JPS62289209A - Precision filter device - Google Patents

Precision filter device

Info

Publication number
JPS62289209A
JPS62289209A JP13438686A JP13438686A JPS62289209A JP S62289209 A JPS62289209 A JP S62289209A JP 13438686 A JP13438686 A JP 13438686A JP 13438686 A JP13438686 A JP 13438686A JP S62289209 A JPS62289209 A JP S62289209A
Authority
JP
Japan
Prior art keywords
filter medium
filter
liquid
layer
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13438686A
Other languages
Japanese (ja)
Other versions
JPH0329445B2 (en
Inventor
Hiroaki Ida
井田 宏明
Katsumi Miyata
克美 宮田
Miyokichi Fujisawa
藤沢 未代吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP13438686A priority Critical patent/JPS62289209A/en
Publication of JPS62289209A publication Critical patent/JPS62289209A/en
Publication of JPH0329445B2 publication Critical patent/JPH0329445B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a filter device of high performance and a filter medium layer easy to wash by compressing spirally the filter layer formed by an assembly of fascicular fibers consisting of a specified threads as a filter medium, and filtrating thereby. CONSTITUTION:A liquid to be filtrated is supplied to fill up a filter tower 1 through a supply pipe 17 of said liquid, and then the filter layer 4 in which the assembly of fascicular fibers consisting of nontwisted threads made of curled shrinkage treatment threads of long fibers of 5 or less denier single thread size is used as the filter medium and is fixed to a filter medium fixing plate 2 connected to a rotating axis 21, is rotated by a filter medium rotating device 5 and is spirally compressed by a filter medium vertically driving device 6. Then, the liquid to be filtrated is continuously supplied in the tower 1 through the supply pipe 17 of said liquid. And colloidal particles in the liquid to be filtrated are caught by the filter medium of the filter medium layer 4, and the filtrate becomes water of good quality and is discharged through a filtrate discharge pie 13. When the pressure in the tower 1 is increased to a specific pressure, a washing liquid of a specific amount is supplied to the tower 1 from one end of a washing liquid supply pipe 11, and the filter medium layer 4 is automatically washed.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明は、水中に懸濁する固体粒子(以下コロイド粒子
と呼称する)を除去するために用いる繊維を利用した高
性能でしかも濾材層の洗浄容易な精密濾過装置に関する
ものである。
[Detailed description of the invention] 3. Detailed description of the invention (industrial application field) The present invention utilizes fibers used to remove solid particles suspended in water (hereinafter referred to as colloid particles). The present invention relates to a precision filtration device that is high-performance and has a filter medium layer that is easy to clean.

(従来の技術) 従来、水中のコロイド粒子を濾過する目的で使用されて
いる繊維構造物を濾材とする濾過媒体としては網あるい
は織厖物のいわゆる濾布と称されるシート状物やシート
状物を筒状にしたもの、さらには短繊維を堆積して溶融
あるいはバインダー等で一体化したスポンジ状繊維積層
体や短繊維スパン糸を筒状に巻上げた積層体あるいはメ
ンブランフィルタ−をアコーデオン状に巻いたもの等が
知られている。
(Prior Art) Conventionally, filtration media using fibrous structures used for the purpose of filtering colloidal particles in water include sheet-like materials or sheet-like materials called so-called filter cloths made of nets or woven fabrics. A cylindrical product, a spongy fiber laminate made by depositing short fibers and melting or integrating them with a binder, a laminate made by winding short fiber spun yarn into a cylindrical shape, or a membrane filter made into an accordion shape. It is known to be rolled.

これらの濾過媒体のうち濾布、メンブランフィルタ−9
筒状繊維濾過体による濾過は、濾材層の厚みが、藩過ぎ
るため被濾過物が濾材層表面に捕捉されることになり2
表面濾過が支配的となって。
Among these filtration media, filter cloth, membrane filter-9
In the case of filtration using a cylindrical fiber filter, the thickness of the filter layer is too thick, so the filtered material is trapped on the surface of the filter layer.
Surface filtration becomes dominant.

