JPS62290822A - Production of thick-walled steel pipe - Google Patents

Production of thick-walled steel pipe

Info

Publication number
JPS62290822A
JPS62290822A JP13172886A JP13172886A JPS62290822A JP S62290822 A JPS62290822 A JP S62290822A JP 13172886 A JP13172886 A JP 13172886A JP 13172886 A JP13172886 A JP 13172886A JP S62290822 A JPS62290822 A JP S62290822A
Authority
JP
Japan
Prior art keywords
steel pipe
thick
weight
strain
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13172886A
Other languages
Japanese (ja)
Inventor
Atsushi Shiga
志賀 厚
Suetomi Inoue
井上 末富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP13172886A priority Critical patent/JPS62290822A/en
Publication of JPS62290822A publication Critical patent/JPS62290822A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily produce a thick-walled steel pipe having excellent surface characteristics by molding thick-walled steel products having a specific compsn. to a specific cold bent and worked steel pipe having a specified surface strain and quickly heating only the outside surface part thereof to a prescribed temp. and allowing the same to cool after holding for the prescribed time. CONSTITUTION:The steel products which consist, by weight, of <=<=0.12% C, <=0.50% Si, 1.0%-1.8% Mn, <=0.01% P, <=0.005% S, and <=0.1% Nb or V and has >=50mm thickness are prepd. The steel pipe is manufactured by cold bending of such steel products and the surface strain in this stage is maintained at 5-15%. The steel pipe is then quickly heated to 800-1,000 deg.C from the outside surface thereof to 1/4 the thickness and is held for 5-20sec according to the surface strain quantity; thereafter the steel pipe is allowed to cool. High-frequency induction heating is most adequate as a method for heating only the surface part of the thickness. The surface characteristics which are deteriorated by the cold working are restored and the thick-walled steel pipe having the excellent performance is easily produced by the above-mentioned method.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 未発1!IIは、厚肉鋼管の製造方法に関し、さらに1
作しくは、駅舎、モルレール等の支柱用の鋼管部材、ま
たはジャケット用鋼管部材等、板厚50mm以上の冷間
曲げ加工#4管であって、その表面性状を曲げ加工前の
状態に回復させた厚肉鋼管の製造方法を提供するもので
ある。
[Detailed description of the invention] 3. Detailed description of the invention [Industrial application field] Unreleased 1! II relates to a method for manufacturing thick-walled steel pipes, and further includes 1.
The method is to restore the surface properties of cold-bent #4 pipes with a plate thickness of 50 mm or more to the state before bending, such as steel pipe members for supports of station buildings, mole rails, etc., or steel pipe members for jackets. The present invention provides a method for manufacturing thick-walled steel pipes.

〔従来の技術〕[Conventional technology]

冷間曲げ加工により鋼管を製作すると、とくに鋼管表層
部の歪量の大きな部分は歪時効により脆化するため板厚
方向に靭性の差が生じる。
When a steel pipe is manufactured by cold bending, the part of the pipe with a large amount of strain, especially the surface layer, becomes brittle due to strain aging, resulting in a difference in toughness in the thickness direction.

例えば第2図、第3図はそれぞれ横軸に板厚方向位置(
Ft、Fcはそれぞれ引張側表面、圧縮側表面を示す)
をとってJ I S−5M4 I C鋼の曲げ加工前後
における降伏点(YS)(kg/m m’ )および伸
び(Ei)(%)の板厚方向の分!Ijを示したもので
あり、第2図では加工後に、板の中央部に比し、板の表
面部の降伏点が異常に高い値を示し、第3図では加工後
に板の中央部に比し表面部の伸びが著しく少なくなった
ことを示している。また第4図は管外面側および管内面
側における温度と衝慇吸収エネルギー(kg−rn)と
の関係を示したもので、加工後に表面が著しく脆化して
いることが認められる。
For example, in Figures 2 and 3, the horizontal axis indicates the position in the thickness direction (
(Ft and Fc indicate the tension side surface and compression side surface, respectively)
The yield point (YS) (kg/mm') and elongation (Ei) (%) of JIS-5M4IC steel before and after bending in the thickness direction! Figure 2 shows that the yield point of the surface of the plate is abnormally high after processing compared to the center of the plate, and Figure 3 shows that the yield point of the surface of the plate is abnormally high after processing compared to the center of the plate. This shows that the elongation of the surface area has decreased significantly. Further, FIG. 4 shows the relationship between temperature and impact absorption energy (kg-rn) on the outer surface side and the inner surface side of the tube, and it can be seen that the surface has become extremely brittle after processing.

