の圧上を開放すると
」(。
Then, the above-mentioned 1-blow component A is
The pressure 1 device 5 is driven by the controller 9a so that the elongation rate on the drive side is large relative to the target value, and the pressure increase on the drive side is released. .

に1作業鉗を圧下しA、=A、”となるようコントロー
ルする。また、ト記2吹成分A2も目標値A29(通常
A2”=0と設定する)になるようにコントローラ9b
でロールベンディング装置4を駆動する。例えば、目標
値に対して端伸び気味であれば、ワークロール3の凸ク
ラウンを増加させる方向にロールベンディング装置4を
駆動し、A2=A2’となるようにコントロールする。
The controller 9b is controlled so that the first working forceps are pressed down so that A,=A,''.The controller 9b is also controlled so that the second blowing component A2 becomes the target value A29 (usually set as A2''=0).
to drive the roll bending device 4. For example, if the edge is slightly elongated with respect to the target value, the roll bending device 4 is driven in a direction to increase the convex crown of the work roll 3, and control is performed so that A2=A2'.

尚、コントローラ9a、 9bは通常P■コントローラ
が用いられており、また、コントローラ9a、 9bの
比例ゲイン及び積分時間は従来では一定値であった。
Incidentally, the controllers 9a and 9b are normally P■ controllers, and the proportional gain and integral time of the controllers 9a and 9b have conventionally been constant values.

〈発明が解決しようとする問題点〉 上記した従来の自動形状制御装置にあっては次のような
問題点があった。
<Problems to be Solved by the Invention> The conventional automatic shape control device described above has the following problems.

第5図は2吹成分A2の制御系を表すブロック図であり
、図中の9bは比例ゲインKp。
FIG. 5 is a block diagram showing the control system for the two-blow component A2, and 9b in the figure is the proportional gain Kp.

積分時間TIをもつPIコントローラの制御系、4はロ
ールベンディング装置の制御系を示す。ロールベンディ
ング装置の制御系4は、ロールベンディング装置への指
令(i Fに対する形状変化(成分A2)の応答を表す
1次おくれT、圧延機1から形状検出器7までの移送お
くれによるむだ時間し、定数K及びSから構成されてい
る。
4 shows a control system of a PI controller having an integral time TI, and 4 shows a control system of a roll bending device. The control system 4 of the roll bending device controls the command to the roll bending device (i), the primary lag T representing the response of the shape change (component A2) to F, and the dead time due to the transfer delay from the rolling mill 1 to the shape detector 7. , constants K and S.

ここで、圧延機1と形状検出器7との間の距離は通常2
〜3m程度であるので、圧延速度を100mpmとする
とむだ時間しは 1.2〜1.8secF?、度である
。また、ロールベンディング装置4、形状検出器7等の
応答性から時定数Tは0.5sec程度であるので、第
5図に示す制御系は圧延速度が低い場合はむだ時間り支
配の系である。このような制御系において、むだ時間り
が支配的な場合のPIコントローラ9bの比例ゲインK
p及び積分時間T1の最適値はむだ時間L(すなわち圧
延速度)によって変化する。−例として、オーバーシュ
ートなしで最小整定時間を得るには、また、オーバーシ
ュート20%で最小整定時間を得るには、 等の方法が知られている。
Here, the distance between the rolling mill 1 and the shape detector 7 is usually 2
~3m, so if the rolling speed is 100mpm, the dead time is 1.2~1.8secF? , degrees. Furthermore, since the time constant T is about 0.5 sec due to the responsiveness of the roll bending device 4, shape detector 7, etc., the control system shown in FIG. 5 is a system dominated by dead time when the rolling speed is low. . In such a control system, the proportional gain K of the PI controller 9b when the dead time is dominant
The optimum values of p and integration time T1 change depending on the dead time L (ie, rolling speed). - For example, the following methods are known to obtain the minimum settling time without overshoot or to obtain the minimum settling time with 20% overshoot.

しかしながら、従来の自動形状制御方法にあっては、比
例ゲインKp及び積分時間T。
However, in the conventional automatic shape control method, the proportional gain Kp and the integral time T.