コロイド粒子を含む多量の希薄)Δ濁液の処理を目的と
する精密濾過には不適当である。一方、従来のスポンジ
状繊維積層体においては、コロイド粒子が濾材層内部で
捕捉される深層濾過が支配的で精密濾過に適するが、濾
材細孔が固定化されているため通常の洗浄方式では捕捉
物質をMl離除去することが困デ「で、濾材の再生利用
が難しかった。
It is unsuitable for microfiltration aimed at processing large amounts of dilute) Δ suspensions containing colloidal particles. On the other hand, in conventional sponge-like fiber laminates, deep filtration in which colloidal particles are trapped inside the filter layer is dominant and is suitable for precision filtration, but since the filter media pores are fixed, they cannot be captured by normal cleaning methods. It was difficult to remove the substance by separation of Ml, making it difficult to recycle the filter media.

また、従来繊維を堆積した濾過層により濾過するものと
して2例えば特開昭57−156012号公報に示され
る発明が知られている。この発明の場合。
Further, as a conventional method for filtering with a filter layer in which fibers are deposited, an invention disclosed in JP-A-57-156012, for example, is known. For this invention.

濾材の洗浄は可能であるが、短繊維を使用しているため
、しばしば処理水に短繊維が混入する欠点を有しており
、かつ濾過性能面からでも捕捉出来るコロイド粒子は濁
度表示でたかだか5mg//!程度であった。
Although it is possible to wash the filter media, since short fibers are used, the disadvantage is that the short fibers often get mixed into the treated water, and in terms of filtration performance, the colloidal particles that can be captured are only visible in the turbidity display. 5mg//! It was about.

これらの問題を解消するため1本発明者らは。In order to solve these problems, the present inventors.

先に特願昭59−215735号にて水中のコロイド粒
子を捕捉する精密濾過装置を提案した。この装置は。
Previously, we proposed a precision filtration device for capturing colloidal particles in water in Japanese Patent Application No. 59-215735. This device is.

コロイド粒子の捕捉に際して従来のものとは異なり、十
分りこコロイド粒子を捕捉する能力を持っていた。
Unlike conventional products, it has the ability to capture colloidal particles in a sufficient amount.

(発明が解決しようとする問題点) ところが上記発明は、装置上5洗浄効率が悪い欠点があ
り、洗浄時に繊維濾材への再付着が生じ。
(Problems to be Solved by the Invention) However, the above-mentioned invention has the disadvantage that cleaning efficiency is poor due to the equipment, and re-adhesion to the fiber filter medium occurs during cleaning.

洗浄効率が悪くなる。さらに、逆浸透膜、  UF(ウ
ルトラフィルター)膜等への前処理用として使用するに
はコロイド粒子除去率のより一層の向上が要求されるこ
とであった。
Cleaning efficiency deteriorates. Furthermore, in order to use it as a pretreatment for reverse osmosis membranes, UF (ultra filter) membranes, etc., it was necessary to further improve the colloid particle removal rate.

本発明は、上記の問題点を解消するものでコロイド粒子
の除去率を向上させた高精度な処理水を得ることと、捕
捉物質により繊維に目詰まりが生じた場合でも容易に洗
浄出来る装置を提供することである。
The present invention solves the above problems by providing highly accurate treated water with improved removal rate of colloidal particles, and by providing an apparatus that can be easily cleaned even when fibers are clogged with trapped substances. It is to provide.

(問題点を解決するための手段) 本発明者らは、このような問題点を解決するために鋭意
研究の結果、濾材の洗浄作業が容易で。
(Means for Solving the Problems) In order to solve these problems, the inventors of the present invention have conducted extensive research and found that cleaning the filter medium is easy.

かつコロイド粒子の除去率が向上した本発明に到達した
ものである。
Moreover, the present invention has been achieved in which the removal rate of colloidal particles is improved.

すなわち5本発明の濾過装置は無数の繊維を濾材として
水中に懸ン発する微細粒子を濾過する装置であって、単
糸繊維が5デニール以下の長繊維捲縮加工糸の無撚糸か
らなるトウ状繊維集合体をは材として回転軸12+1に
連結した゛濾材取付板(2)に固定して濾材層(4)を
形成し、さらにこの濾材層を濾材取付板(2)に連結し
た濾材回転装置(5)と濾材圧縮板(3)に連結した濾
材昇降駆動装置(6)により圧縮するように構成してな
る精密濾過装置である。
In other words, the filtration device of the present invention is a device for filtering fine particles suspended in water using countless fibers as a filter medium, and the single fiber is a tow-like fiber made of untwisted long fiber crimped yarn of 5 deniers or less. A filter media rotation device in which a fiber aggregate is used as a material and fixed to a filter media mounting plate (2) connected to a rotating shaft 12+1 to form a filter media layer (4), and this filter media layer is further connected to the filter media mounting plate (2). (5) and a filter medium elevating drive device (6) connected to a filter medium compression plate (3).

