JPS62291882A - Temperature self-control heater - Google Patents

Temperature self-control heater

Info

Publication number
JPS62291882A
JPS62291882A JP61136452A JP13645286A JPS62291882A JP S62291882 A JPS62291882 A JP S62291882A JP 61136452 A JP61136452 A JP 61136452A JP 13645286 A JP13645286 A JP 13645286A JP S62291882 A JPS62291882 A JP S62291882A
Authority
JP
Japan
Prior art keywords
weight
parts
temperature
tetrafluoroethylene
manufactured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61136452A
Other languages
Japanese (ja)
Inventor
嶋崎 行雄
駒木根 力夫
育雄 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP61136452A priority Critical patent/JPS62291882A/en
Publication of JPS62291882A publication Critical patent/JPS62291882A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [産業上の利用分野コ 本発明は、配管の保温や凍結防止等の目的に使用される
自己温度制御性ヒータに関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a self-temperature control heater used for purposes such as keeping pipes warm and preventing freezing.

[従来の技術] 正の抵抗温度係数を有する発熱体からなる自己温度制御
性ヒータは、メンテナンスフリー、施工の容易性、省エ
ネルギー等の観点から配管の保温や凍結防止に使用され
てきており、最近では、薬品、樹脂原料、重油等の保温
にも使用され、今後益々需要が増えるものと期待されて
いる。
[Prior Art] Self-temperature-controlling heaters consisting of heating elements with a positive temperature coefficient of resistance have been used to keep pipes warm and prevent freezing from the viewpoint of being maintenance-free, easy to install, and energy-saving. It is also used to insulate chemicals, resin raw materials, heavy oil, etc., and demand is expected to increase in the future.

従来の自己温度制御性ヒータとしては、ポリエチレンと
導電性付与剤との混和物で発熱体を構成したものが一般
的であり、可撓性に優れていることから、配管の用途に
おいては、細いサイズから太いサイズの配管まで広く使
用されている。
Conventional self-temperature control heaters generally have a heating element made of a mixture of polyethylene and a conductivity imparting agent, and because of their excellent flexibility, they are suitable for use in thin pipes. Widely used for pipes of all sizes and sizes.

しかしながら、用途によっては、高い加熱温度を必要と
するものがあり、ポリエチレン系のものでは出力が低い
ため、布設条長を長くして被加熱体の温度を高めなけれ
ばならないという欠点がある。
However, depending on the application, there are some that require high heating temperatures, and polyethylene-based materials have low output, so they have the disadvantage that the length of the laying strip must be increased to increase the temperature of the object to be heated.

これを解決するため、出力を高くして加熱温度を高めよ
うとすると、発熱によりポリエチレンの結晶融点温度ま
で上昇することになり、ヒータ自身の寿命が極めて短く
なる危険性かある。さらにポリエチレンは、耐水性に優
れているものの、耐油性に乏しい欠点がある。この対策
として、絶縁体に耐油性の良いポリウレタンを使用して
外部からの油の浸入を防止する構造を採用しているもの
もあるが、これだけでは万全とはいえない。例えば、施
行時に端末シール部分が不完全であったり、外傷により
絶縁体に亀裂が生じた場合、この部分から油が浸入し、
発熱体が膨潤して電気抵抗が高くなり、はとんど発熱し
ないことになる。
If an attempt is made to raise the heating temperature by increasing the output in order to solve this problem, the heating temperature will rise to the crystal melting point of polyethylene due to heat generation, and there is a risk that the life of the heater itself will be extremely shortened. Furthermore, although polyethylene has excellent water resistance, it has the disadvantage of poor oil resistance. As a countermeasure to this problem, some products use polyurethane, which has good oil resistance, as an insulator to prevent oil from entering from the outside, but this alone is not a perfect solution. For example, if the terminal seal part is incomplete during installation, or if the insulation is cracked due to external trauma, oil may seep in from this part.
The heating element swells and its electrical resistance increases, resulting in almost no heat generation.