は圧延速度に係りなく一定値であるので、に2及びT、
の値は制御系の安定性の而から最低圧延速度(最大むだ
時間)時に最適な値とする必要がある。このため、圧延
速度が高速となってむだ時間が小さくなっても応答(整
定時間)は低速時とほぼ同じであるため、高速時の整定
長さく圧延速度/整定時間)は長くなり、高精度な自動
形状制御を達成できないという問題があった。この事情
は1吹成分A、の制御についても同様である。
Since is a constant value regardless of the rolling speed, 2 and T,
The value of should be set to the optimum value at the lowest rolling speed (maximum dead time) in view of the stability of the control system. Therefore, even if the rolling speed becomes high and the dead time becomes small, the response (settling time) is almost the same as at low speed, so the settling length (rolling speed/settling time) at high speed becomes longer, resulting in higher accuracy. There was a problem that automatic shape control could not be achieved. This situation also applies to the control of the one-blow component A.

本発明は上記従来の事情に鑑みなされたもので、圧延速
度の変化に係らず高精度な自動形状制御を達成する方法
を提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional circumstances, and an object of the present invention is to provide a method for achieving highly accurate automatic shape control regardless of changes in rolling speed.

〈問題点を解決するための手段〉 本発明に係る圧延機の自動形状制御方法は、圧延機の下
流側に離れて設置した形状検出器の検出信号もフィード
バックして自動的に圧延材の形状制御を行う圧延機にお
いて、圧延速度を検出し、制御系の比例ゲイン及び積分
時間を該圧延速度に応じて設定することを特徴とする。
<Means for Solving the Problems> The automatic shape control method for a rolling mill according to the present invention automatically determines the shape of the rolled material by feeding back detection signals from a shape detector installed remotely on the downstream side of the rolling mill. The rolling mill to be controlled is characterized in that the rolling speed is detected and the proportional gain and integral time of the control system are set in accordance with the rolling speed.

〈作   用〉 圧延速度に応じて比例ゲイン及び積分時間を設定すると
、圧延速度が高速になるに伴って応答時間が短かくなっ
て、各圧延速度において最適な応答を得ることができる
<Function> When the proportional gain and integral time are set according to the rolling speed, the response time becomes shorter as the rolling speed becomes higher, and an optimal response can be obtained at each rolling speed.

〈実 施 例〉 本発明を4段式圧延機に適用した一実施例を図面を参照
して説明する。
<Example> An example in which the present invention is applied to a four-high rolling mill will be described with reference to the drawings.

第1図は4段式圧延機の構成図である。FIG. 1 is a block diagram of a four-high rolling mill.

尚、従来と同一部分には同一符号を付して重複する説明
は省略する。第1図において、11は速度計、12は速
度補正演算装置であり、速度補正演算装置12は速度計
11によって検出された時々刻々の圧延速度Vからコン
トローラ9a及び9bの比例ゲインに2及び積分時間T
、を時々刻々計算して設定する。
Incidentally, the same parts as in the prior art are given the same reference numerals, and redundant explanations will be omitted. In FIG. 1, 11 is a speedometer, and 12 is a speed correction calculation device. time T
, is calculated and set every moment.

ここで、基準圧延速度なV。、基準圧延速度Voにおけ
る比例ゲイン及び積分時間の最適値をそれぞれKp O
+ Ti Oとして、圧延速度Vから比例ゲインに2及
び積分時間Tiを求めるには次のような幾つかの方法か
ある。
Here, V is the standard rolling speed. , the optimal values of the proportional gain and integral time at the standard rolling speed Vo are Kp O
+ Ti O, there are several methods to obtain the proportional gain 2 and the integral time Ti from the rolling speed V as follows.

すなわち、 Kp=Kpo・ □  ・・・・・・・・・・・ (1
)O Kp” K po・、D[・・・・・・・・・・・ (
2)O T + −T + o−戸  ・・・・・・・・−(3
)のように、圧延速度V若しくは圧延速度の平方根6に
比例して比例ゲインKpを増加し、圧延速度V若しくは
圧延速度の平方根−J”Wに逆比例して積分時間T、を
減少する方法。また、第2図に示すように、実験によっ
て求めた圧延速度Vと最適比例ゲインKp及び最適積分
時間TIとの関係を表す近似式によって求める方法。ま
た、同様に近似式のかわりにテーブルによって求める方
法。
That is, Kp=Kpo・ □ ・・・・・・・・・・・・ (1
)O Kp” K po・, D[・・・・・・・・・・・・ (
2) O T + -T + o-door ・・・・・・・・・-(3
), the proportional gain Kp is increased in proportion to the rolling speed V or the square root of the rolling speed 6, and the integral time T is decreased in inverse proportion to the rolling speed V or the square root of the rolling speed - J''W. .Also, as shown in Fig. 2, there is a method of obtaining the relationship between the rolling speed V, the optimum proportional gain Kp, and the optimum integration time TI, which are obtained through experiments, using an approximate equation. How to ask.