このような脆化を防■ヒする従来の方法は、冷間曲げ加
工後鋼管全体を長時間熱処理(焼ならし)するか、また
は曲げ加工を熱間で行うかのいずれかであった・ 〔発明が解決しようとする間m点〕 冷間曲げ加工後に鋼管全体を熱処理する方法は大型の熱
処理設備と鋼管全体を加熱する熱処理エネルギーとを必
要とし、コスト高であると共に、板厚中央部の特性変化
のない部分の特性も変えてしまうので鋼管全体の機械的
特性、例えば強度が低下する欠点がある。
Conventional methods to prevent such embrittlement have been to either subject the entire steel pipe to long-term heat treatment (normalizing) after cold bending, or to perform hot bending. [Point m to be solved by the invention] The method of heat treating the entire steel pipe after cold bending requires large heat treatment equipment and heat treatment energy to heat the entire steel pipe, resulting in high cost and This has the disadvantage that the mechanical properties of the entire steel pipe, such as its strength, decrease because the properties of the parts where the properties do not change are also changed.

熱間曲げ加工により厚肉鋼管を製造すると板厚方向の性
状が均一な鋼管を得ることはできるが、高温で長時間加
熱するので結晶粒が大きくなって強度の向上を望むこと
ができず、また低温靭性が劣る。
If thick-walled steel pipes are manufactured by hot bending, it is possible to obtain steel pipes with uniform properties in the thickness direction, but since the steel pipes are heated at high temperatures for long periods of time, the crystal grains become large and no improvement in strength can be expected. Also, low-temperature toughness is poor.

本発明は上述のような冷間曲げ加工によって表面性状が
劣化した素管の表面のみの機械的特性の回復を簡易な方
法で行い、優れた表面特性を有する厚肉鋼管を安価に容
易に製造することができる方υ;を提供することを目的
とする。
The present invention uses a simple method to restore the mechanical properties of only the surface of a raw pipe whose surface properties have deteriorated due to the cold bending process described above, and enables the easy production of thick-walled steel pipes with excellent surface properties at low cost. The purpose is to provide a person who can do the following.

〔聞題点を解決するための手段〕[Means for resolving issues]

上記目的を達成するため、本発明は冷間曲げ加工により
特性がとくに劣化する表面層のみを熱処理して靭性を回
復させる手段を講じた発明であって、次の技術手段を問
題解決の手段とするものである。
In order to achieve the above object, the present invention is an invention that takes measures to restore toughness by heat treating only the surface layer whose properties are particularly deteriorated by cold bending, and uses the following technical means as a means of solving the problem. It is something to do.

■素材として、。■As a material.

C: 0.12重丑%以下 Si:0.50重量%以下 Mn : 1.0〜1.8重9% P:0.01重量%以下 S:0.005重量%以下 Nb、V:1種または2種合計0.1料量%以下 で、板厚50mm以上の鋼材を用いる。C: 0.12% or less Si: 0.50% by weight or less Mn: 1.0-1.8 weight 9% P: 0.01% by weight or less S: 0.005% by weight or less Nb, V: 1 or 2 types total amount 0.1% or less A steel material with a plate thickness of 50 mm or more is used.

(り表面歪が5〜15%である冷間曲げ加工鋼管を成型
する。
(A cold bent steel pipe with a surface strain of 5 to 15% is formed.

■該加工鋼管の外表面から1/4板厚までの間を800
−1000℃の温度に急速加熱する。
■The distance from the outer surface of the processed steel pipe to 1/4 plate thickness is 800
Rapid heating to a temperature of -1000°C.

■次いで、表面歪量に応じて5〜20秒間その温度に保
持した後放冷する。
(2) Next, the temperature is maintained for 5 to 20 seconds depending on the amount of surface strain, and then allowed to cool.

〔作用〕[Effect]

冷間曲げ加工鋼管の表層部にはその加工度に応じて歪時
効脆化が生じるので、本発明は管表層部のみに短時間熱
処理を施すことによってこの部分の靭性を回復させる作
用をなすものである。
Since strain aging embrittlement occurs in the surface layer of a cold-bent steel pipe depending on the degree of bending, the present invention restores the toughness of this portion by subjecting only the surface layer of the pipe to short-term heat treatment. It is.

第1図は本発明の鋼管表面の熱処理のタイムパターンを
略図したものである。この熱処理は鋼管の内外両表面に
施すのが好適であるが、場合によっては構造物として特
に必要な外表面のみに施しても効果がある。
FIG. 1 schematically shows a time pattern of heat treatment of the surface of a steel pipe according to the present invention. It is preferable to apply this heat treatment to both the inner and outer surfaces of the steel pipe, but in some cases it may be effective to apply it only to the outer surface that is particularly necessary for the structure.

鋼管素材組成、曲げ加工歪および熱処理条件を制限した
理由を以下に説明する。
The reason for limiting the steel pipe material composition, bending strain, and heat treatment conditions will be explained below.

本発明の対象となる素材はJIS−SM41C150C
153C相当の引張強さが41〜59kg/mm’の材
料である。
The material targeted by this invention is JIS-SM41C150C
The material has a tensile strength of 41 to 59 kg/mm' corresponding to 153C.

C,S i、Mn、P、S、Nb、Vのそれぞれの成分
規定はこのような材料を規定したものである。
The respective component definitions of C, Si, Mn, P, S, Nb, and V define such materials.

Cは歪時効脆化を強力に生じさせる元素であり、その添
加量は少ないほうが良いが素材の強度を確保するために
L限を0.12重量%とする。
C is an element that strongly causes strain-aging embrittlement, and although it is better to add a small amount of C, the L limit is set to 0.12% by weight in order to ensure the strength of the material.

Siは鋼の脱酸のために必要であるが、添加量が多くな
るにつれて素材の靭性が低くなり、かつ、溶接性も悪く
なるのでその上限を0.50重41%とする。
Si is necessary for deoxidizing steel, but as the amount added increases, the toughness of the material decreases and the weldability also deteriorates, so the upper limit is set at 0.50% by weight and 41%.

MnもSiと同様の作用を右し、素材の強度を確保する
ために1.0重量タロ以」−を要し、一方1.8重量%
を超えると素材状態での靭性が低くなるので上限を1.
8 t’R州%とする。
Mn also has the same effect as Si, and requires more than 1.0% by weight to ensure the strength of the material, while 1.8% by weight
If it exceeds 1.0, the toughness of the material will decrease, so the upper limit is set at 1.
8 t'R state%.

PはCと同様に歪時効脆化を生じさせるのでに限を0.
01玉が一%とする。
Like C, P causes strain aging embrittlement, so the limit is 0.
01 ball is 1%.

Sは鋼中で偏析を生じ易く、偏析層の存在は歪時効脆化
を大きくし、また、素材の靭性を悪くし、かつ溶接性も
悪いので、S含有量はできる限り低いほうがよく、その
」二限をO,OO5@ g ’:!6とする。
S tends to segregate in steel, and the presence of a segregated layer increases strain-age embrittlement, worsens the toughness of the material, and has poor weldability. Therefore, it is better to keep the S content as low as possible. ” 2nd limit O, OO5 @ g ':! Set it to 6.

Nbおよび■は素材の強度を確保するために添加するが
、添加量が多すぎると素材の靭性および伸びが低下する
。NbとVの作用効果はほぼ同じであるから、それらの
添加量の上限は1種または2種合計で0.1重量%とす
る。
Nb and ■ are added to ensure the strength of the material, but if the amount added is too large, the toughness and elongation of the material will decrease. Since the effects of Nb and V are almost the same, the upper limit of their addition amount is 0.1% by weight in total of one or both.

板厚は50 m m以上を対象とする0本発明は、比較
的大口径の厚肉ln4管を対象とし、曲げ加工による表
面性状の劣化を回復するものであるから、薄板は対象外
となる。一方板厚り限に限定はないが、当然鋼管の曲げ
加工の回走限度以内のものとなる。
The present invention targets thick-walled ln4 pipes with relatively large diameters, and is intended to recover the deterioration of surface quality caused by bending, so thin plates are not applicable. . On the other hand, there is no limit to the plate thickness, but it is naturally within the turning limit for bending steel pipes.

また、板の表面歪の面からは5〜15%に限定される0
表面歪は板厚と曲げ半径の関数で与えられ、 ε=t/(2R+t) 但し ε−曲げ加工による鋼管の表面歪 D−鋼管の板厚中央の曲率半径 七−板厚 である。
In addition, from the perspective of surface strain of the plate, it is limited to 5 to 15%.
The surface strain is given as a function of the plate thickness and the bending radius, ε=t/(2R+t) where ε - the surface strain of the steel pipe due to bending D - the radius of curvature at the center of the steel pipe's thickness 7 - the plate thickness.

本発明の板厚の表面部のみを加熱する方法としては、高
周波誘導加熱が最も適切である。その加熱温度は、加熱
源の周波数および加熱源と被カロ熱体との空間内位ri
関係ならびに加熱時間によって容易に所9!の値に3J
愁することができる。?、!度は800〜1000℃と
して加工歪による性俺低下を回復させ、その浸透深さは
板厚の1/4厚の位置、すなわち板の表面と中立面との
中央までとすれば1−分な効果を得ることができる。
High-frequency induction heating is the most suitable method for heating only the surface portion of the plate according to the present invention. The heating temperature is determined by the frequency of the heating source and the spatial position ri between the heating source and the body to be heated.
Easily place 9 depending on the relationship and heating time! 3J to the value of
I can mourn. ? ,! The temperature is set at 800 to 1000°C to recover the deterioration in properties due to processing strain, and the penetration depth is 1-minute if the depth is 1/4 of the thickness of the plate, that is, the center between the surface of the plate and the neutral plane. effect can be obtained.

次に表面部を800〜1000’0に少時間保持する。The surface area is then held at 800-1000'0 for a short time.

歪時効脆化した冷間加圧′n!4管表層部を加熱により
再結晶させてこの部分の支クロ組織を微細なフェライト
にすることで靭性および延性が回復するのであるが、1
0〜15タロもの予歪を4えた素材の靭性を回復させる
ためには800℃以上の加熱が必要であり、また一方、
1000″Cを超える加熱を行うとミクロ組織は粗大化
したベイナイト状組織となって靭性は回復しない。
Cold pressurization caused by strain aging and embrittlement! Toughness and ductility are restored by recrystallizing the surface layer of the 4-tube by heating and converting the branched black structure in this area into fine ferrite.
In order to restore the toughness of a material that has undergone pre-strain of 0 to 15 degrees, it is necessary to heat the material to a temperature of 800°C or higher.
If heating exceeds 1000''C, the microstructure becomes a coarsened bainitic structure and the toughness is not recovered.

従って、適正加熱温度域はgoo−iooo”cである
Therefore, the appropriate heating temperature range is goo-iooo''c.

800〜1000℃に保持する時間は管直径および板厚
に応じて、換言すれば表面歪の値に応じて5〜20秒と
する。実際の例によれば表面歪が5〜6%では保持時間
5秒で効果があり、表面歪10%では10秒でほぼ素材
と同等の表面性状回復が見られ、表面歪が15%では2
0秒保持すればよい、従って、保持時間は管直径および
板厚に応じて5〜20秒とし、保持後は自然放冷すれば
よい。
The time for maintaining the temperature at 800 to 1000°C is 5 to 20 seconds depending on the tube diameter and plate thickness, in other words, depending on the value of surface strain. According to actual examples, when the surface strain is 5 to 6%, a holding time of 5 seconds is effective, when the surface strain is 10%, the surface texture is recovered to the same level as the raw material in 10 seconds, and when the surface strain is 15%, the surface texture is recovered to the same level as the raw material.
Therefore, the holding time should be 5 to 20 seconds depending on the tube diameter and plate thickness, and after holding, it is sufficient to allow the tube to cool naturally.

次に、本発明を実施例によって詳細に具体的に述べるが
、本95明は以下の実施例によって限定されるものでは
ない。
Next, the present invention will be specifically described in detail with reference to examples, but the present invention is not limited to the following examples.

〔実施例〕〔Example〕

実施例1 引張強さ44 k g / m rrf 、板厚130
mmで、次のM1成をもつ鋼板を冷間加工して厚内鋼管
素材を製造した。
Example 1 Tensile strength: 44 kg/mrrf, plate thickness: 130
A thick inner steel pipe material was produced by cold working a steel plate having the following M1 composition.

C:0.08重量% Si:0.25重量% Mn+1.35ffl 呈% P : 0.007重量% S:0.002重−1−% Nb:0.025重狼5 mに記素材に曲げ加工による表面歪10%を与えたとこ
ろ、素材に比し、最表面部の0℃における吸収エネルギ
ーは12kgm低下し、遷移温度は高温側へ30℃シフ
トしたことが認められた。ただし板厚中央部はほとんど
変化を示していない。
C: 0.08% by weight Si: 0.25% by weight Mn + 1.35ffl Presentation % P: 0.007% by weight S: 0.002% by weight -1% Nb: 0.025% by weight Bend onto the material at 5 m When a surface strain of 10% was applied due to processing, it was observed that the absorbed energy at 0°C at the outermost surface decreased by 12 kgm and the transition temperature shifted 30°C to the higher temperature side compared to the raw material. However, the central part of the plate thickness shows almost no change.

このn4/i?に対して外面から高周波誘導加熱を行い
、表面を1000℃に、表面から30mmの位置を80
0°Cに加熱し、10秒間保持した後放冷した。鋼管の
最表面部の吸収エネルギーを311定したところ素材レ
ベルに回復したことが確かめられた。
This n4/i? High-frequency induction heating is applied to the surface from the outside to 1000℃, and the temperature 30mm from the surface is 80℃.
It was heated to 0°C, held for 10 seconds, and then allowed to cool. When the absorbed energy at the outermost surface of the steel pipe was determined at 311, it was confirmed that it had recovered to the raw material level.

実施例2 引張強さ53kg/mm’、板厚80mmで、次の組成
をもつ鋼板を冷間加工して厚内鋼管を製造した。
Example 2 A thick inner steel pipe was manufactured by cold working a steel plate having a tensile strength of 53 kg/mm' and a plate thickness of 80 mm and having the following composition.

C: 0.12重5′l:り6 Si:0.30重州% Mn:1.5重量% P:0.009重量% S+0.003重量% Nb:0.03重量% V:0.06重着% 素材の0℃における吸収エネルギーは20kgmであっ
た。
C: 0.12 weight 5'l: Ri 6 Si: 0.30 weight % Mn: 1.5 weight % P: 0.009 weight % S+0.003 weight % Nb: 0.03 weight % V: 0. 06 Overlay % The absorbed energy of the material at 0° C. was 20 kgm.

上記素材に曲げ加工による表面歪6%を与えたとき最表
面部の0℃における吸収エネルギは7kgm低下し、遷
移温度は高温側へ15℃シフトした。
When a surface strain of 6% was applied to the above material by bending, the absorbed energy at 0°C at the outermost surface decreased by 7 kgm, and the transition temperature shifted to the higher temperature side by 15°C.

この鋼管に対して外面から高周波誘導加熱し、表面を1
000℃、表面から深さ20mmの位置を800℃に昇
温し、5秒間保持し、次いで放冷したところ、最表面部
の吸収エネルギーは素材レベルまで回復した。
This steel pipe is heated by high frequency induction from the outside, and the surface is
When the temperature was raised to 800° C. at a depth of 20 mm from the surface, held for 5 seconds, and then allowed to cool, the absorbed energy at the outermost surface recovered to the level of the material.

〔発明の効果〕〔Effect of the invention〕

本発明の厚肉鋼管の製造方法は以上のように構成されて
いるので、冷間加工による表面性状の低・下を回復する
ことができ、構築物の支柱等とじて優れた性能を有する
厚肉鋼管を安価、容易に製造することが可使となった。
Since the method for manufacturing thick-walled steel pipes of the present invention is configured as described above, it is possible to recover the deterioration of the surface quality caused by cold working, and to produce thick-walled steel pipes that have excellent performance as supports for structures, etc. It became possible to manufacture steel pipes cheaply and easily.

【図面の簡単な説明】 第1図は本発明の鋼管表面の熱処理のパターンを略図し
た図表、第2図、第3図はそれぞれJIS−3M4IC
鋼の曲げ加工前後の降伏点および伸びの板厚方向の分布
を示すグラフ、第4図は曲げ加工前後の温度と衝撃吸収
エネルギーとの関係を示すグラフである。
[Brief explanation of the drawings] Figure 1 is a diagram schematically showing the heat treatment pattern of the steel pipe surface of the present invention, and Figures 2 and 3 are JIS-3M4IC, respectively.
A graph showing the distribution of yield point and elongation in the thickness direction of steel before and after bending, and FIG. 4 is a graph showing the relationship between temperature and impact absorption energy before and after bending.

Claims (1)

【特許請求の範囲】 1 C:0.12重量%以下 Si:0.50重量%以下 Mn:1.0〜1.8重量% P:0.01重量%以下 S:0.005重量%以下 Nb、V:1種または2種合計0.1重量 %以下 で、板厚50mm以上の鋼材を用いて表面歪が5〜15
%である冷間曲げ加工鋼管を成型し、該鋼管の外表面か
ら1/4板厚までの間を800〜1000℃の温度に急
速加熱し、表面歪量に応じて5〜20秒保持した後放冷
することを特徴とする厚肉鋼管の製造方法。
[Claims] 1 C: 0.12% by weight or less Si: 0.50% by weight or less Mn: 1.0 to 1.8% by weight P: 0.01% by weight or less S: 0.005% by weight or less Nb, V: type 1 or type 2 with a total of 0.1% by weight or less, using a steel material with a plate thickness of 50 mm or more, with a surface strain of 5 to 15
A cold-bent steel pipe of 50% was formed, and the area from the outer surface of the steel pipe to 1/4 of the plate thickness was rapidly heated to a temperature of 800 to 1000°C, and held for 5 to 20 seconds depending on the amount of surface strain. A method for producing a thick-walled steel pipe, which is characterized by allowing it to cool afterwards.
JP13172886A 1986-06-09 1986-06-09 Production of thick-walled steel pipe Pending JPS62290822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13172886A JPS62290822A (en) 1986-06-09 1986-06-09 Production of thick-walled steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13172886A JPS62290822A (en) 1986-06-09 1986-06-09 Production of thick-walled steel pipe

Publications (1)

Publication Number Publication Date
JPS62290822A true JPS62290822A (en) 1987-12-17

Family

ID=15064811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13172886A Pending JPS62290822A (en) 1986-06-09 1986-06-09 Production of thick-walled steel pipe

Country Status (1)

Country Link
JP (1) JPS62290822A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020530448A (en) * 2017-08-09 2020-10-22 アルビレオ・アクチボラグ Cholestyramine granules, oral cholestyramine preparations, and their use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020530448A (en) * 2017-08-09 2020-10-22 アルビレオ・アクチボラグ Cholestyramine granules, oral cholestyramine preparations, and their use

Similar Documents

Publication Publication Date Title
KR100904581B1 (en) Method of manufacturing a press bended cold formed circular steel excellent in earthquake-proof performance
JPS58188532A (en) Manufacture of hollow stabilizer
KR101696052B1 (en) Forming part having excellent corrosion resistance and manufacturing method thereof
GB2046786A (en) Two-phase high strength hot rolled steel sheet
US20210268862A1 (en) Electric-resistance-welded steel pipe for producing hollow stabilizer, hollow stabilizer, and method for producing same
JPS62290822A (en) Production of thick-walled steel pipe
KR101518571B1 (en) Non heat treated wire rod having excellent high strength and impact toughness and method for manafacturing the same
KR101977467B1 (en) Wire rod having excellent strength and cold forging characteristics and method for manufacturing same
FI3887556T3 (en) Cold rolled annealed steel sheet with high hole expansion ratio and manufacturing process thereof
JP2019527777A5 (en)
JPH04143225A (en) Manufacture of long size steel with different strength in longitudinal direction
JP2815028B2 (en) Method for producing steel pipe having yield point elongation, low yield ratio and excellent low temperature toughness
JP3550521B2 (en) Slow cooling method and manufacturing method of hot rolled wire rod
JPS60208415A (en) Manufacture of upset steel pipe for oil well
JPS5952207B2 (en) Manufacturing method of low yield ratio, high toughness, high tensile strength steel plate
JPH0417622A (en) Manufacture of h-beam with thin web
JP3891012B2 (en) Method for producing martensitic stainless steel strip
KR100617931B1 (en) High-workability steel pipe and method of producing same
JPWO2019020575A5 (en)
JP2957717B2 (en) Manufacturing method of high strength seamless steel pipe with low yield ratio
JPS59129728A (en) Manufacture of seam welded steel pipe with high crushing strength
KR20230048710A (en) High carbon steel sheet and method for manufacturing the same
JPS58199819A (en) Manufacture of high strength steel pipe for oil well
WO2019132376A1 (en) Laser-hardened low carbon steel sheet and manufacturing method therefor
JPS60187663A (en) Electric welded oil well pipe having low hardness and high yield strength and its production