一方、ふっ素樹脂は、ポリエチレンに比べ結晶融点が高
く、耐油性、耐薬品性に優れていることから、ふっ素樹
脂と導電性付与剤との混和物を発熱体とした自己温度制
御性ヒータが提案されている。
On the other hand, fluororesin has a higher crystal melting point than polyethylene and has excellent oil and chemical resistance, so a self-temperature-controlling heater using a mixture of fluororesin and a conductivity agent as a heating element has been proposed. has been done.

[発明が解決しようとする問題点コ しかし、ふっ素樹脂は一般に剛性が強く硬いため、直線
状に布設する用途に対しては聞届ないが、細い配管や小
サイズのバルブ等への適用に対しては取付は作業性が悪
くなる欠点がある。また、無理に巻付けた場合、反発力
によりヒータが配管に密着しなくなり、配管への熱伝導
率が低下することになる。その他、複雑な配管上での折
り返し部分では、曲げ半径を小さくできないため、ヒー
タを余分に必要とする等の欠点がある。
[Problems to be solved by the invention] However, since fluororesin is generally very rigid and hard, it cannot be used in applications where it is installed in a straight line, but it is not suitable for applications such as thin pipes and small-sized valves. However, the installation has the disadvantage of poor workability. Moreover, if the heater is wrapped forcibly, the heater will not come into close contact with the pipe due to repulsive force, and the thermal conductivity to the pipe will decrease. In addition, there are other drawbacks, such as the need for an extra heater because the bending radius cannot be made small in the folded portion of a complicated pipe.

本発明は、前記した従来技術の問題点を解決するために
なされたものであり、高出力で長時間の使用が可能であ
り、可撓性を有することから施工作業性に優れ、しかも
耐油性、耐薬品性に優れた自己温度制御性ヒータの提供
を目的とするものである。
The present invention has been made in order to solve the problems of the prior art described above, and can be used for a long time with high output, has flexibility, has excellent construction workability, and is oil resistant. The purpose of this invention is to provide a self-temperature control heater with excellent chemical resistance.

[問題点を解決するための手段] 本発明の自己温度制御性ヒータは、電極の間に正の抵抗
温度係数を有する発熱体を設けてなる自己温度制御性ヒ
ータにおいて、前記発熱体は、エチレン−テトラフルオ
ロエチレン共重合体95〜70重量部と四ふっ化エチレ
ン−プロピレン共重合体5〜30重量部を含有する樹脂
分100重量部に対して、酸化ネオジウム0.05〜1
0重量部、アリル型化合物系架橋助剤0.5重量部以上
および導電性付与剤を含有せしめてなる樹脂組成物から
なり、電離性放射線の照射により架橋されてなることを
特徴とするものである。
[Means for Solving the Problems] The self-temperature control heater of the present invention is a self-temperature control heater comprising a heating element having a positive temperature coefficient of resistance between electrodes, wherein the heating element is made of ethylene. - 0.05 to 1 part by weight of neodymium oxide per 100 parts by weight of a resin containing 95 to 70 parts by weight of a tetrafluoroethylene copolymer and 5 to 30 parts by weight of a tetrafluoroethylene-propylene copolymer
0 parts by weight, 0.5 parts by weight or more of an allyl type compound crosslinking aid, and a conductivity imparting agent, and is characterized by being crosslinked by irradiation with ionizing radiation. be.