−例として、(2)式及び(3)式によって比例ゲイン
に、及び積分時間T−を求めた場合における1吹成分A
、の制御系の応答性を第3図に示す。第3図において、
a)欄は圧延速度v = 100mp111時に1水成
分A1の制御系に振幅2 X 10−’のステップ状の
目標値A+”を人力した場合の応答であり、同梱のグラ
フに示すように、むだ時間が1.5sec (移送距離
を2.5mとした)で90%立上がり時間が7.5se
cである。尚、この時のPIコントローラ9aの定数な
KPo、 K、、とじた。そして、第3図において、b
)欄、C)欄はそれぞれ圧延速度v = 200mpm
、 v = 400mpmの場合であり、90%立上り
時間はそれぞれ4.2sec、 2.4secと短かく
なっており、(2)式、(3)式による補正の効果があ
ることか判る。また(11式による補正についても航速
した(4)式(5)式より効果があることが判る。また
、第2図による補正についてもそれぞれ効果があること
は明らかである。
- As an example, one-blow component A when the proportional gain and integral time T- are determined by equations (2) and (3).
Figure 3 shows the responsiveness of the control system of . In Figure 3,
Column a) shows the response when a step-like target value A+" with an amplitude of 2 x 10-' is manually applied to the control system of 1 water component A1 at rolling speed v = 100 mp111, and as shown in the enclosed graph, Dead time is 1.5 sec (transfer distance is 2.5 m) and 90% rise time is 7.5 sec.
It is c. Note that the constant KPo of the PI controller 9a at this time is K. In Fig. 3, b
) and C) columns are rolling speed v = 200 mpm, respectively.
, v = 400 mpm, and the 90% rise time is as short as 4.2 sec and 2.4 sec, respectively, which indicates that the correction by equations (2) and (3) is effective. It can also be seen that the correction using Equation 11 is more effective than Equations (4) and (5) for sailing speed. It is also clear that the correction using FIG. 2 is also effective.

」二記実施例は本発明を4段式圧延機に適用したもので
あるが、勿論本発明は他の形式の圧延機に適用すること
もできる。
In the second embodiment, the present invention is applied to a four-high rolling mill, but the present invention can of course be applied to other types of rolling mills.

〈発明の効果〉 本発明によれば、圧延機と形状検出器との間の移送おく
れによって生じるむだ時間が支配的な自動形状制御系に
おいて、圧延速度に応じてコントローラの比例ゲイン及
び積分時間を設定するようにしたため、圧延速度の増加
に伴って応答時間を短かくすることができる。従って、
圧延速度の増加に伴う整定長さく圧延速度/整定時間)
の増加を抑えることができ、高精度な自動形状制御を達
成することができる。
<Effects of the Invention> According to the present invention, in an automatic shape control system in which dead time caused by transfer delay between a rolling mill and a shape detector is dominant, the proportional gain and integral time of the controller are adjusted according to the rolling speed. Since this setting is made, the response time can be shortened as the rolling speed increases. Therefore,
Settling length due to increase in rolling speed (Rolling speed/Settling time)
It is possible to suppress the increase in the number of shapes and achieve highly accurate automatic shape control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用した4段式圧延機の構成図、第2
図は圧延速度に対する最適比例ゲイン及び最適積分時間
を表す特性図、第3図は本発明の詳細な説明図、第4図
は従来の自動形状制御方法を実施する4段式圧延機の構
成図、第5図は従来の制御系を表すブロック図である。 図面中、 1は圧延機、 6は圧延材、 7は形状検出器、 11は速度計、 12は速度補正演算装置である。
Figure 1 is a configuration diagram of a four-high rolling mill to which the present invention is applied;
The figure is a characteristic diagram showing the optimum proportional gain and optimum integration time with respect to rolling speed, Figure 3 is a detailed explanatory diagram of the present invention, and Figure 4 is a configuration diagram of a four-high rolling mill implementing the conventional automatic shape control method. , FIG. 5 is a block diagram showing a conventional control system. In the drawings, 1 is a rolling mill, 6 is a rolled material, 7 is a shape detector, 11 is a speedometer, and 12 is a speed correction calculation device.