先ず、濾材層(4)を構成する長繊維!8縮加工糸は。First, the long fibers that make up the filter layer (4)! 8 shrink processed yarn.

単糸繊度が5デニール以下が好ましく、特に5−0.3
デニールが望ましい。単糸繊度が5デニールを超えると
隣接繊維間の空間が大きくなるため濾材としての性能が
低下する。単糸繊度の下限は。
Single yarn fineness is preferably 5 denier or less, particularly 5-0.3
Denier is preferred. When the single fiber fineness exceeds 5 denier, the space between adjacent fibers becomes large, resulting in a decrease in performance as a filter medium. What is the lower limit of single yarn fineness?

特に制限はないが、0.3デニ一ル未満の場合、捲縮加
工を行った糸条であっても繊度が小さ過ぎるため捲縮性
が少なく、深層濾過の特徴が活かせず。
Although there is no particular restriction, if the yarn is less than 0.3 denier, even if the yarn is crimped, the fineness is too small, so the crimpability is low, and the characteristics of deep filtration cannot be utilized.

捲縮のないフィラメントの場合と同じ濾過効果しか得ら
れないことである。
Only the same filtration effect as with uncrimped filaments can be obtained.

1在縮加工糸は、その捲縮性がほぼ永久的に洩ることが
木’a過装置に要求されるため、繊維として熱可塑性合
成繊維が好ましく用いられる。捲縮加工糸の製造方法と
しては一般にかさ高加工と呼ばれている方法が採用出来
、具体的には(反1然りン去や押し込み法、擦過法、空
気噴射法等のいずれの方法により製造されてもよい。
1. Thermoplastic synthetic fibers are preferably used as the fibers for the crimp-processed yarn, since the crimpability of the yarn is required to be maintained almost permanently in the wood aperture device. As a method for manufacturing crimped yarn, a method generally called bulk processing can be adopted, and specifically, any method such as anti-phosphorus removal, pressing method, rubbing method, air injection method, etc. may be manufactured.

熱可塑性合成繊維としては強力、脱水性、疎水性等の性
能面でポリエステル、ナイロン、ポリオレフィン等が好
ましく使用される。捲縮加工を施さないフィラメントを
使用すると濾材層繊維間に連続した直線状の水路を形成
し、コロイド粒子の捕捉が困難となる。また、たとえ捕
捉したとしても濾材層が平面的になり1表面濾過が支配
的で閉塞が早く、洗浄頻度が多くなる。
As the thermoplastic synthetic fiber, polyester, nylon, polyolefin, etc. are preferably used in terms of performance such as strength, dehydration properties, and hydrophobicity. If filaments that are not crimped are used, continuous straight water channels will be formed between the fibers of the filter layer, making it difficult to capture colloidal particles. Furthermore, even if the particles are captured, the filter layer becomes planar and single-surface filtration is dominant, leading to rapid clogging and increased cleaning frequency.

本発明において、長繊維糸条を用いる理由は。The reason why long fiber yarn is used in the present invention is as follows.

濾材の洗浄が簡単であること、及び濾材の洗浄時に処理
水に繊維が混入するのを防くためである。
This is to facilitate cleaning of the filter medium and to prevent fibers from being mixed into the treated water during cleaning of the filter medium.

また、上記繊維は、1然りを施さず無撚りの状態で使用
する。撚りをかけるとコスト高になるのと。
Further, the above-mentioned fibers are used in an untwisted state without being twisted. Twisting it will increase the cost.

捲縮加工でフィラメントにふくらみを与えていたのが1
.然り効果で糸条がコンパクトになり抛維間の空隙を大
きく出来ないからである。
1. The filament was crimped to make it bulge.
.. This is because the yarn becomes compact due to this effect, and the voids between the fibers cannot be made large.

(実施例) 以下1本発明の実施例を具体的に図面により説明する。(Example) An embodiment of the present invention will be specifically described below with reference to the drawings.

第1図は装置の全体構成を示し、第2図は、濾材取付板
の正面図で、第3図は、その平面図である。第1図にお
いて、1は断面が円形の濾過塔で、この濾過塔上部には
、正逆転可能な濾材回転装置5が設けられていて、この
濾材回転装置5に回転軸21が連結され1回転軸21の
先端部には濾材取付板2が連結されている。また、圧力
スイッチ8.エアーを抜くためのエアー抜き管9とその
開閉弁10.洗浄液供給管11とその開閉弁12.濾過
液取出管13とその開閉弁14.サイフオン切り管15
とその開閉弁16が設けられている。さらに、濾過塔下
部には昇降自在な濾材昇降駆動装置6.その駆動装置と
濾材圧縮板3とを連結する昇降用8棒22.被濾過液供
給管17とその開閉弁18.逆洗水取出管19とその開
閉弁20及び濾過塔支持体7が設けられている。
FIG. 1 shows the overall configuration of the apparatus, FIG. 2 is a front view of the filter medium mounting plate, and FIG. 3 is a plan view thereof. In FIG. 1, reference numeral 1 denotes a filter tower having a circular cross section, and a filter media rotation device 5 that can be rotated in forward and reverse directions is provided at the top of the filter tower.A rotating shaft 21 is connected to this filter media rotation device 5, making one rotation. A filter medium mounting plate 2 is connected to the tip of the shaft 21. Also, the pressure switch 8. Air bleed pipe 9 and its opening/closing valve 10. Cleaning liquid supply pipe 11 and its on/off valve 12. Filtrate extraction pipe 13 and its opening/closing valve 14. Siphon cutting tube 15
and an on-off valve 16 are provided. Furthermore, at the bottom of the filter tower, there is a filter media lifting device 6. 8 lifting rods 22 that connect the drive device and the filter medium compression plate 3. Filtrate supply pipe 17 and its opening/closing valve 18. A backwash water outlet pipe 19, an on-off valve 20 thereof, and a filtration tower support 7 are provided.

次いで、濾材形成方法を第2図、第3図により説明する
。先ず、長繊維捲縮加工糸の無撚糸からなる繊維濾材を
濾材取付仮に’a、過層の厚みが3001000+nm
になるように充填する。濾材取付仮への濾材層4の取り
付は方は、第3図に示すように濾材取付板のスリット2
4に挟み込み、第2図に示すように濾材を吊り下げるこ
とで行う。濾材の充填方法は、濾材取付板を回転させな
から濾材圧縮板で濾材を圧縮させることで濾材層を均一
に形成させ、そのため被濾過液をショートパスさせるこ
となく整流で濾過を行うことが出来る。
Next, a method for forming a filter medium will be explained with reference to FIGS. 2 and 3. First, a fiber filter medium made of non-twisted long fiber crimped yarn is attached to the filter medium, and the thickness of the overlayer is 3001000+ nm.
Fill it so that it is. To attach the filter medium layer 4 to the temporary filter medium attachment plate, insert the slit 2 of the filter medium attachment plate as shown in Figure 3.
4 and hang the filter medium as shown in Figure 2. The method of filling the filter medium is to compress the filter medium with the filter medium compression plate without rotating the filter medium mounting plate, thereby forming a uniform filter medium layer, which allows filtration to be performed by rectifying the flow without short-passing the liquid to be filtered. .

次に、装置の各動作について図面に基づいて説明する。Next, each operation of the device will be explained based on the drawings.

先ず、開閉弁10,12.20を閉じ。First, close the on-off valves 10, 12, and 20.

開閉弁14,16.18を開いた状態にしておき供給水
ポンプ(図示せず)により被濾過液を被濾過液供給管1
7から濾過塔内に満水になるまで供給する。次いで、前
記濾材昇降駆動装置6により濾材層4を圧縮させるので
あるが、濾材層4を前記濾材回転装置5により回転させ
、スパイラル状に圧縮させる。このようにして形成され
た濾材層4は、従来のものよりも、濾材の単位体積当り
の通液接触面積及び接触時間が大幅に増大するため。
The on-off valves 14, 16, and 18 are kept open and the filtrate is supplied to the filtrate supply pipe 1 by a supply water pump (not shown).
From step 7, water is supplied into the filtration tower until it is full. Next, the filter medium layer 4 is compressed by the filter medium lifting/lowering drive device 6, and the filter medium layer 4 is rotated by the filter medium rotating device 5 and compressed in a spiral shape. This is because the filter medium layer 4 formed in this manner has a significantly larger liquid passage contact area and contact time per unit volume of filter medium than conventional ones.

ショートパスといわれる液の短絡が■止できる。- Can stop liquid short circuits called short paths.

その後、被濾過液を濾過するのであるがその場合開閉弁
10,12.20は閉じ、開閉弁14,16.18を開
いた状態にしておき、前記被濾過液供給管17から濾過
塔1内に被濾過液を連続的に供給する。これにより被′
濾過中のコロイド粒子は濾材層4の濾材に捕捉され、水
質が良好な濾過液となって濾過液取出管13より取り出
される。なお濾過能力は濾材層4の圧縮の程度により目
的にかなった濾過水質を得ることが出来る。さらに濾材
層4の厚さも濾過効率、濾過精度に影響するので必要に
応じて任意に設定すればよいが、後述する洗浄後の濾材
の再生、濾過水質及び濾液のショートパスの点を加味し
て一般的に100mm以上が望ましい。
Thereafter, the liquid to be filtered is filtered. In this case, the on-off valves 10, 12.20 are closed, and the on-off valves 14, 16.18 are left open, and the liquid to be filtered is supplied from the feed pipe 17 into the filtration tower 1. The liquid to be filtered is continuously supplied to the filtrate. This will cover
The colloid particles during filtration are captured by the filter medium of the filter medium layer 4 and are taken out from the filtrate extraction pipe 13 as a filtrate with good water quality. Note that the filtration capacity can be adjusted to obtain the desired filtration water quality depending on the degree of compression of the filter medium layer 4. Furthermore, the thickness of the filter medium layer 4 also affects the filtration efficiency and filtration accuracy, so it can be set arbitrarily as necessary, but it should be taken into consideration the regeneration of the filter medium after washing, the quality of filtrate water, and the short path of the filtrate, which will be described later. Generally, 100 mm or more is desirable.

以上述べたように被濾過液の濾過を行うが、濾材層4の
濾材にコロイド粒子が多く付着し目詰まりを生じるとと
もに濾過塔1内の圧力が上昇する。
Although the liquid to be filtered is filtered as described above, many colloid particles adhere to the filter medium of the filter layer 4, causing clogging and increasing the pressure within the filter tower 1.

すると濾過塔l内の圧力が一定圧に上昇したことを前記
圧力スイッチ8が検知する。
Then, the pressure switch 8 detects that the pressure inside the filtration tower 1 has increased to a constant pressure.

そこで自動的に開閉弁14,16.18が閉し。Then, the on-off valves 14, 16, and 18 are automatically closed.

一方間閉弁12.20が開いて洗浄液が洗浄液供給管1
1の一端より濾過塔1内に一定量供給され。
On the other hand, the valve 12.20 is opened and the cleaning liquid is supplied to the cleaning liquid supply pipe 1.
A fixed amount of water is supplied into the filtration tower 1 from one end of the filtration tower 1.

自動的に濾過層4の洗浄が行われる。すなわち。The filter layer 4 is automatically cleaned. Namely.

コロイド粒子を捕捉した濾材を前記濾過塔上部の濾材回
転装置5を回転し、同時に濾過塔内の被濾過液を抜き出
しながら濾材の圧縮板を濾材昇降駆動装置6を下降させ
て濾材の圧縮を解除する。この時、被濾過液の抜き出し
は解除された゛濾材の先端が100−150mm程度浸
漬した位で行なうのが良い。その後、濾材昇降駆動装置
6を上下させ濾材層先端部分を濾材圧縮板3にて叩くよ
うにして洗浄する。この洗浄時において、濾材回転装置
5は正方向あるいは逆方向に一定時間毎に回転させるこ
とが望ましい。これにより濾材に捕捉されたコロイド粒
子を除去する。濾材層の洗浄終了後。
The filter medium that has captured the colloidal particles is rotated by the filter medium rotation device 5 at the top of the filter tower, and at the same time the filter medium is removed from the filter column by lowering the filter medium lifting drive device 6 to release the compression of the filter medium. do. At this time, it is preferable to extract the liquid to be filtered when the tip of the released filter medium is submerged by about 100 to 150 mm. Thereafter, the filter medium elevating drive device 6 is moved up and down and the tip of the filter medium layer is struck by the filter medium compression plate 3 to be washed. During this cleaning, it is desirable that the filter media rotating device 5 be rotated in the forward or reverse direction at regular intervals. This removes colloidal particles trapped in the filter medium. After cleaning the filter media layer.

再び開閉弁12.20を閉じ、一方、開閉弁14゜16
.18を開いて被濾過液供給管17よりj12過搭1に
被濾過液を満水になるまで供給し、先に述べたようには
材層を形成させて濾過を行う。
Close the on-off valves 12 and 20 again, while the on-off valves 14 and 16
.. 18 is opened and the liquid to be filtered is supplied from the liquid to be filtered supply pipe 17 to the J12 filter tower 1 until it is full of water, and as described above, a material layer is formed and filtration is performed.

この洗浄方式は連続通水方式であるが以下に述べるハツ
チ通水方式で行ってもよ(、汚れの程度により適宜選択
すればよい。
This cleaning method is a continuous water flow method, but a hatch water flow method described below may also be used (the method may be selected as appropriate depending on the degree of dirt).

ハツチ通水方式では濾過終了後、濾過塔内のある被濾過
液にて第1回目の洗浄を行い洗浄した液は逆洗水取出管
19により開閉弁20を通じて系外へ排出する。その後
新たに濾過水を逆洗水供給ポンプ(図示せず)により洗
浄液供給管11を通し開閉弁12を開とし、設定位置ま
で水を入れ連続通水方式と同様の手順で洗’t’f*を
行う。この操作を2−3回繰返すことにより連続通水方
式と同様の洗浄効果の高い洗浄を行うことが出来、洗浄
水のロスを少なくすることができる。
In the hatch water flow system, after filtration is completed, a first wash is performed using a certain filtered liquid in the filtration tower, and the washed liquid is discharged to the outside of the system through a backwash water outlet pipe 19 and an on-off valve 20. After that, freshly filtered water is passed through the cleaning liquid supply pipe 11 using a backwash water supply pump (not shown), and the on-off valve 12 is opened, and the water is poured in to the set position and washed in the same manner as in the continuous water flow method. *I do. By repeating this operation 2 to 3 times, it is possible to perform cleaning with a high cleaning effect similar to the continuous water flow method, and to reduce the loss of cleaning water.

なお、実施例では洗浄を圧力スイッチ8により行ってい
るが、タイマー設定で行ってもよいのはいうまでもない
Incidentally, in the embodiment, the cleaning is performed using the pressure switch 8, but it goes without saying that the cleaning may be performed by setting a timer.

以上述べたように本濾過装置は、濾過圧が極めて低く1
例えば濾材層200mm、圧縮率15%。
As mentioned above, this filtration device has extremely low filtration pressure.
For example, the filter layer is 200 mm and the compression rate is 15%.

空隙率93%の濾過層L V−50i /minの流速
で濾過を行った時、初期圧力は0.1 kg / cr
A以下であった。なお、濾材層における空隙率の測定は
When filtration is performed at a flow rate of LV-50i/min using a filter layer with a porosity of 93%, the initial pressure is 0.1 kg/cr.
It was below A. In addition, the porosity in the filter medium layer is measured.

繊維塊の見かけ比重S + (g / Cal+ )と
繊維の比重S 2 (g / cl )との関係から求
められるものである。
It is determined from the relationship between the apparent specific gravity S + (g/Cal+) of the fiber mass and the specific gravity S 2 (g/cl) of the fiber.

このように初期圧力が低いため送水ポンプの動力が極め
て低く、省エネルギーの面からも優れた濾過装置といえ
る。その結果、従来の濾過装置と比較して濾過速度を上
げるごとが可能であり、また、設置面積を少なくするこ
とが出来、かつ濾過性能も良好であった。また1本発明
では、濾過を上向流で行うため濾過効率、洗浄効率の面
で有利に働くことも高性能な濾過を行う上で重要なこと
である。
Because the initial pressure is so low, the power of the water pump is extremely low, making it an excellent filtration device from an energy-saving perspective. As a result, compared to conventional filtration devices, it was possible to increase the filtration speed, reduce the installation area, and provide good filtration performance. Furthermore, in the present invention, filtration is performed in an upward flow, which is advantageous in terms of filtration efficiency and cleaning efficiency, which is also important for high-performance filtration.

これは濾材の材質に5デニール以下の細い繊維を用いた
結果初めて達成出来たもので被濾過液中のコロイド粒子
の性状にもよるが、濾過後の液体の清浄度は濁度表示で
1■/e以下であった。このため濁度0.1■/lの水
質も条件を選定すれば十分に達成出来るものである。
This was achieved for the first time by using thin fibers of 5 deniers or less as the filter material.Although it depends on the properties of the colloid particles in the filtered liquid, the cleanliness of the liquid after filtration is 1. /e or less. Therefore, a water quality with a turbidity of 0.1 .mu./l can be fully achieved if conditions are selected.

(発明の効果) 本発明の濾過袋では大きな通水抵抗を生ずることなく高
精度の濾過を連続的に行うことが可能で。
(Effects of the Invention) The filtration bag of the present invention allows continuous high-precision filtration without causing large water flow resistance.

しかも通常の精密濾過の分野で困難とされていたQT2
材の洗浄も簡単に出来るものであり繰り返し長期間使用
出来るものである。
Moreover, QT2, which was considered difficult in the field of normal precision filtration,
The material can be easily cleaned and can be used repeatedly for a long period of time.

このため逆浸透膜、イオン交換膜、UF膜等の前処理用
iy>過装置として利用出来るものである。
Therefore, it can be used as a pretreatment device for reverse osmosis membranes, ion exchange membranes, UF membranes, etc.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示すもので、第1図は全体縦断
面図、第2図は濾材取付板の正面図、第3図は濾材取付
板の平面図である。 1−濾過塔 2−濾材取付板 3−濾材圧縮板4−濾材
層 5−濾材回転装置 6−濾材昇降駆動装置 7−濾
過塔支持体 8−圧力スイッチ9−エアー抜き管 1〇
−開閉弁 11−洗浄液供給管 12−開閉弁 13−
i1過液取出管1・1−開閉弁 15−サイフオン切り
管 16−開閉弁 17−被濾過液供給管 18−開閉
弁19−逆洗水取出管 20〜開閉弁 21−回転軸 22−界降用芯棒 23−濾材取付板の
整流用有孔 24−濾材取付板スリット。
The drawings show an embodiment of the present invention; FIG. 1 is an overall vertical sectional view, FIG. 2 is a front view of a filter mounting plate, and FIG. 3 is a plan view of the filter mounting plate. 1-Filtering tower 2-Filtering medium mounting plate 3-Filtering medium compression plate 4-Filtering medium layer 5-Filtering medium rotation device 6-Filtering medium elevating drive device 7-Filtration tower support 8-Pressure switch 9-Air vent pipe 10-On-off valve 11 -Cleaning liquid supply pipe 12-On-off valve 13-
i1 Filtrate extraction pipe 1.1 - On-off valve 15 - Siphon cut-off pipe 16 - On-off valve 17 - Filtered liquid supply pipe 18 - On-off valve 19 - Backwash water extraction pipe 20 - On-off valve 21 - Rotating shaft 22 - Field drop Core rod 23 - Rectifying holes for filter media mounting plate 24 - Filter media mounting plate slit.

Claims (3)

【特許請求の範囲】[Claims] (1)無数の繊維を濾材として水中に懸濁する微細粒子
を濾過する装置であって、単糸繊度が5デニール以下の
長繊維捲縮加工糸の無撚糸からなるトウ状繊維集合体を
濾材として回転軸(21)に連結した濾材取付板(2)
に固定して濾材層(4)を形成し、さらにこの濾材層を
濾材取付板(2)に連結した濾材回転装置(5)と濾材
圧縮板(3)に連結した濾材昇降駆動装置(6)により
圧縮するように構成してなる精密濾過装置。
(1) A device that filters fine particles suspended in water using countless fibers as a filter medium, in which a tow-like fiber aggregate made of untwisted long fiber crimped yarn with a single filament fineness of 5 deniers or less is used as a filter medium. Filter media mounting plate (2) connected to rotating shaft (21) as
A filter media rotation device (5) is fixed to the filter media to form a filter media layer (4), and the filter media rotation device (5) is connected to the filter media mounting plate (2), and a filter media lifting device (6) is connected to the filter media compression plate (3). A precision filtration device configured to compress.
(2)非圧縮状態の厚みが300mm以上1000mm
以下である濾材層を100mm以上400mm以下の厚
みに圧縮してなる特許請求の範囲第1項記載の精密濾過
装置。
(2) Thickness in uncompressed state is 300mm or more and 1000mm
The precision filtration device according to claim 1, wherein the filter medium layer is compressed to a thickness of 100 mm or more and 400 mm or less.
(3)被濾過液供給管(17)を濾材層(4)より下部
に設けた特許請求の範囲第1項記載の精密濾過装置。
(3) The precision filtration device according to claim 1, wherein the filtrate supply pipe (17) is provided below the filter medium layer (4).
JP13438686A 1986-06-09 1986-06-09 Precision filter device Granted JPS62289209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13438686A JPS62289209A (en) 1986-06-09 1986-06-09 Precision filter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13438686A JPS62289209A (en) 1986-06-09 1986-06-09 Precision filter device

Publications (2)

Publication Number Publication Date
JPS62289209A true JPS62289209A (en) 1987-12-16
JPH0329445B2 JPH0329445B2 (en) 1991-04-24

Family

ID=15127181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13438686A Granted JPS62289209A (en) 1986-06-09 1986-06-09 Precision filter device

Country Status (1)

Country Link
JP (1) JPS62289209A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006198590A (en) * 2005-01-24 2006-08-03 Japan Organo Co Ltd Filtering apparatus and method for filtering
KR100873896B1 (en) 2008-06-04 2008-12-15 한국환경기계주식회사 Fiber filter apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006198590A (en) * 2005-01-24 2006-08-03 Japan Organo Co Ltd Filtering apparatus and method for filtering
JP4532297B2 (en) * 2005-01-24 2010-08-25 オルガノ株式会社 Filtration apparatus and filtration method
KR100873896B1 (en) 2008-06-04 2008-12-15 한국환경기계주식회사 Fiber filter apparatus

Also Published As

Publication number Publication date
JPH0329445B2 (en) 1991-04-24

Similar Documents

Publication Publication Date Title
US4925560A (en) Clog resistant high efficiency filter media
EP3064262B1 (en) Filter medium, method for producing a filter medium and filter element with a filter medium
KR100362594B1 (en) Pore Size Controlable Filter
US3393262A (en) Removal of gels and small particles from viscose
JPS6120327B2 (en)
CN102905769B (en) Process for filtration of fluids and filter apparatus for performing the process
JPH10504241A (en) Method and apparatus for filtering edible oil
JPS62289209A (en) Precision filter device
EP2510992B1 (en) Filter material for cleaning a fluid
DE60314916T2 (en) PROCESS FOR PREFILING A PROTEIN SOLUTION
JPS6193814A (en) Precise filter apparatus
JPH05161811A (en) Filter device
KR101877142B1 (en) Method for filtering of wastewater using an ion-exchange fiber
JPH0560505U (en) Filtration device
TW200410749A (en) High-speed filtering device using fiber filter medium
DE202011106515U1 (en) filter body
DE102011016689A1 (en) Filtering medium for use in filter for cleaning e.g. liquid in swimming pool, has non-woven fabric that consists of density in specific range and is formed from multiple synthetic fibers, which are made from polyester
KR20110073223A (en) Apparatus for continuous inflow filtering using the fiber and filtration filter with back washing function
JP2009024111A (en) Coal dressing system
CN201135828Y (en) Novel comet type fabric filtrating body
JP2850169B2 (en) Dust removal method and device
JPH046801Y2 (en)
JPS59183813A (en) Concentrator for liquid containing solid substance
JPH05317621A (en) Filter body and filter device
JPS59199005A (en) Washing method of permeable membrane tube