本発明において、発熱体を形成する樹脂分としてエチレ
ン−テトラフルオロエチレン共重合体と四ふっ化エチレ
ン−プロピレン共重合体が使用されるが、四ふっ化エチ
レン−プロピレン共重合体としては、主成分の四ふっ化
エチレンとプロピレンに加えてこれらと共重合可能な成
分、例えばエチレン、ブテン−1、イソブチン、アクリ
ル酸およびそのアルキルエステル、メタクリル酸および
そのアルキルエステル、ぶつ化ビニル、ぶつ化ビニリデ
ン、ヘキサフルオロプロペン、クロロエチルビニルエー
テル、グリシジルビニルエーテル、クロロトリフルオロ
エリレン、パーフルオロアルキルビニルエーテル等を適
当に含有せしめたものであってもよい。かかる共重合体
において、四ふっ化エチレン/プロピレンの含有モル比
としては、9515〜30/70、特に90/10〜4
5155の範囲から選定することが、耐熱性、成形性等
の点から好ましく、また、適宜加えられる主成分以外の
成分の含有量としては通常50モル%以下、特に30モ
ル%以下の範囲から選定することが好ましい。
In the present invention, an ethylene-tetrafluoroethylene copolymer and a tetrafluoroethylene-propylene copolymer are used as the resin component forming the heating element. In addition to tetrafluoroethylene and propylene, components copolymerizable with these, such as ethylene, butene-1, isobutyne, acrylic acid and its alkyl esters, methacrylic acid and its alkyl esters, vinyl butene, vinylidene butene, hexafluoride, etc. It may contain a suitable amount of fluoropropene, chloroethyl vinyl ether, glycidyl vinyl ether, chlorotrifluoroerylene, perfluoroalkyl vinyl ether, or the like. In such a copolymer, the molar ratio of tetrafluoroethylene/propylene is 9515 to 30/70, particularly 90/10 to 4.
It is preferable to select from the range of 5155 from the viewpoint of heat resistance, moldability, etc., and the content of components other than the main component, which may be added as appropriate, is usually selected from the range of 50 mol% or less, particularly 30 mol% or less. It is preferable to do so.

エチレン−テトラフルオロエチレン共重合体と四ふっ化
エチレン−プロピレン共重合体とは、エチレン−テトラ
フルオロエチレン共重合体95〜70重量部に対して四
ふっ化エチレン−プロピレン共重合体5〜30重量部を
含有せしめる必要があり、エチレン−テトラフルオロエ
チレン共重合体の含有量が95重量部を越える場合は、
得られる発熱体の可撓性が不十分であり、70重量部に
満たない場合は、結晶分の含有が少なくなることから自
己温度制御機能が発揮されなくなる。
Ethylene-tetrafluoroethylene copolymer and tetrafluoroethylene-propylene copolymer are 5 to 30 parts by weight of tetrafluoroethylene-propylene copolymer to 95 to 70 parts by weight of ethylene-tetrafluoroethylene copolymer. If the content of the ethylene-tetrafluoroethylene copolymer exceeds 95 parts by weight,
If the flexibility of the heating element obtained is insufficient and the amount is less than 70 parts by weight, the self-temperature control function will not be exhibited due to the reduced crystal content.

酸化ネオジウムは、エチレン−テトラフルオロエチレン
共重合体と架橋助剤との化学反応を抑制して架橋効率を
高めるために添加するものであり、その添加量は樹脂分
100重量部に対して0.05〜10重量部、好ましく
は0.2〜2重量部である。0,05重量部未満では上
記の化学反応を抑制する働きが十分でないことがら押出
外観が悪くなる傾向にあり、10重岳゛部を越えると酸
化ネオジウムの凝集によりツブを発生しやすくなる。
Neodymium oxide is added to suppress the chemical reaction between the ethylene-tetrafluoroethylene copolymer and the crosslinking aid to increase the crosslinking efficiency, and the amount of neodymium oxide added is 0.00 parts by weight per 100 parts by weight of the resin. 05 to 10 parts by weight, preferably 0.2 to 2 parts by weight. If it is less than 0.05 parts by weight, the effect of suppressing the above chemical reaction is not sufficient and the extruded appearance tends to be poor, and if it exceeds 10 parts by weight, neodymium oxide agglomerates and stubble is likely to occur.