Claims (1)

【特許請求の範囲】[Claims] 圧延機の下流側に離れて設置した形状検出器の検出信号
をフィードバックして自動的に圧延材の形状制御を行う
圧延機において、圧延速度を検出し、制御系の比例ゲイ
ン及び積分時間を該圧延速度に応じて設定することを特
徴とする圧延機の自動形状制御方法。
In a rolling mill that automatically controls the shape of the rolled material by feeding back detection signals from a shape detector installed downstream of the rolling mill, the rolling speed is detected and the proportional gain and integral time of the control system are calculated. An automatic shape control method for a rolling mill, characterized by setting the shape according to the rolling speed.
JP61133742A 1986-06-11 1986-06-11 Automatic shape control method for rolling mill Expired - Fee Related JPH0667522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61133742A JPH0667522B2 (en) 1986-06-11 1986-06-11 Automatic shape control method for rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61133742A JPH0667522B2 (en) 1986-06-11 1986-06-11 Automatic shape control method for rolling mill

Publications (2)

Publication Number Publication Date
JPS62292212A true JPS62292212A (en) 1987-12-18
JPH0667522B2 JPH0667522B2 (en) 1994-08-31

Family

ID=15111859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61133742A Expired - Fee Related JPH0667522B2 (en) 1986-06-11 1986-06-11 Automatic shape control method for rolling mill

Country Status (1)

Country Link
JP (1) JPH0667522B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011161473A (en) * 2010-02-08 2011-08-25 Sumitomo Metal Ind Ltd Shape controlling method, manufacturing method and manufacturing apparatus of hot-rolled plate
CN108956650A (en) * 2017-05-25 2018-12-07 北京君和信达科技有限公司 Detector gain method of automatic configuration, device, system and storage medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011161473A (en) * 2010-02-08 2011-08-25 Sumitomo Metal Ind Ltd Shape controlling method, manufacturing method and manufacturing apparatus of hot-rolled plate
CN108956650A (en) * 2017-05-25 2018-12-07 北京君和信达科技有限公司 Detector gain method of automatic configuration, device, system and storage medium
CN108956650B (en) * 2017-05-25 2021-09-24 北京君和信达科技有限公司 Detector gain automatic configuration method, device and system and storage medium

Also Published As

Publication number Publication date
JPH0667522B2 (en) 1994-08-31

Similar Documents

Publication Publication Date Title
US4570472A (en) Method and apparatus for controlling lateral unstable movement and camber of strip being rolled
JPH0638961B2 (en) Shape control method for rolled material
EP0151929B1 (en) Method of controlling unequal circumferential speed rolling
JPS62292212A (en) Automatic shape control method for rolling mill
JPS5645204A (en) Controlling method for sheet crown
JPS6011571B2 (en) Slip detection method and inter-stand tension control method and device using the same
JPH01278905A (en) Device for controlling tension in continuous rolling mill
JP2001269707A (en) Method for controlling elongation percentage in temper rolling mill
JP3071690B2 (en) Looper control device for continuous rolling mill
JPH04305305A (en) Method for controlling elongation percentage of skinpass rolling mill
JP3389903B2 (en) Metal strip rolling control method
JPS60148614A (en) Control method of meandering
SU829237A1 (en) Apparatus for automatic control of strip thickness in sheet rolling mill output
JPH0112566B2 (en)
JP2680252B2 (en) Shape control method for multi-high rolling mill
JPS5815201B2 (en) Method for controlling the shape of metal strips
RU2147951C1 (en) Strip interstand tension automatic control system
JPH0237245B2 (en)
JPH0546882B2 (en)
JPH07106376B2 (en) Strip shape control method for multi-stage cluster rolling mill
JPS63260614A (en) Device for controlling shape in cluster mill
JPS6277113A (en) Plate thickness control method
SU1073869A1 (en) Electric drive for looper being on continuous sheet hot-rolling mill
JPH0714528B2 (en) Rolled material shape control device
JPH01113106A (en) Hydraulic screw down control device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees