JPS6229000B2 - - Google Patents

Info

Publication number
JPS6229000B2
JPS6229000B2 JP10335283A JP10335283A JPS6229000B2 JP S6229000 B2 JPS6229000 B2 JP S6229000B2 JP 10335283 A JP10335283 A JP 10335283A JP 10335283 A JP10335283 A JP 10335283A JP S6229000 B2 JPS6229000 B2 JP S6229000B2
Authority
JP
Japan
Prior art keywords
lubricant
test
tetrafluoroethylene resin
polyimide
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10335283A
Other languages
Japanese (ja)
Other versions
JPS59227992A (en
Inventor
Kunio Okimoto
Tomio Sato
Toshio Yamakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP10335283A priority Critical patent/JPS59227992A/en
Publication of JPS59227992A publication Critical patent/JPS59227992A/en
Publication of JPS6229000B2 publication Critical patent/JPS6229000B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

通常、金属の塑性加工において被加工材料を再
結晶温度以上に加熱して加工する場合は熱間加工
と呼ばれており、再結晶温度以下に加熱した場合
は温間加工、室温の下で加工する場合は冷間加工
と呼ばれている。金属材料の再結晶温度は材料に
よつて異なり、鉄鋼材料では600〜700℃、銅では
約300℃、アルミニウムでは約200℃である。金属
材料の内で最も需要の多い鉄鋼材料の場合、熱間
加工の際の加熱温度は1100〜1250℃であり、温間
加工の際の加熱温度は、例えばステンレス鋼では
400℃付近で析出による延性低下があるために250
〜350℃あるいは500〜700℃が選ばれる。 本発明は、250〜350℃で鍛造・深絞り加工など
の塑性加工や粉末成形を行なう際の潤滑剤に関す
るものである。したがつて、250〜350℃の温度範
囲で加工するものであれば鉄鋼材料に限らず、そ
れ以外の一般構造材料であつても一向に差しつか
えなく、またZn―22Al超塑性材(この材料は250
℃前後で超塑性現象を発現する)のような機能材
料であつても差しつかえない。また、この温度範
囲が被加工材料に対して熱間加工に相当しよう
が、それとも温間加工に相当しようが、それはど
ちらでもかまわない。 ところで、上でも述べたようにステンレス鋼の
温間鍛造やステンレス鋼板の温間絞りにおいて
は、250〜350℃に加熱してから加工される。しか
し、この温度範囲における潤滑剤として適当なも
のがなく、潤滑剤の開発が待たれている現状であ
る。すなわち、鋼の冷間鍛造においてはリン酸塩
皮膜と金属石けん(ステアリン酸亜鉛)を組み合
わせた潤滑剤であり、ボンデライト・ボンダリユ
ーベなどとしてよく知られている。しかし、この
場合、金属石けんが約200℃で分解するので、ボ
ンデライト・ボンダリユーベを250〜350℃で使用
することは一般に不可能である。その上、ボンデ
ライト・ボンダリユーベの場合、リン酸塩皮膜を
被加工材料の表面に強く付着させるための工程が
はん雑であり、また公害防止の面から排液の処理
に留意しなければならないので、もつと簡便に使
用することのできる潤滑剤が期待されている。ボ
ンデライト・ボンダリユーベ以外にも冷間塑性加
工用潤滑剤として動植物油、鉱物油、合成油など
があり、これらは圧延加工、引き抜き加工、深絞
り加工などに使用されている。しかし、これらの
潤滑剤の使用温度は200℃が限度であり、極圧添
加剤であるリン、塩素、硫黄などを添加混合して
使用した場合においても、使用温度は250℃以下
に限定される。一方、熱間鍛造用潤滑剤として
は、黒鉛系の潤滑剤やガラス潤滑剤がよく知られ
ているが、これらは500℃程度以上で使用するの
が適当であり、250〜350℃では潤滑性能はあまり
期待できない。 潤滑剤のこのような状況に鑑み、本発明者らは
250〜350℃での塑性加工用潤滑剤を開発するため
に鋭意研究を重ねた結果、耐熱性樹脂粉末をベー
スとして、これに四フツ化エチレン樹脂粉末を添
加混合することにより、耐熱性と潤滑性を兼ね備
えた新しい潤滑剤を開発するに致つた。 すなわち、耐熱性樹脂としてポリイミド、ポリ
アミドイミドが知られており、特にポリイミドの
耐熱性は350℃程度に達し、ポリカーボネート、
ナイロン、ポリスチレン、エポキシ樹脂などの従
来からのプラステイツクスの耐熱温度が200℃以
下に過ぎないのに対して格段に優れている。本発
明は、ポリイミドの耐熱性を250〜350℃での塑性
加工用潤滑剤に応用するものであり、粉末状のも
のを使用する。ただし、ポリイミドの摺動性は必
ずしも良好とは言えないので、摺動性を向上させ
るためにフツ素樹脂系である四フツ化エチレン樹
脂粉末を添加混合する。ここで、四フツ化エチレ
ン樹脂は冷間における摩擦係数の小さい物質とし
てよく知られているものであるが、非常に高価で
あり、またその耐熱性は260℃が限度である。そ
こで、耐熱性樹脂ポリイミドを主体としてこれに
四フツ化エチレン樹脂粉末を添加混合することに
より、四フツ化エチレン樹脂の耐熱性の向上を図
ると共に、四フツ化エチレン樹脂の使用量を少な
くすることによつて経済的にも有利な潤滑剤を開
発するものである。また、これらの混合物の被加
工材料や金型への付着力・粘着力を増大させるた
め四フツ化エチレン樹脂の使用量を減らすため
に、ワニス状のメチルフエニルシリコーン樹脂を
添加混合する。なお、ポリイミド樹脂粉末、四フ
ツ化エチレン樹脂粉末とメチルフエニルシリコー
ン樹脂の混合物の溶剤として、Nメチル―2ピロ
リドン溶液を用いる。ポリイミド粉末(Pで表わ
す)、四フツ化エチレン樹脂粉末(T)、メチルフ
エニルシリコーン樹脂(M)、Nメチル―2ピロ
リドン溶液(N)の重量配分比を、 P:T:M:N=1:(0.25〜2.0):1:5
式(1) として、これらを混合撹拌する。これを潤滑剤と
して用いて被加工材料である試験片と工具に塗布
する。次に、230℃で30分間の加熱を行なうこと
により潤滑剤を乾燥させる。そして、添付図面の
第1図に示すようなリング圧縮試験法によつて
250〜350℃での摩擦係数μを求めたところ、式(1)
において四フツ化エチレン樹脂粉末(T)の添加