アリル型化合物系架橋助剤としては、トリアリルイソシ
アヌレート(TAIC)、トリアリルシアヌレート(T
AC) 、)リアリルトリメリテート、トリアリルトリ
メゼート、テトラアリルピロメリテート等があげられ、
その含有量は、エチレン−テトラフルオロエチレン共重
合体と四ふつ化エチレン−プロピレン共重合体とからな
る樹脂分100重量部に対して0.5重量部以上とする
必要があり、これ未満では架橋が不十分であることから
自己温度制御性および高温雰囲気での良好な機械的特性
を有するヒータを得ることができない。
As the allyl type compound crosslinking aid, triallyl isocyanurate (TAIC), triallyl cyanurate (T
AC) ,) Reallyl trimellitate, triallyl trimezate, tetraallyl pyromellitate, etc.
Its content must be 0.5 parts by weight or more based on 100 parts by weight of the resin consisting of the ethylene-tetrafluoroethylene copolymer and the tetrafluoroethylene-propylene copolymer; less than this will result in cross-linking. As a result, a heater having self-temperature control and good mechanical properties in a high-temperature atmosphere cannot be obtained.

上限は特に規定しないが、10重量部を越えると架橋度
は飽和状態に達しそれ以上加えても架橋度の向上は殆ん
ど見られなくなる。
There is no particular upper limit, but if it exceeds 10 parts by weight, the degree of crosslinking will reach a saturated state, and even if more is added, there will be little improvement in the degree of crosslinking.

導電性付与剤としては、導電性カーボンブラック、グラ
ファイト、表面グラフト化カーボンブラック、有機ポリ
マをグラフト化したカーボンブラック等が使用可能であ
る。導電性付与剤の含有量は発熱体の発熱量によって決
定されるので特に規定しないが、エチレン−テトラフル
オロエチレン共重合体と四ふっ化エチレン−プロピレン
共重合体とからなる樹脂分100重量部に対して5〜1
5重量部の範囲が好ましく、5重量部未満では電気抵抗
が高すぎて発熱体として機能しなくなる傾向にあり、1
5重量部を越えると出力が大きくなり過ぎて寿命が短く
なる傾向にある。
As the conductivity imparting agent, conductive carbon black, graphite, surface-grafted carbon black, carbon black grafted with an organic polymer, etc. can be used. The content of the conductivity imparting agent is determined by the calorific value of the heating element, so it is not particularly specified, but it is based on 100 parts by weight of the resin consisting of ethylene-tetrafluoroethylene copolymer and tetrafluoroethylene-propylene copolymer. against 5-1
The range of 5 parts by weight is preferable; if it is less than 5 parts by weight, the electrical resistance tends to be too high and it will not function as a heating element;
If it exceeds 5 parts by weight, the output tends to be too large and the life tends to be shortened.

本発明においては、その他必要に応じて、安定剤、難燃
剤、加工助剤等を使用しても差し支えない。
In the present invention, other stabilizers, flame retardants, processing aids, etc. may be used as necessary.

〔発明の実施例コ 実施例1 (1)エチレン−テトラフルオロエチレン共重合体(ア
フロンC0PC−88APM、旭硝子社製)95重量部 (2)四ふっ化エチレン−プロピレン共重合体(アワラ
ス150E、旭硝子社製)    5重量部(3)トリ
アリルイソシアヌレート(TA I C,四国化成社製
)          10重量部(4)酸化ネオジウ
ム         7重量部(5)導電性カーボンブ
ラック(XC−72、キャボット社製)       
   14重量部をヘンシルミキサーで混合した後、3
20℃の温度に調整した40m/m2軸押出機により混
練してベレット化し、発熱体混和物とした。
[Example 1 of the invention (1) 95 parts by weight of ethylene-tetrafluoroethylene copolymer (Afron C0PC-88APM, manufactured by Asahi Glass Co., Ltd.) (2) 95 parts by weight of ethylene-tetrafluoroethylene-propylene copolymer (Awalas 150E, manufactured by Asahi Glass Co., Ltd.) (manufactured by Cabot Corporation) 5 parts by weight (3) Triallylisocyanurate (TA I C, manufactured by Shikoku Kasei Co., Ltd.) 10 parts by weight (4) Neodymium oxide 7 parts by weight (5) Conductive carbon black (XC-72, manufactured by Cabot Corporation)
After mixing 14 parts by weight with a Henshil mixer, 3 parts by weight
The mixture was kneaded and pelletized using a 40 m/m twin-screw extruder adjusted to a temperature of 20°C to obtain a heating element mixture.

次に第1図に示すように、外径0.3mmφのニッケル
メッキ銅線を19本撚合た電極1.2(電極間距離7m
m)の外周に上記の発熱体混和物を厚さ2mmになるよ
うに押出被覆して発熱体3を形成した。
Next, as shown in Figure 1, electrode 1.2 (interelectrode distance 7 m
A heating element 3 was formed by extrusion coating the above heating element mixture on the outer periphery of the heating element 3 to a thickness of 2 mm.

続いてエチレン−テトラフルオロエチレン共重合体(テ
フセル200、デュポン社製)を厚さQ、4mmに押出
被覆して絶縁体4を形成し、20 M r a dの電
子線を照射してヒータを作製した。
Next, an insulator 4 was formed by extrusion coating an ethylene-tetrafluoroethylene copolymer (Tefcel 200, manufactured by DuPont) to a thickness Q of 4 mm, and the heater was turned on by irradiating it with an electron beam of 20 M r a d. Created.

実施例2 (1)エチレン−テトラフルオロエチレン共重合体(ア
フロンCOPC−138APM、旭硝子社製)80重量
部 (2)四ふっ化エチレン−プロピレン共重合体(アフラ
ス150E、旭硝子社製)  20重量部(3)トリア
リルイソシアヌレート(TA I C,四国化成社製)
           10重量部(4)酸化ネオジウ
ム         7重量部(5)導電性カーボンブ
ラック(XC−72、キャボット社製)       
    14重量部を用いて実施例1と同様にしてヒー
タを作製した。
Example 2 (1) 80 parts by weight of ethylene-tetrafluoroethylene copolymer (Aflon COPC-138APM, manufactured by Asahi Glass Co., Ltd.) (2) 20 parts by weight of ethylene-tetrafluoroethylene-propylene copolymer (Aflon 150E, manufactured by Asahi Glass Co., Ltd.) (3) Triallylisocyanurate (TA I C, manufactured by Shikoku Kasei Co., Ltd.)
10 parts by weight (4) Neodymium oxide 7 parts by weight (5) Conductive carbon black (XC-72, manufactured by Cabot)
A heater was produced in the same manner as in Example 1 using 14 parts by weight.

実施例3 (1)エチレン−テトラフルオロエチレン共重合体(ア
フロンCOPC−88APM、旭硝子社製)70重量部 (2)四ふっ化エチレン−プロピレン共重合体(アワラ
ス150E、旭硝子社製)  30重量部(3)トリア
リルイソシアヌレート (TAIC,四国化成社製) 
          10重量部(4)酸化ネオジウム
         7重量部(5)導電性カーボンブラ
ック(XC−72、キャボット社製)        
  14重量部を用いて実施例1と同様にしてヒータを
作製した。
Example 3 (1) 70 parts by weight of ethylene-tetrafluoroethylene copolymer (Afron COPC-88APM, manufactured by Asahi Glass Co., Ltd.) (2) 30 parts by weight of ethylene-tetrafluoroethylene-propylene copolymer (Awalas 150E, manufactured by Asahi Glass Co., Ltd.) (3) Triallyl isocyanurate (TAIC, manufactured by Shikoku Kasei Co., Ltd.)
10 parts by weight (4) Neodymium oxide 7 parts by weight (5) Conductive carbon black (XC-72, manufactured by Cabot)
A heater was produced in the same manner as in Example 1 using 14 parts by weight.

比較例1 (1)エチレン−テトラフルオロエチレン共重合体(ア
フロンCOPC−88APM、旭硝子社製)100重量
部 (2)トリアリルイソシアヌレート(TA I C,四
国化成社製)            10重量部(3
)酸化ネオジウム         7重量部(4)導
電性カーボンブラック(XC−72、キャボット社製)
           14重量部を用いて実施例1と
同様にしてヒータを作製した。
Comparative Example 1 (1) 100 parts by weight of ethylene-tetrafluoroethylene copolymer (Aflon COPC-88APM, manufactured by Asahi Glass Co., Ltd.) (2) 10 parts by weight (3
) Neodymium oxide 7 parts by weight (4) Conductive carbon black (XC-72, manufactured by Cabot)
A heater was produced in the same manner as in Example 1 using 14 parts by weight.

比較例2 (1)エチレン−テトラフルオロエチレン共重合体(ア
フロンCOPC−88APM、旭硝子社製)50重量部 (2)四ふっ化エチレン−プロピレン共重合体(アフラ
ス150 E、旭硝子社製)  50重量部(3)トリ
アリルイソシアヌレート(TA I C,四国化成社製
)            10重量部(4)酸化ネオ
ジウム         7重量部(5)導電性カーボ
ンブラック(XC−72、キャポット社製)     
      14重量部を用いて実施例1と同様にして
ヒータを作製した。
Comparative Example 2 (1) 50 parts by weight of ethylene-tetrafluoroethylene copolymer (Aflon COPC-88APM, manufactured by Asahi Glass Co., Ltd.) (2) 50 parts by weight of ethylene-tetrafluoroethylene-propylene copolymer (Aflon 150 E, manufactured by Asahi Glass Co., Ltd.) Part (3) Triallylisocyanurate (TAIC, manufactured by Shikoku Kasei Co., Ltd.) 10 parts by weight (4) Neodymium oxide 7 parts by weight (5) Conductive carbon black (XC-72, manufactured by Capot Co., Ltd.)
A heater was produced in the same manner as in Example 1 using 14 parts by weight.

従来例 (1)ポリぶつ化ビニリデン(カイナー901、ペンウ
ォルト社製)       100重量部(2)トリア
リルシアヌレート(TAC,四国化成社製)     
          5重量部(3)表面処理炭酸カル
シウム(Msi−v、丸尾製粉社製         
    5重量部(4)導電性カーボンブラック(XC
−72、キャボット社製)           12
重量部を用いて実施例1と同様にしてヒータを作製した
Conventional example (1) Polyvinylidene buttonide (Kynar 901, manufactured by Pennwalt Co., Ltd.) 100 parts by weight (2) Triallyl cyanurate (TAC, manufactured by Shikoku Kasei Co., Ltd.)
5 parts by weight (3) Surface-treated calcium carbonate (Msi-v, manufactured by Maruo Seifun Co., Ltd.
5 parts by weight (4) Conductive carbon black (XC
-72, manufactured by Cabot) 12
A heater was produced in the same manner as in Example 1 using parts by weight.

実施例、比較例および従来例で作製した自己温度制御性
ヒータについての試験結果を第1表に示す。
Table 1 shows test results for self-temperature control heaters manufactured in Examples, Comparative Examples, and Conventional Examples.

試験は、次に基いて行った。The test was conducted based on the following.

(1)発熱体の硬さ:JIS−に−6301により発熱
体3の硬さを測定した。なお、硬度計はショアDを用い
た。
(1) Hardness of heating element: The hardness of heating element 3 was measured according to JIS-6301. In addition, Shore D was used as a hardness tester.

(2)抵抗=20℃の恒温槽中に1時間放置した後、ホ
イートストンブリッジによりCI定した。
(2) Resistance: After being left in a constant temperature bath at 20° C. for 1 hour, CI was determined using a Wheatstone bridge.

(3)出カニ内径1インチの配管に直線状に取付け、そ
の上を厚さ30ωmのグラスウール保温材で覆った。次
に配管内に20℃の水を流しなから2電極1.2間に2
00Vの交流電圧を印加する。
(3) It was installed in a straight line on a pipe with an inner diameter of 1 inch, and the top was covered with a glass wool insulation material with a thickness of 30 Ωm. Next, pour water at 20℃ into the pipe, and then
Apply an AC voltage of 00V.

第3図のように結線した回路で通電後30分経過したと
きの電流値を読取り、次式により出力を算出した。
The current value was read 30 minutes after energization in the circuit connected as shown in FIG. 3, and the output was calculated using the following formula.