量が0.25〜2.0での摩擦係数はμ=0.03〜0.05であ
り、潤滑性能が極めて良好であつた。この場合、
所定温度における潤滑剤の加熱時間は15分間を標
準としたが、この加熱時間は短かい方が望まし
い。 四フツ化エチレン樹脂粉末(T)の添加量が式
(1)に示した0.25〜2.0よりも少ないと、四フツ化
エチレン樹脂の潤滑効果が十分に発揮されず潤滑
効果が劣る。その一方、添加量がこれよりも多く
なると、四フツ化エチレン樹脂は高価であるため
に相対値にコストの高いものとなり、またTが
0.25〜2.0で摩擦係数はほぼ一定となるので、こ
の添加量で十分である。このように、四フツ化エ
チレン樹脂粉末の添加量は、式(1)のように0.25〜
2.0が適当である。なお、耐熱性樹脂ポリイミド
は粉末状のものを用いたが、粉末状でなくてワニ
ス状のものであつても差しつかえないことは勿論
である。 次に、実施例と比較例により本発明を更に詳細
に説明する。 実施例 1 ポリイミド粉末(P)、四フツ化エチレン樹脂
粉末(T)、メチルフエニルシリコーン樹脂
(M)、Nメチル―2ピロリドン溶液(N)の重量
配合比を、 P:T:M:N=1:X:1:5 式(2) とした場合、四フツ化エチレン樹脂粉末の添加量
Xが摩擦係数μに及ぼす影響をX=0,0.25,
0.50,1.0,2.0の場合について実験し、その結果
を第2図に示す。このように四フツ化エチレン樹
脂の添加量Xを0.25〜2.0とすることにより、摩
擦係数μはX=0の場合に比べて相当低下し、潤
滑剤として性能を発揮する。なお、試験条件は下
記の通りである。 〔試験条件〕 試験方法:リング圧縮試験 リング圧縮試験とは、添付図面の第1図aにお
いて3で示す平らな工具(耐圧盤)の間でリング
状の試験片1を加圧して塑性変形させ、試験片の
内径と外径の拡がり具合(第1図bを参照、実線
で示したものが試験前の状態、破線で示したもの
が試験後の変形状態)から被加工材料である試験
片と工具間(第1図aにおいて2で示す面)の摩
擦係数μを求める方法である。同一の圧縮率(△
H/Ho=(Ho―H)/Ho)に対して潤滑状態が
良好な場合、すなわち摩擦係数の小さい場合ほど
内径が大きくなる。この内径の変化率Ri/ri
(Ri:変形後の内半径、ri:初期内半径)と圧縮
率△H/Hoとの関係は、久能木の式(科学研究
所報告、第30巻、第2号、昭和29年3月)を用い
ることにより、摩擦係数μをパラメーターとして
計算から求まる。そこで、実験によつてRi/riと
△H/Hoを測定すれば、その場合における潤滑
剤の摩擦係数μを知ることができる。 試験温度:試験片と工具を300℃で約15分間加熱
してからクランク・プレスで鍛造(加工速度
約6.3m/min)。 試験片(被加工材料)材質:Zn―22Al超塑性
材。試験片は潤滑剤を塗布する前に1000番の
エメリー紙で研摩した後、アセトンで脱脂す
る。 試験片の寸法:内径×外径×高ま=2ri×2ro×Ho
=12.51〓×25.07〓×6.24=2:4:1 潤滑剤の塗布方法:試験片と工具の両方に塗布し
た後、230℃で30分間乾燥する。 工具:材質はSKD61であり、試験片と接する面
の表面粗さは0.3μm。工具の表面に潤滑剤
を塗布する前に、1000番のエメリー紙で研摩
した後、アセトンで脱脂する。 実施例 2 実施例1の300℃での実験により、式(2)におけ
る四フツ化エチレン樹脂の添加量Xは0.25〜2.0
が適当であることが判明した。そこで、Xの添加
量がこの範囲、すなわちX=0.25,0.50,1.0,
2.0の場合に関して、試験温度が300℃以外の場合
について実験し、その結果を300℃の結果も含め
て第1表に示す。第1表いおいて試験温度が250
〜350℃の範囲では、摩擦係数μは0.03〜0.05で
あり潤滑性能が極めて良好である。ただし、本発
明の潤滑剤の冷間(試験温度20℃)における摩擦
係数μは0.09〜0.12であるので、冷間塑性加工用
潤滑剤としては適切でない。しかし、200℃の状
態における摩擦係数μは0.055程度であるので、
250〜350℃の温度範囲に限定せず、200〜350℃の
温度範囲においても十分に潤滑性能を発揮する。 〔試験条件〕 実施例1の場合と試験温度が異なる外は、全て
同一条件である。
Normally, in plastic working of metals, when the workpiece is heated above the recrystallization temperature, it is called hot working, and when it is heated below the recrystallization temperature, it is called warm working, and when the workpiece is worked at room temperature. When this is done, it is called cold working. The recrystallization temperature of metal materials varies depending on the material, and is 600 to 700°C for steel, about 300°C for copper, and about 200°C for aluminum. For steel materials, which are most in demand among metal materials, the heating temperature during hot working is 1100 to 1250°C; for example, for stainless steel, the heating temperature during warm working is
250℃ due to decrease in ductility due to precipitation at around 400℃.
-350℃ or 500-700℃ is selected. The present invention relates to a lubricant for performing plastic working such as forging and deep drawing or powder forming at 250 to 350°C. Therefore, as long as it is processed in the temperature range of 250 to 350℃, it is not limited to steel materials, but also other general structural materials. 250
It may be a functional material such as a material that exhibits a superplastic phenomenon at around ℃. Further, it does not matter whether this temperature range corresponds to hot working or warm working of the material to be processed. By the way, as mentioned above, in warm forging of stainless steel and warm drawing of stainless steel plates, the process is performed after heating to 250 to 350°C. However, there is no suitable lubricant for this temperature range, and the development of a lubricant is currently awaited. In other words, for cold forging of steel, it is a lubricant that combines a phosphate film and metal soap (zinc stearate), and is well known as Bonderite and Bondarium. However, in this case, it is generally not possible to use Bonderite Bondaryube at temperatures between 250 and 350°C, since metal soaps decompose at about 200°C. Furthermore, in the case of Bonderite and Bondaryube, the process for strongly adhering the phosphate film to the surface of the processed material is complicated, and care must be taken to dispose of the waste liquid to prevent pollution. There are high hopes for a lubricant that can be used easily. In addition to Bonderite and Bondaryube, there are other lubricants for cold plastic working such as animal and vegetable oils, mineral oils, and synthetic oils, which are used in rolling, drawing, deep drawing, etc. However, the operating temperature of these lubricants is limited to 200°C, and even when extreme pressure additives such as phosphorus, chlorine, and sulfur are added and mixed, the operating temperature is limited to 250°C or lower. . On the other hand, graphite-based lubricants and glass lubricants are well known as lubricants for hot forging, but these are suitable for use at temperatures above 500℃, and their lubrication performance is limited between 250 and 350℃. I can't expect much. In view of this situation regarding lubricants, the present inventors
As a result of intensive research to develop a lubricant for plastic processing at temperatures between 250 and 350℃, we found that by adding and mixing tetrafluoroethylene resin powder to a heat-resistant resin powder base, we achieved heat resistance and lubrication. We have developed a new lubricant that has both properties. That is, polyimide and polyamideimide are known as heat-resistant resins, and polyimide in particular has a heat resistance of about 350°C, while polycarbonate,
This is significantly superior to conventional plastics such as nylon, polystyrene, and epoxy resin, which have a heat resistance temperature of only 200℃ or less. The present invention applies the heat resistance of polyimide to a lubricant for plastic working at 250 to 350°C, and uses a powdered lubricant. However, the sliding properties of polyimide are not necessarily good, so in order to improve the sliding properties, polytetrafluoroethylene resin powder, which is a fluororesin type, is added and mixed. Here, tetrafluoroethylene resin is well known as a material with a small coefficient of friction in cold conditions, but it is very expensive and its heat resistance is limited to 260°C. Therefore, by adding and mixing tetrafluoroethylene resin powder to a heat-resistant resin polyimide as a main component, we aim to improve the heat resistance of tetrafluoroethylene resin and reduce the amount of tetrafluoroethylene resin used. The objective is to develop an economically advantageous lubricant. Furthermore, in order to increase the adhesion and adhesion of these mixtures to workpiece materials and molds, and to reduce the amount of tetrafluoroethylene resin used, varnish-like methylphenyl silicone resin is added and mixed. Note that an N-methyl-2-pyrrolidone solution is used as a solvent for the mixture of polyimide resin powder, tetrafluoroethylene resin powder, and methylphenyl silicone resin. The weight distribution ratio of polyimide powder (represented by P), tetrafluoroethylene resin powder (T), methylphenyl silicone resin (M), and N methyl-2 pyrrolidone solution (N) is P:T:M:N= 1:(0.25~2.0):1:5
These are mixed and stirred according to formula (1). This is used as a lubricant and applied to the test piece and tool, which are the materials to be machined. Next, the lubricant is dried by heating at 230°C for 30 minutes. Then, by the ring compression test method as shown in Figure 1 of the attached drawings.
When we calculated the friction coefficient μ at 250 to 350℃, we obtained the formula (1)
When the amount of tetrafluoroethylene resin powder (T) added was 0.25 to 2.0, the friction coefficient μ was 0.03 to 0.05, and the lubrication performance was extremely good. in this case,
The standard heating time for the lubricant at a given temperature was 15 minutes, but it is desirable that this heating time be shorter. The amount of ethylene tetrafluoride resin powder (T) added is determined by the formula
If it is less than 0.25 to 2.0 shown in (1), the lubricating effect of the tetrafluoroethylene resin will not be sufficiently exhibited and the lubricating effect will be poor. On the other hand, if the amount added is larger than this, the relative cost will be high because tetrafluoroethylene resin is expensive, and T will be
Since the friction coefficient becomes almost constant between 0.25 and 2.0, this addition amount is sufficient. In this way, the amount of the tetrafluoroethylene resin powder added is from 0.25 to 0.25, as shown in formula (1).
2.0 is appropriate. Although powdered heat-resistant resin polyimide was used, it is of course possible to use varnish-like heat-resistant resin polyimide instead of powder. Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples. Example 1 The weight blending ratio of polyimide powder (P), tetrafluoroethylene resin powder (T), methylphenyl silicone resin (M), and N methyl-2-pyrrolidone solution (N) was P:T:M:N = 1:
Experiments were conducted for the cases of 0.50, 1.0, and 2.0, and the results are shown in Figure 2. By setting the amount X of the tetrafluoroethylene resin in the range of 0.25 to 2.0 in this manner, the friction coefficient μ is considerably reduced compared to the case where X=0, and the resin exhibits performance as a lubricant. The test conditions are as follows. [Test conditions] Test method: Ring compression test The ring compression test is a method in which a ring-shaped test piece 1 is pressurized and plastically deformed between flat tools (pressure plates) shown at 3 in Figure 1a of the attached drawings. , The test piece, which is the workpiece material, can be determined from the degree of expansion of the inner and outer diameters of the test piece (see Figure 1b, the solid line shows the state before the test, and the broken line shows the deformed state after the test). This method calculates the friction coefficient μ between the tool and the tool (the surface indicated by 2 in FIG. 1a). Same compression ratio (△
H/Ho=(Ho−H)/Ho) When the lubrication condition is better, that is, when the friction coefficient is smaller, the inner diameter becomes larger. Rate of change of this inner diameter Ri/ri
The relationship between (Ri: inner radius after deformation, ri: initial inner radius) and compression ratio △H/Ho is expressed by Kunoki's formula (Science Research Institute Report, Vol. 30, No. 2, March 1952). ), it can be found by calculation using the friction coefficient μ as a parameter. Therefore, by experimentally measuring Ri/ri and ΔH/Ho, it is possible to know the friction coefficient μ of the lubricant in that case. Test temperature: The test piece and tool were heated to 300℃ for approximately 15 minutes, and then forged using a crank press (processing speed approximately 6.3 m/min). Test piece (workpiece material) material: Zn-22Al superplastic material. The specimens are polished with 1000 emery paper and degreased with acetone before applying the lubricant. Dimensions of test piece: Inner diameter x Outer diameter x Height = 2ri x 2ro x Ho
=12.51〓×25.07〓×6.24=2:4:1 Method of applying lubricant: After applying it to both the test piece and tool, dry it at 230℃ for 30 minutes. Tool: The material is SKD61, and the surface roughness of the surface in contact with the test piece is 0.3 μm. Before applying lubricant to the surface of the tool, sand it with 1000-grit emery paper and then degrease it with acetone. Example 2 According to the experiment at 300°C in Example 1, the amount X of tetrafluoroethylene resin added in formula (2) was 0.25 to 2.0.
was found to be appropriate. Therefore, the amount of X added is within this range, that is, X = 0.25, 0.50, 1.0,
For case 2.0, experiments were conducted at test temperatures other than 300°C, and the results are shown in Table 1, including the results at 300°C. In Table 1, the test temperature is 250
In the range of ~350°C, the friction coefficient μ is 0.03 to 0.05, and the lubrication performance is extremely good. However, since the lubricant of the present invention has a friction coefficient μ of 0.09 to 0.12 in cold conditions (test temperature 20° C.), it is not suitable as a lubricant for cold plastic working. However, since the friction coefficient μ at 200℃ is about 0.055,
It exhibits sufficient lubrication performance not only in the temperature range of 250 to 350°C, but also in the temperature range of 200 to 350°C. [Test conditions] All conditions were the same as in Example 1 except for the test temperature.

〔試験条件〕〔Test conditions〕

実施例2に同じである。 This is the same as in Example 2.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図のaはリング圧縮試験の方法を示すもの
であり、aの図中で1はリング圧縮試験片、2は
試験片と工具(耐圧盤)とが接する潤滑剤を塗布
する面、3は工具(耐圧盤)、4は加圧するため
のプレス・スライドをそれぞれ示す。一方、第1
図のbはリング圧縮試験片の変形の前後における
形状変化を示すものであり、実線は変形前の状
態、破線は変形後の状態である。第2図は摩擦係
数に及びす四フツ化エチレン樹脂の添加量X(式
(2)参照)の影響を示す。
Figure 1a shows the ring compression test method, where 1 is the ring compression test piece, 2 is the surface to which lubricant is applied where the test piece and the tool (pressure platen) are in contact, and 3 is the ring compression test method. 4 indicates a tool (pressure plate), and 4 indicates a press slide for applying pressure. On the other hand, the first
Figure b shows the change in shape of the ring compression test piece before and after deformation, where the solid line represents the state before deformation and the broken line represents the state after deformation. Figure 2 shows the amount of added tetrafluoroethylene resin X (formula
(2)).

Claims (1)

【特許請求の範囲】 1 耐熱性樹脂であるポリイミド(Pで表示)、
減摩剤として四フツ化エチレン樹脂粉末(Tで表
示)、被加工材料と工具に対する付着剤としてメ
チルフエニルシリコーン樹脂(Mで表示)、およ
びこれらの溶剤としてNメチル―2ピロリドン溶
液(Nで表示)を、重量配合比で P:T:M:N=1:(0.25〜2.0):1:5 で配合した塑性加工用潤滑剤。
[Claims] 1. Polyimide (indicated by P), which is a heat-resistant resin;
Tetrafluoroethylene resin powder (indicated by T) was used as a lubricant, methylphenyl silicone resin (indicated by M) was used as an adhesive for the workpiece material and tool, and N methyl-2-pyrrolidone solution (indicated by N) was used as a solvent for these. A lubricant for plastic working which is prepared by blending (shown) in a weight mixing ratio of P:T:M:N=1:(0.25-2.0):1:5.
JP10335283A 1983-06-08 1983-06-08 Lubricant for plastic working Granted JPS59227992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10335283A JPS59227992A (en) 1983-06-08 1983-06-08 Lubricant for plastic working

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10335283A JPS59227992A (en) 1983-06-08 1983-06-08 Lubricant for plastic working

Publications (2)

Publication Number Publication Date
JPS59227992A JPS59227992A (en) 1984-12-21
JPS6229000B2 true JPS6229000B2 (en) 1987-06-23

Family

ID=14351735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10335283A Granted JPS59227992A (en) 1983-06-08 1983-06-08 Lubricant for plastic working

Country Status (1)

Country Link
JP (1) JPS59227992A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6878250B1 (en) 1999-12-16 2005-04-12 Honeywell International Inc. Sputtering targets formed from cast materials
US6331233B1 (en) 2000-02-02 2001-12-18 Honeywell International Inc. Tantalum sputtering target with fine grains and uniform texture and method of manufacture
US7517417B2 (en) 2000-02-02 2009-04-14 Honeywell International Inc. Tantalum PVD component producing methods
JP4535719B2 (en) * 2003-12-12 2010-09-01 協同油脂株式会社 Processing agent for plastic working of steel, plastic working method and oxidation inhibiting method
US9267184B2 (en) 2010-02-05 2016-02-23 Ati Properties, Inc. Systems and methods for processing alloy ingots
US10207312B2 (en) 2010-06-14 2019-02-19 Ati Properties Llc Lubrication processes for enhanced forgeability

Also Published As

Publication number Publication date
JPS59227992A (en) 1984-12-21

Similar Documents

Publication Publication Date Title
Rao et al. A comparative study on the performance of boric acid with several conventional lubricants in metal forming processes
US4228670A (en) Process for the isothermal forging of a work piece
JP2007125601A (en) Warm press forming method for aluminum alloy sheet
Decrozant-Triquenaux et al. Influence of lubrication, tool steel composition, and topography on the high temperature tribological behaviour of aluminium
JP2018030988A (en) Lubricant for hot stamping process of aluminum alloy plate
JPS6229000B2 (en)
CA2059901A1 (en) Powdery lubricant for aluminum alloy forging
JPH02160124A (en) Method and device for warm deep drawing of aluminum plate
Rigas et al. Tribological Behavior of High-Strength Aluminum Alloys in Combination with Dry Lubricants at High Forming Temperatures
JPS60130693A (en) Lubricating oil for metal working and its use
JP3881269B2 (en) Surface treatment method for plastic working of metal materials
Peterson et al. Frictional behavior in metalworking processes
EP0611817A1 (en) Lubricant composition for hot plastic working
JPH11158485A (en) Lubricating release agent for superplastic molding
Newnham et al. Effect of Die Surface Composition on Friction and Adhesion in Deformation Processing
JPH0523318B2 (en)
Gariety et al. Friction and lubrication
Stefanovic et al. Development of new lubricants for metal forming
JPS6234357B2 (en)
Azushima et al. Lubrication in Hot Stamping
Dorofeev et al. Densification of porous powder preforms during hot forging. I. Processing lubricant for transverse hot forging
Nonoyama et al. New Lubricating Method for Warm Forging of Steel with Boron Oxide (B2O2)
Leshok et al. Analysis of a steel disk surface running in tandem with the metal–ceramic friction material MK-5 under the conditions of boundary friction of a hydromechanical transmission
Tsukuda et al. Evaluation of Several Lubricants for Aluminum Alloy Forging
KR810001192B1 (en) Isothermal forging process