なお、第3図において、5は試料、6は電流計、7は電
源、8は電圧計を示す。
In FIG. 3, 5 is a sample, 6 is an ammeter, 7 is a power source, and 8 is a voltmeter.

(4)動作温度・試料長さ1mのヒータを20℃の恒温
槽中に入れて電極間に200V課電したときのヒータの
表面温度を測定して、その温度が飽和した温度を動作温
度とした。
(4) Operating temperature - Measure the surface temperature of the heater when placing a heater with a sample length of 1 m in a constant temperature bath at 20°C and applying 200 V between the electrodes.The temperature at which the temperature is saturated is defined as the operating temperature. did.

(5)自己温度制御性:第2図に示すような抵抗一温度
曲線を求め、抵抗の正の温度係数(PTC)が大きいヒ
ータを自己温度制御性がよいと判定した。
(5) Self-temperature controllability: A resistance-temperature curve as shown in FIG. 2 was obtained, and a heater with a large positive temperature coefficient (PTC) of resistance was determined to have good self-temperature controllability.

(4)課電劣化寿命:長さ1mの試料を常温雰囲気中で
、第3図のように配線した課電装置に結線して課電した
。課電々圧は常用電圧(200V)の2.5倍の500
Vとして、電極間の抵抗値を一定期間毎に測定して抵抗
の曲線変化を作図し、その値が初期値に対する変化率の
2倍になった時間を課電寿命とした。
(4) Degradation life due to charging: A sample with a length of 1 m was connected to a power charging device wired as shown in FIG. 3 and charged with power in an atmosphere at room temperature. The applied voltage is 500, which is 2.5 times the normal voltage (200V).
As V, the resistance value between the electrodes was measured at regular intervals, a curve change in resistance was plotted, and the time when the value became twice the rate of change with respect to the initial value was defined as the energization life.

[発明の効果コ 以上説明してきた通り、本発明はエチレン−テトラフル
オロエチレン共重合体95〜70重量部と四ふっ化エチ
レン−プロピレン共重合体5〜30重量部を樹脂分とし
、これに酸化ネオジウム、アリル型化合物系架橋助剤お
よび導電性付与剤を添加した組成物により発熱体を形成
したものであり、従来のぶつ化ビニリデン単独使用の場
合に比較して、単位長さ当りの出力が非常に大きく、動
作温度も高く、高温、高出力の自己温度制御性ヒータを
実現できる。
[Effects of the Invention] As explained above, the present invention consists of 95 to 70 parts by weight of ethylene-tetrafluoroethylene copolymer and 5 to 30 parts by weight of tetrafluoroethylene-propylene copolymer, and oxidation The heating element is formed from a composition containing neodymium, an allyl-type compound crosslinking aid, and a conductivity imparting agent, and the output per unit length is higher than when conventional vinylidene butoxide is used alone. It is extremely large, has a high operating temperature, and can realize a high-temperature, high-output self-temperature-controlling heater.

また、課電劣化寿命が大幅に向上し、可撓性に優れるた
め配管等への取付は作業性および密着性が改良され、熱
伝導性も大幅に向上する。
In addition, the lifespan due to electrical deterioration is greatly improved, and because of its excellent flexibility, workability and adhesion when attaching to piping, etc. are improved, and thermal conductivity is also significantly improved.

さらにふっ素樹脂の優れた耐熱性、耐油性、難燃性を兼
ね備えたものであり、その工業的価値は極めて大きい。
Furthermore, it has the excellent heat resistance, oil resistance, and flame retardancy of fluororesin, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の自己温度制御性ヒータの一実施例の説
明図、′7A2図は実施例、比較例および従来例のヒー
タの抵抗一温度曲線を表す説明図、第3図は出力測定お
よび課電劣化試験のための装置の配線図である。
Fig. 1 is an explanatory diagram of an embodiment of the self-temperature control heater of the present invention, Fig. '7A2 is an explanatory diagram showing the resistance-temperature curves of heaters of the embodiment, comparative example, and conventional example, and Fig. 3 is an illustration of output measurement. FIG. 2 is a wiring diagram of a device for a charging deterioration test.

Claims (1)

【特許請求の範囲】[Claims] (1)電極の間に正の抵抗温度係数を有する発熱体が設
けられてなる自己温度制御性ヒータにおいて、前記発熱
体は、エチレン−テトラフルオロエチレン共重合体95
〜70重量部と四ふっ化エチレン−プロピレン共重合体
5〜30重量部を含有する樹脂分100重量部に対して
、酸化ネオジウム0.05〜10重量部、アリル型化合
物系架橋助剤0.5重量部以上および導電性付与剤を含
有せしめてなる樹脂組成物からなり、電離性放射線の照
射により架橋されてなることを特徴とする自己温度制御
性ヒータ。
(1) In a self-temperature-controlling heater comprising a heating element having a positive temperature coefficient of resistance between electrodes, the heating element is made of ethylene-tetrafluoroethylene copolymer 95
0.05 to 10 parts by weight of neodymium oxide and 0.05 to 10 parts by weight of an allyl type compound crosslinking aid per 100 parts by weight of the resin containing ~70 parts by weight and 5 to 30 parts by weight of the tetrafluoroethylene-propylene copolymer. 1. A self-temperature-controlling heater comprising a resin composition containing 5 parts by weight or more and a conductivity imparting agent, and crosslinked by irradiation with ionizing radiation.
JP61136452A 1986-06-12 1986-06-12 Temperature self-control heater Pending JPS62291882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61136452A JPS62291882A (en) 1986-06-12 1986-06-12 Temperature self-control heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61136452A JPS62291882A (en) 1986-06-12 1986-06-12 Temperature self-control heater

Publications (1)

Publication Number Publication Date
JPS62291882A true JPS62291882A (en) 1987-12-18

Family

ID=15175441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61136452A Pending JPS62291882A (en) 1986-06-12 1986-06-12 Temperature self-control heater

Country Status (1)

Country Link
JP (1) JPS62291882A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443587A (en) * 1990-06-06 1992-02-13 Matsushita Electric Ind Co Ltd Heater having positive resistance temperature coefficient

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443587A (en) * 1990-06-06 1992-02-13 Matsushita Electric Ind Co Ltd Heater having positive resistance temperature coefficient

Similar Documents

Publication Publication Date Title
US4636331A (en) Polymeric composite heating element
JPS592693B2 (en) Conductive polymer composition having positive temperature coefficient characteristics and heater using the same
JPH10259216A (en) Molding product of fluorine-containing copolymer
JPH0395248A (en) Electrical equipment and method for heating diesel fuel
JPS62291882A (en) Temperature self-control heater
JPS62272490A (en) Temperature self-control type heater
JPH083017B2 (en) Method for producing heating element composition
JPS63279589A (en) Self-temperature controllable heater
JPS62278782A (en) Temperature self-control type heater
JP2531277B2 (en) Self temperature control heater
US5025131A (en) Method of heating diesel fuel utilizing conductive polymer heating elements
JPS63292593A (en) Temperature self-controlled heater
JPH08195271A (en) Self-temperature controllable heater
JPH0126125B2 (en)
CN102161245B (en) Manufacture method for positive temperature coefficient devices and anti-overheating system for plane heating element
KR102526902B1 (en) Positive temperature coefficient self-regulating having high thermal resistance and flexibility heating cable manufacturing method
JPH0130264B2 (en)
JPH07147181A (en) Controllable self-temperature heater
KR0179417B1 (en) Self-control type heater and its control method
JPS58164187A (en) Self-temperature controllable heater
JPH0547454A (en) Ptc heating unit
JP2644340B2 (en) Heat resistant wire
JPH08195272A (en) Self-temperature controllable heater and its manufacture
JPH0749759Y2 (en) PTC heating element
JPH0294281A (en) Plane-shaped heating element for melting snow on roof